

# Journal of Algebraic Structures and Their Applications ISSN: 2382-9761



## www.as.yazd.ac.ir

Algebraic Structures and Their Applications Vol. 1 No. 2 ( 2014 ), pp 85-103.

# INDEPENDENT SETS OF SOME GRAPHS ASSOCIATED TO COMMUTATIVE RINGS

SAEID ALIKHANI\* AND SAEED MIRVAKILI

Communicated by A.R. Ashrafi

ABSTRACT. Let G = (V, E) be a simple graph. A set  $S \subseteq V$  is independent set of G, if no two vertices of S are adjacent. The independence number  $\alpha(G)$  is the size of a maximum independent set in the graph. In this paper we study and characterize the independent sets of the zero-divisor graph  $\Gamma(R)$  and ideal-based zero-divisor graph  $\Gamma(R)$  of a commutative ring R.

# 1. Introduction

A simple graph G = (V, E) is a finite nonempty set V(G) of objects called vertices together with a (possibly empty) set E(G) of unordered pairs of distinct vertices of G called edges. The concept of zero-divisor graph of a commutative ring with identity was introduced by Beck in [8] and has been studied in [1, 2, 4, 5, 7]. Redmond in [14] has extended this concept to any arbitrary ring. Let R be a commutative ring with 1. The zero-divisor graph of R, denoted  $\Gamma(R)$ , is an undirected graph whose

 $\label{eq:MSC(2010):Primary:05C60,Secondary:13A99} MSC(2010): \ Primary:05C60, \ Secondary:13A99.$ 

Keywords: Independent set; Independence number; Zero-divisor graph, Ideal.

Received:25 July 2014, Accepted: 29 December 2014.

\*Corresponding author

© 2014 Yazd University.

vertices are the nonzero zero-divisors of R and two distinct vertices x and y are adjacent if and only if xy = 0. Thus  $\Gamma(R)$  is an empty graph if and only if R is an integral domain.

The concept of dominating set in zero-divisor graph has implicitly been studied in [11] and [13]. Throughout this article, all rings are commutative with identity  $1 \neq 0$ . For a subset A of a ring R, we let  $A^* = A \setminus \{0\}$ . We will denote the rings of integers modulo n, the integers, and a finite field with q elements by  $\mathbb{Z}_n$ ,  $\mathbb{Z}$  and  $F_q$ , respectively. For commutative ring theory, see [6, 12].

An independent set of a graph G is a set of vertices where no two vertices are adjacent. The independence number  $\alpha(G)$  is the size of a maximum independent set in the graph. An independent set with cardinality  $\alpha(G)$  is called a  $\alpha$ -set ([3, 9, 10]).

A graph G is called bipartite if its vertex set can be partitioned into X and Y such that every edge of G has one endpoint in X and other endpoint in Y. A graph G is said to be star if G contains one vertex in which all other vertices are joined to this vertex and G has no other edges. A complete r-partite graph is one whose vertex set can be partitioned into r subsets so that no edge has both ends in any one subset and each vertex of a partite set is joined to every vertex of the another partite sets. We denote a complete bipartite graph by  $K_{m,n}$ . The graph  $K_{1,n}$  is called a star graph, and a bistar graph is a graph generated by two  $K_{1,n}$  graphs, where their centers are joined. For a nontrivial connected graph G and a pair vertices u and v of G, the distance d(u,v) between u and v is the length of a shortest path from u to v in G. The girth of a graph G, containing a cycle, is the smallest size of the length of the cycles of G and is denoted by gr(G). If G has no cycles, we define the girth of G to be infinite. A graph in which each pair of distinct vertices is joined by an edge is called a complete graph  $K_n$  on n vertices. For a graph G, a complete subgraph of G is called a clique. The clique number,  $\omega(G)$ , is the greatest integer  $n \geq 1$  such that  $K_n \subseteq G$ , and  $\omega(G)$  is infinite if  $K_n \subseteq G$  for all  $n \geq 1$ , see [17].

Similar to paper [13], in this paper, we study the independent sets and independence number of zerodivisor graphs and ideal-based zero-divisor graphs. In Section 2 we review some preliminary results related to independence number of a graph. In Section 3, we study the independence number of zerodivisor graphs associated to commutative rings. In Section 4, investigate the independence number of an ideal based zero-divisor graph. Finally in Section 5, we list tables for graphs associated to small commutative ring R, and write independence, domination and clique number of  $\Gamma(R)$ .

#### 2. Preliminary results

There are several classes of graphs whose independent sets and independence numbers are clear. We state some of them in the following Lemma, which their proofs are straightforward.

# Lemma 2.1. ([17])

(i) 
$$\alpha(K_n) = 1$$
.

- (ii) Let G be a complete r-partite graph  $(r \ge 2)$  with partite sets  $V_1, ..., V_r$ . If  $|V_i| \ge 2$  for  $1 \le i \le r$ , then  $\alpha(G) = \max |V_i|$ .
- (iii)  $\alpha(K_{1,n}) = n$  for a star graph  $K_{1,n}$ .
- (iv) The independence number of a bistar graph is 2n.
- (v) Let  $C_n, P_n$  be a cycle and a path with n vertices, respectively. Then  $\alpha(P_n) = \lfloor \frac{n+1}{2} \rfloor$  and  $\alpha(C_n) = \lfloor \frac{n}{2} \rfloor$ .

Corollary 2.2. Let  $F_1$  and  $F_2$  be finite fields with  $|F_1^*| = m$  and  $|F_2^*| = n$ . Then

- (i)  $\alpha(\Gamma(F_1 \times F_2)) = \max\{m, n\}.$
- (ii)  $\alpha(\Gamma(F_1 \times \mathbb{Z}_4)) = \max\{2m, 3\}.$

#### Proof.

- (i) The graph  $\Gamma(F_1 \times F_2)$  is bipartite ([4]) and we have the result by Lemma 2.1 (ii).
- (ii) We have  $Z^*(F_1 \times \mathbb{Z}_4) = \{(x,y)|x \in F_1^*, y = 0, 2\} \cup \{(0,y)|y = 1,2,3\}$ . If  $F_1 = \mathbb{Z}_2$  then  $\{(0,y)|y = 1,2,3\}$  is a maximum independent set in the graph and so  $\alpha(\Gamma(F_1 \times Z_4)) = 3$ . If  $F_1 \neq \mathbb{Z}_2$  then  $\{(x,y)|x \in F_1^*, y = 0,2\}$  is a maximum independent set in the graph and so  $\alpha(\Gamma(F_1 \times Z_4)) = 2m$ . Therefore  $\alpha(\Gamma(F_1 \times \mathbb{Z}_4)) = \max\{2m,3\}$ .

#### 3. Independence number of a zero-divisor graph

We begin this section with the following lemma:

**Lemma 3.1.** Let R be a ring and  $r \geq 3$ . If  $\Gamma(R)$  is a r-partite graph with parts  $V_1, \ldots, V_r$ , then  $\alpha(\Gamma(R)) = \max |V_i|$ .

Note that, for any prime number p and any positive integer n, there exists a finite ring R whose zero-divisor graph  $\Gamma(R)$  is a complete  $p^n$ -partite graph. For example, if  $\Gamma(R)$  is a finite field with  $p^n$  elements, then  $R = F_{p^n}[x,y]/(xy,y^2-x)$  is the desired ring.

**Remark.** It is easy to see that a graph G has independence number equal to 1, if for every  $x, y \in Z(R)^*$ , xy = 0, this means  $\Gamma(R)$  is a complete graph.

We need the following theorem:

**Theorem 3.2.** ([5]) If R is a commutative ring which is not an integral domain, then exactly one of the following holds:

- (i)  $\Gamma(R)$  has a cycle of length 3 or 4 (i.e.,  $gr(R) \leq 4$ );
- (ii)  $\Gamma(R)$  is a star graph; or
- (iii)  $\Gamma(R)$  is the zero-divisor graph of  $R \cong \mathbb{Z}_2 \times \mathbb{Z}_4$  or  $R \cong \mathbb{Z}_2 \times \mathbb{Z}[X]/(X^2)$ .

By Theorem 3.2 we have the following theorem:

**Theorem 3.3.** If  $\Gamma(R)$  has no cycles, then  $\alpha(\Gamma(R))$  is either  $|Z^*(R)| - 1$  or 3.

**Theorem 3.4.** (i) Let R be a finite ring. If  $\Gamma(R)$  is a regular graph of degree r, then  $\alpha(\Gamma(R))$  is either 1 or r.

- (ii) Let R be a finite decomposable ring. If  $\Gamma(R)$  is a Hamiltonian graph, then  $\alpha(\Gamma(R)) = \frac{|Z^*(R)|}{2}$ .
- (iii) Let R be a finite principal ideal ring and not decomposable. If  $\Gamma(R)$  is Hamiltonian, then  $\alpha(\Gamma(R)) = 1$

#### Proof.

- (i) Since  $\Gamma(R)$  is a regular graph of degree r,  $\Gamma(R)$  is a complete graph  $K_{r+1}$  or a complete bipartite graph  $K_{r,r}$ . Consequently,  $\alpha(\Gamma(R))$  is either 1 or r.
- (ii) In this case  $\Gamma(R)$  is  $K_{n,n}$  for some natural number n. So,  $\alpha(\Gamma(R)) = n$ .
- (iii) If R is not decomposable then in this case  $\Gamma(R)$  is a complete graph. Therefore we have the result.  $\square$

**Corollary 3.5.** The graph  $\Gamma(\mathbb{Z}_n)$  is a Hamiltonian graph if and only if  $\alpha(\Gamma(\mathbb{Z}_n)) = 1$ .

**Proof.** By Corollary 2 of [2], we know that the graph  $\Gamma(\mathbb{Z}_n)$  is a Hamiltonian graph if and only if  $n=p^2$ , where p is a prime larger than 3 and  $\Gamma(\mathbb{Z}_n)$  is isomorphic to  $K_{p-1}$ . Thus, we have the result.  $\square$ 

Here we state a notation which is useful for the study of the independence number of more graphs associated to commutative rings.

Let  $R = F_1 \times ... \times F_n$ , where  $F_i$  is an integral domain, for every i, and  $|F_i| \ge |F_{i+1}|$ . We set

$$E_{i_1...i_k} = \{(x_1, \dots, x_n) \in R | \forall i \in \{i_1, \dots, i_k\}, x_i \neq 0 \text{ and } \forall i \notin \{i_1, \dots, i_k\}, x_i = 0\}.$$

By this notation we have  $|E_{i_1...i_k}| = |F_{i_1}^*| |F_{i_2}^*| \dots |F_{i_k}^*|$ .

**Theorem 3.6.** Suppose that for a fixed integer  $n \geq 2$ ,  $R = R_1 \times \cdots \times R_n$ , where  $R_i$  is an integral domain for each i = 1, ..., n. We have

- (i)  $\alpha(\Gamma(R)) = \infty$  if one of  $R_i$  is infinity,
- (ii)

$$\alpha(\Gamma(R)) \ge \left(\sum_{2 \le i_2 \le \dots \le i_{\lfloor \frac{k-1}{2} \rfloor} \le n} n_1 n_{i_2} \dots n_{i_{\lfloor \frac{k-1}{2} \rfloor}}\right) + \sum_{\lfloor \frac{k-1}{2} \rfloor + 1}^{n-1} \left(\sum_{1 \le i_1 \le \dots \le i_l \le n} n_{i_1} \dots n_{i_l}\right).$$

**Proof.** (i) We can suppose that  $|R_1|$  is infinity. So  $S = \{(x, 0, ..., 0) | x \in R_1^*\}$  is an independent set and therefore  $\alpha(\Gamma(R)) = \infty$ .

(ii) Let  $|R_1| \ge |R_2| \ge ... \ge |R_n|$ . It is easy to see that

$$A = \left(\bigcup_{2 \le i_2 \le \dots \le i_{\lfloor \frac{k-1}{2} \rfloor} \le n} E_{1i_2 \dots i_{\lfloor \frac{k-1}{2} \rfloor}}\right) \bigcup \left(\bigcup_{\lfloor \frac{k-1}{2} \rfloor + 1}^{n-1} \left(\bigcup_{1 \le i_1 \le \dots \le i_l \le n} E_{i_1 \dots i_l}\right)\right)$$

is an independent set of  $\Gamma(R)$ . So

$$\alpha(\Gamma(R)) \ge |A| = \sum_{\lfloor \frac{k-1}{2} \rfloor + 1}^{n-1} \left( \sum_{1 \le i_1 \le \dots \le i_l \le n} n_{i_1} \dots n_{i_l} \right) + \left( \sum_{2 \le i_2 \le \dots \le i_{\lfloor \frac{k-1}{2} \rfloor} \le n} n_1 n_{i_2} \dots n_{i_{\lfloor \frac{k-1}{2} \rfloor}} \right) \quad \square$$

**Theorem 3.7.** Suppose that  $n_1 \ge n_2 \ge n_3$  and  $|F_i^*| = n_i$  for i = 1, 2, 3. If  $R = F_1 \times F_2 \times F_3$ , then

$$\alpha(\Gamma(R)) = n_1 n_2 + n_1 n_3 + \max\{n_1, n_2 n_3\}.$$

**Proof.** It is not difficult to see that one of the following sets is a maximum independent set in the zero-divisor graph of  $F_1 \times F_2 \times F_3$ :

$$A_1 = E_{12} \cup E_{13} \cup E_{23}$$
,

$$A_2 = E_{12} \cup E_{13} \cup E_1.$$

So 
$$\alpha(\Gamma(R)) = \max\{|A_1|, |A_2|\} = n_1 n_2 + n_1 n_3 + \max\{n_1, n_2 n_3\}.$$

Let us to state two examples for the above theorem:

**Example 3.8.** Let  $R = \mathbb{Z}_5 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ . Here  $A_2 = E_{12} \cup E_{13} \cup E_1$  is a  $\alpha$ -set of graph  $\Gamma(R)$  and so  $\alpha(\Gamma(R)) = n_1 n_2 + n_1 n_3 + n_1 = 9$ .

**Example 3.9.** Let  $R = \mathbb{Z}_7 \times \mathbb{Z}_5 \times \mathbb{Z}_5$ . Here  $A_1 = E_{12} \cup E_{13} \cup E_{23}$  is a  $\alpha$ -set and  $\alpha(\Gamma(R)) = n_1 n_2 + n_1 n_3 + n_2 n_3 = 64$ .

**Theorem 3.10.** Suppose that  $n_1 \ge n_2 \ge n_3 \ge n_4$  and  $|F_i^*| = n_i$  for i = 1, 2, 3, 4. Let  $R = F_1 \times F_2 \times F_3 \times F_4$ .

- (i) If  $n_1 \ge n_2 n_3 n_4$ , then  $\alpha(\Gamma(R)) = n_1 (n_2 n_3 + n_2 n_4 + n_3 n_4 + n_2 + n_3 + n_4 + 1)$ .
- (ii) If  $n_1 \le n_2 n_3 n_4$  and  $n_1 n_4 \ge n_2 n_3$ , then  $\alpha(\Gamma(R)) = n_1(n_2 n_3 + n_2 n_4 + n_3 n_4 + n_2 + n_3 + n_4) + n_2 n_3 n_4$ .
- (iii) If  $n_1 n_4 \le n_2 n_3$ , then  $\alpha(\Gamma(R)) = n_1(n_2 n_3 + n_2 n_4 + n_3 n_4 + n_2 + n_3) + n_2 n_3 + n_2 n_3 n_4$ .

**Proof.** Since  $n_1 \ge n_2 \ge n_3 \ge n_4$ , it is easy to check that one of the following sets is a  $\alpha$ -set of the graph  $\Gamma(R)$ :

$$I_1 = E_{123} \cup E_{124} \cup E_{134} \cup E_{12} \cup E_{13} \cup E_{14} \cup E_{1}$$

$$I_2 = E_{123} \cup E_{124} \cup E_{134} \cup E_{12} \cup E_{13} \cup E_{14} \cup E_{234},$$

$$I_3 = E_{123} \cup E_{124} \cup E_{134} \cup E_{12} \cup E_{13} \cup E_{23} \cup E_{234}$$

- (i) If  $n_1 \ge n_2 n_3 n_4$  then  $n_1 n_4 \ge n_2 n_3 n_4$ , and  $I_1$  is a  $\alpha$ -set in the graph. Therefore  $\alpha(\Gamma(R)) = n_1(n_2 n_3 + n_2 n_4 + n_3 n_4 + n_2 + n_3 + n_4 + 1)$ .
- (ii) If  $n_1 \leq n_2 n_3 n_4$  and  $n_1 n_4 \geq n_2 n_3$ , then  $I_2$  is a  $\alpha$ -set in the graph. Therefore  $\alpha(\Gamma(R)) = n_1(n_2 n_3 + n_2 n_4 + n_3 n_4 + n_2 + n_3 + n_4) + n_2 n_3 n_4$ .
- (iii) If  $n_1 n_4 \leq n_2 n_3$  then  $n_1 \leq n_2 n_3 n_4$  and  $I_3$  is a  $\alpha$ -set in the graph. So  $\alpha(\Gamma(R)) = n_1(n_2 n_3 + n_2 n_4 + n_3 n_4 + n_2 + n_3) + n_2 n_3 + n_2 n_3 n_4$ .

The following corollary is an immediate consequence of Theorem 3.10.

Corollary 3.11. Suppose that  $n_1 \ge n_2 \ge n_3 \ge n_4$  and  $|F_i^*| = n_i$  for i = 1, 2, 3, 4. If  $R = F_1 \times F_2 \times F_3 \times F_4$ , then

$$\alpha(\Gamma(R)) = n_1(n_2n_3 + n_2n_4 + n_3n_4 + n_2 + n_3) + \max\{n_1 + n_1n_4, n_2n_3 + n_2n_3n_4, n_1n_4 + n_2n_3n_4\}.$$

Here we bring up some examples for Theorem 3.10.

**Example 3.12.** Let  $R = \mathbb{Z}_5 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ . The set  $I_1$  in Theorem 3.10, is a  $\alpha$ -set in the graph and so  $\alpha(\Gamma(R)) = 28$ .

**Example 3.13.** Let  $R = \mathbb{Z}_5 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3$ . The set  $I_2$  in Theorem 3, is a  $\alpha$ -set in the graph and so  $\alpha(\Gamma(R)) = 80$ .

**Example 3.14.** Let  $R = \mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_3 \times \mathbb{Z}_2$ . The set  $I_3$  in Theorem 3, is a  $\alpha$ -set in the graph and so  $\alpha(\Gamma(R)) = 88$ .

**Theorem 3.15.** Suppose that  $|F_i^*| = n_i$ , where  $n_i \ge n_j$  and  $i \ge j$  for i, j = 1, ..., 5. Let  $R = F_1 \times ... \times F_5$ . If  $t = n_1 (\sum_{\substack{2 \le i < j \le 5 \\ (i,j) \ne (d,5)}} n_i n_j n_j + n_1 (\sum_{\substack{2 \le i < j \le 5 \\ (i,j) \ne (d,5)}} n_i n_j)$ , then

- (i) If  $n_1 \ge n_2 n_3 n_4 n_5$ , then  $\alpha(\Gamma(R)) = t + n_1 (n_4 n_5 + n_2 + n_3 + n_4 + n_5 + 1)$ .
- (ii) If  $n_2n_3 \ge n_1n_4n_5$ , then  $\alpha(\Gamma(R)) = t + n_2(n_3n_4n_5 + n_3n_4 + n_3n_5 + n_1 + n_3) + n_1n_3$ .
- (iii) If  $n_1 n_5 \ge n_2 n_3 n_4$ , then  $\alpha(\Gamma(R)) = t + n_1 (n_4 n_5 + n_2 + n_3 + n_4 + n_5) + n_2 n_3 n_4 n_5$ .
- (iv) If  $n_1 n_5 \le n_2 n_3 n_4$  and  $n_1 n_4 \ge n_2 n_3 n_5$ , then  $\alpha(\Gamma(R)) = t + n_1 (n_4 n_5 + n_2 + n_3 + n_4) + n_2 (n_3 n_4 n_5 + n_3 n_4)$ .
- (v) If  $n_1 n_4 \le n_2 n_3 n_5$  and  $n_1 n_3 \ge n_2 n_4 n_5$ , then  $\alpha(\Gamma(R)) = t + n_1 (n_4 n_5 + n_2 + n_3) + n_2 (n_3 n_4 n_5 + n_3 n_4 + n_3 n_5)$ .
- (vi) If  $n_1 n_3 \le n_2 n_4 n_5$  and  $n_1 n_2 \ge n_3 n_4 n_5$ , then  $\alpha(\Gamma(R)) = t + n_1 (n_4 n_5 + n_2) + n_2 (n_3 n_4 n_5 + n_3 n_4 + n_3 n_5 + n_4 n_5)$ .
- (vii) If  $n_1 n_2 \le n_3 n_4 n_5$ , then  $\alpha(\Gamma(R)) = t + (n_1 + n_3) n_4 n_5 + n_2 (n_3 n_4 n_5 + n_3 n_4 + n_3 n_5 + n_4 n_5)$ .

**proof.** We put  $A = (\bigcup_{2 \le i < j < k \le 5} E_{1ijk}) \bigcup (\bigcup_{\substack{2 \le i < j \le 5 \\ (i,j) \ne (4,5)}} E_{1ij})$ . Consider the sets  $A_i$  and  $B_i$  for  $i = 1, \ldots, 6$ 

as shown in the following table.

|       | i = 1      | i = 2     | i = 3     | i=4       | i = 5     | i = 6     |
|-------|------------|-----------|-----------|-----------|-----------|-----------|
| $A_i$ | $E_1$      | $E_{23}$  | $E_{12}$  | $E_{13}$  | $E_{14}$  | $E_{15}$  |
| $B_i$ | $E_{2345}$ | $E_{145}$ | $E_{345}$ | $E_{245}$ | $E_{235}$ | $E_{234}$ |

We have:

- (i) If  $n_1 \geq n_2 n_3 n_4 n_5$ , then by the above table  $|A_1| \geq |B_1|$  and this implies  $|B_2| \geq |A_2|$  and for i = 3, 4, 5, 6,  $|A_i| \geq |B_i|$ . So  $A \cup A_1 \cup B_2 \cup A_3 \cup A_4 \cup A_5 \cup A_6$  has the size of a maximum independent set in the graph and  $\alpha(\Gamma(R)) = t + n_1(n_4 n_5 + n_2 + n_3 + n_4 + n_5 + 1)$ .
- (ii) If  $n_2 n_3 \ge n_1 n_4 n_5$  then  $|A_2| \ge |B_2|$  and this implies  $|B_1| \ge |A_1|, |A_3| \ge |B_3|, |A_4| \ge |B_4|, |B_5| \ge |A_5|$  and  $|B_6| \ge |A_6|$ , so  $A \cup B_1 \cup A_2 \cup A_3 \cup A_4 \cup B_5 \cup B_6$  has the size of a maximum independent set in the graph and  $\alpha(\Gamma(R)) = t + n_2(n_3 n_4 n_5 + n_3 n_4 + n_3 n_5 + n_1 + n_3) + n_1 n_3$ .
- (iii) If  $n_1 n_5 \ge n_2 n_3 n_4$  and  $n_1 \le n_2 n_3 n_4 n_5$  then  $|A_6| \ge |B_6|$  and  $|B_1| \ge |A_1|$ , now  $|B_2| \ge |A_2|$  and for  $i = 3, 4, 5, |A_i| \ge |B_i|$ , so  $A \cup B_1 \cup B_2 \cup A_3 \cup A_4 \cup A_5 \cup A_6$  has the size of a maximum independent set in the graph and  $\alpha(\Gamma(R)) = t + n_1(n_4 n_5 + n_2 + n_3 + n_4 + n_5) + n_2 n_3 n_4 n_5$ .
- (iv) If  $n_1 n_5 \le n_2 n_3 n_4$  and  $n_1 n_4 \ge n_2 n_3 n_5$  then  $|B_6| \ge |A_6|$  and  $|A_5| \ge |B_5|$ , now  $|B_1| \ge |A_1|$ ,  $|B_2| \ge |A_2|$  and for i = 3, 4,  $|A_i| \ge |B_i|$ , so  $A \cup B_1 \cup B_2 \cup A_3 \cup A_4 \cup A_5 \cup B_6$  has the size of a maximum independent set in the graph and  $\alpha(\Gamma(R)) = t + n_1(n_4 n_5 + n_2 + n_3 + n_4) + n_2(n_3 n_4 n_5 + n_3 n_4)$ .
- (v) If  $n_1 n_4 \leq n_2 n_3 n_5$  and  $n_1 n_3 \geq n_2 n_4 n_5$  then  $|B_5| \geq |A_5|$  and  $|A_4| \geq |B_4|$ , therefore  $|A_3| \geq |B_3|$  and for i = 1, 2, 6,  $|B_i| \geq |A_i|$ , so  $A \cup B_1 \cup B_2 \cup A_3 \cup A_4 \cup B_5 \cup B_6$  has the size of a maximum independent set in the graph and  $\alpha(\Gamma(R)) = t + n_1(n_4 n_5 + n_2 + n_3) + n_2(n_3 n_4 n_5 + n_3 n_4 + n_3 n_5)$ .
- (vi) If  $n_1 n_3 \leq n_2 n_4 n_5$  and  $n_1 n_2 \geq n_3 n_4 n_5$  then  $|B_4| \geq |A_4|$  and  $|A_3| \geq |B_3|$ , so for i = 1, 2, 5, 6,  $|B_i| \geq |A_i|$ , hence  $A \cup B_1 \cup B_2 \cup A_3 \cup B_4 \cup B_5 \cup B_6$  has the size of a maximum independent set in the graph and  $\alpha(\Gamma(R)) = t + n_1(n_4 n_5 + n_2) + n_2(n_3 n_4 n_5 + n_3 n_4 + n_3 n_5 + n_4 n_5)$ .
- (vii) If  $n_1 n_2 \leq n_3 n_4 n_5$  then  $|B_3| \geq |A_3|$  and for i = 1, 2, 4, 5, 6,  $|B_i| \geq |A_i|$ , hence  $A \cup B_1 \cup B_2 \cup B_3 \cup B_4 \cup B_5 \cup B_6$  has the size of a maximum independent set in the graph and  $\alpha(\Gamma(R)) = t + (n_1 + n_3)n_4 n_5 + n_2(n_3 n_4 n_5 + n_3 n_4 + n_3 n_5 + n_4 n_5)$ .

Corollary 3.16. Let  $R = F_1 \times ... \times F_5$ ,  $|F_i^*| = n_i$  and  $n_i \ge n_j$ , where i, j = 1, ..., 5 and  $i \ge j$ . Then

$$\alpha(\Gamma(R)) = n_1(\sum_{\substack{2 \le i < j < k \le 5 \\ (i,j) \ne (4,5)}} n_i n_j n_k) + n_1(\sum_{\substack{\substack{2 \le i < j \le 5 \\ (i,j) \ne (4,5)}}} n_i n_j) + \max_i \{\Delta_i\},$$

where

$$\Delta_1 = n_1(n_4n_5 + n_2 + n_3 + n_4 + n_5 + 1)$$

$$\Delta_2 = n_2(n_3n_4n_5 + n_3n_4 + n_3n_5 + n_1 + n_3) + n_1n_3$$

$$\Delta_3 = n_1(n_4n_5 + n_2 + n_3 + n_4 + n_5) + n_2n_3n_4n_5$$

$$\Delta_4 = n_1(n_4n_5 + n_2 + n_3 + n_4) + n_2(n_3n_4n_5 + n_3n_4)$$

$$\Delta_5 = n_1(n_4n_5 + n_2 + n_3) + n_2(n_3n_4n_5 + n_3n_4 + n_3n_5)$$

$$\Delta_6 = n_1(n_4n_5 + n_2) + n_2(n_3n_4n_5 + n_3n_4 + n_3n_5 + n_4n_5)$$

$$\Delta_7 = (n_1 + n_3)n_4n_5 + n_2(n_3n_4n_5 + n_3n_4 + n_3n_5 + n_4n_5)$$

**Example 3.17.** (i) Let  $R = \mathbb{Z}_5 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ . Then in Theorem 3.15,  $\alpha(\Gamma(R)) = t + \Delta_1$ ,

- (ii) Let  $R = \mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ . Then in Theorem 3.15,  $\alpha(\Gamma(R)) = t + \Delta_2$ ,
- (iii) Let  $R = \mathbb{Z}_7 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3$ . Then in Theorem 3.15,  $\alpha(\Gamma(R)) = t + \Delta_3$ ,
- (iv) Let  $R = \mathbb{Z}_7 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_2$ . Then in Theorem 3.15,  $\alpha(\Gamma(R)) = t + \Delta_4$ ,
- (v) Let  $R = \mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ . Then in Theorem 3.15,  $\alpha(\Gamma(R)) = t + \Delta_5$ ,
- (vi) Let  $R = \mathbb{Z}_7 \times \mathbb{Z}_7 \times \mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ . Then in Theorem 3.15,  $\alpha(\Gamma(R)) = t + \Delta_6$ ,
- (vii) Let  $R = \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3$ . Then in Theorem 3.15,  $\alpha(\Gamma(R)) = t + \Delta_7$ .

**Theorem 3.18.** Let (R, m) be a finite local ring and  $m \neq \{0\}$ .

- (i) If  $m^2 = \{0\}$ , then  $\alpha(\Gamma(R)) = 1$ .
- (ii) If  $m^2 \neq \{0\}$ , then  $2 \leq \alpha(\Gamma(R)) \leq |Z^*(R)| |Ann(Z(R))^*|$ .

**Proof.** If R is a finite local ring, then the Jacobson radical of R equals Z(R) and Z(R) = m. Thus Z(R) is a nilpotent ideal and since R is not a field, then  $Ann(Z(R)) \neq \{0\}$ . Moreover, each element of Ann(Z(R)) is adjacent to each other vertex of  $Z^*(R)$ .

- (i) If  $m^2 = \{0\}$  then  $Ann(Z(R)) = Z^*(R)$  and  $\Gamma(R)$  is a complete graph.
- (ii) If  $m^2 \neq \{0\}$ , then every element of  $Ann(Z(R))^*$  is adjacent to each other vertex of  $Z^*(R)$  and this implies  $2 \leq \alpha(\Gamma(R)) \leq |Z^*(R)| |Ann(Z(R))^*|$ .

**Example 3.19.** Let  $R = \mathbb{Z}_{p^3}$  then  $Z^*(R) = \{pk|(p,k) = 1\} \cup \{p^2k|(p^2,k) = 1\}$ . We have  $Ann(Z(R))^* = \{p^2k|(p^2,k) = 1\}$  and  $\{pk|(p,k) = 1\}$  is an independent set in the  $\Gamma(R)$  of maximum size. So  $\alpha(\Gamma(R)) = |\{pk|(p,k) = 1\}| = |Z^*(R)| - |Ann(Z(R))^*|$ .

#### 4. The independence number of an ideal-based zero-divisor graph

In this section, we study the relationship between the independence numbers of  $\Gamma_I(R)$  and  $\Gamma(R/I)$ . Suppose that R is a commutative ring with nonzero identity, and I is an ideal of R. The ideal-based zero-divisor graph of R, denoted by  $\Gamma_I(R)$ , is the graph which vertices are the set  $\{x \in R \setminus I | xy \in I \text{ for some } y \in R \setminus I\}$  and two distinct vertices x and y are adjacent if and only if  $xy \in I$ , see [16]. In the case I = 0,  $\Gamma_0(R)$  is denoted by  $\Gamma(R)$ . Also,  $\Gamma_I(R)$  is empty if and only if I is prime. Note that

Proposition 2.2(b) of [16] is equivalent to saying  $\Gamma_I(R) = \emptyset$  if and only if R/I is an integral domain. That is,  $\Gamma_I(R) = \emptyset$  if and only if  $\Gamma(R/I) = \emptyset$ .

This naturally raises the question: If R is a commutative ring with ideal I, whether  $\alpha(\Gamma_I(R))$  is equal to  $\alpha(\Gamma(R/I))$ ? We show that the answer is negative in general.

**Lemma 4.1.** Let m be a composite natural number and p a prime number. Then

$$\alpha(\Gamma_{m\mathbb{Z}}(\mathbb{Z})) = \begin{cases} \alpha(\mathbb{Z}/m\mathbb{Z}) = 1; & \text{if } m = p^2, \\ \\ \infty; & \text{otherwise.} \end{cases}$$

Note that for the second case  $\alpha(\Gamma_{m\mathbb{Z}}(\mathbb{Z})) = \infty$  and  $\alpha(\mathbb{Z}/m\mathbb{Z}) < \infty$ .

**Proof.** If  $m = p^2$  then for every  $x \in \Gamma_{m\mathbb{Z}}(\mathbb{Z})$  we have x = pk, where (p, k) = 1. So  $x, y \in \Gamma_{m\mathbb{Z}}(\mathbb{Z})$  are adjacent in  $\Gamma_I(R)$  and  $\Gamma_I(R)$  is a complete graph. Also  $\mathbb{Z}/m\mathbb{Z} \cong \mathbb{Z}_{p^2}$  and  $\Gamma(\mathbb{Z}/m\mathbb{Z})$  is a complete graph.

Now let m be a non-prime number and for every prime number p,  $m \neq p^2$ . Then we have  $m = p^i n$ , p is prime,  $n \neq 1$  and (n, p) = 1, or  $m = p^l$ , p is prime and  $l \geq 3$ .

If  $m = p^l$  then  $S = \{kp | (k, p) = 1\}$  is an independent set and therefore  $\alpha(\Gamma_{m\mathbb{Z}}(\mathbb{Z})) = \infty$ .

If  $m = p^i n$  then  $S = \{kp | (k, p) = 1 \text{ and } n | k\}$  is an independent set and therefore  $\alpha(\Gamma_{m\mathbb{Z}}(\mathbb{Z})) = \infty$ . But, we have  $\mathbb{Z}/m\mathbb{Z}$  is a finite ring and  $\alpha(\Gamma(\mathbb{Z}/m\mathbb{Z}))$  is finite.  $\square$ 

Now we state the following results of [16].

**Lemma 4.2.** ([16]) Let I be an ideal of a ring R, and x, y be in  $R \setminus I$ . Then:

- (i) If x + I is adjacent to y + I in  $\Gamma(R/I)$ , then x is adjacent to y in  $\Gamma_I(R)$ ;
- (ii) If x is adjacent to y in  $\Gamma_I(R)$  and  $x + I \neq y + I$ , then x + I is adjacent to y + I in  $\Gamma(R/I)$ ;
- (iii) If x is adjacent to y in  $\Gamma_I(R)$  and x + I = y + I, then  $x^2, y^2 \in I$ .

**Lemma 4.3.** ([16]) If x and y are (distinct) adjacent vertices in  $\Gamma_I(R)$ , then all (distinct) elements x + I and y + I are adjacent in  $\Gamma_I(R)$ . If  $x^2 \in I$ , then all the distinct elements of x + I are adjacent in  $\Gamma_I(R)$ .

**Theorem 4.4.** Let S be a nonempty subset of  $R \setminus I$ . If  $S + I = \{s + I | s \in S\}$  is an independent set of  $\Gamma(R/I)$ , then S is a independent set of  $\Gamma_I(R)$ .

**Proof.** Let S be a nonempty subset of  $R \setminus I$  and  $S + I = \{s + I | s \in S\}$  be an independent set of  $\Gamma(R/I)$ . If  $x, y \in S$ , then x + I and y + I are not adjacent in  $\Gamma(R/I)$  and by Lemma 4.2(i), x and y are not adjacent in  $\Gamma_I(R)$ .  $\square$ 

The following corollary is an immediate consequence of the above theorem:

Corollary 4.5.  $\alpha(\Gamma(R/I)) \leq \alpha(\Gamma_I(R))$ .

**Theorem 4.6.** Let S+I be an independent set with cardinality  $\alpha(\Gamma(R/I))$  and  $A=\{s+I\in S+I|s^2+I=I\}$ . Then  $\alpha(\Gamma_I(R))=|A|+|I|(\alpha(\Gamma(R/I))-|A|)$ .

**Proof.** Suppose that  $s \in S$ ,  $x \in s + I$  and  $y \in s + I$ . If  $s^2 \in I$  then  $x \in s + I$  and  $y \in s + I$  are adjacent vertices in  $\Gamma_I(R)$ . If  $s^2 \notin I$  then  $x \in s + I$  and  $y \in s + I$  are not adjacent in  $\Gamma_I(R)$ . Therefore  $T = \{s | s^2 \in I\} \cup \{s + i | i \in I, s^2 \notin I\}$  is an independent set with maximum cardinality.  $\square$ 

Corollary 4.7.  $\alpha(\Gamma(R/I)) \leq \alpha(\Gamma_I(R)) \leq |I|\alpha(\Gamma(R/I))$ 

Corollary 4.8. If S is an independent set with cardinality  $\alpha(\Gamma_I(R))$ , and  $s^2 \in I$  for every  $s \in S$ , then  $\alpha(\Gamma_I(R)) = \alpha(\Gamma(R/I))$ .

Corollary 4.9. If S is an independent set with cardinallity  $\alpha(\Gamma_I(R))$ , and  $s^2 \notin I$  for every  $s \in S$ , then  $\alpha(\Gamma_I(R)) = |I|\alpha(\Gamma(R/I))$ .

We state two following examples for corollaries:

**Example 4.10.** Let  $R = \mathbb{Z}_6 \times \mathbb{Z}_3$  and  $I = 0 \times \mathbb{Z}_3$  be an ideal of R. Then it easy to see that  $\Gamma_I(R) = \{(2,0), (2,1), (2,2), (3,0), (3,1), (3,2), (4,0), (4,1), (4,2)\}$  and  $\Gamma(R/I) = \{(2,0) + I, (3,0) + I, (4,0) + I\}$ . The set  $T = \{(2,0), (2,1), (2,2), (4,0), (4,1), (4,2)\}$  is an independent set of  $\Gamma_I(R)$  and so  $\alpha(\Gamma_I(R)) = 6$ . On the other hand  $S + I = \{(2,0) + I, (4,0) + I\}$  is an independent set of  $\Gamma(R/I)$  and  $\alpha(\Gamma(R/I)) = 2$ . Therefore  $\alpha(\Gamma_I(R)) = |I|\alpha(\Gamma(R/I))$ .

**Example 4.11.** Let  $R = \mathbb{Z}_{16}$  and  $I = 4\mathbb{Z}_{16}$ . Then  $\Gamma_I(R) = \{2, 6, 10, 14\}$  and  $\Gamma(R/I) = \{2 + I\}$ . Then  $T = \{2\}$  is an independent set of  $\Gamma_I(R)$  and  $\alpha(\Gamma_I(R)) = 1$ . On the other hand  $S + I = \{2 + I\}$  is an independent set of  $\Gamma(R/I)$  and  $\alpha(\Gamma(R/I)) = 1$ . So we have  $\alpha(\Gamma_I(R)) = \alpha(\Gamma(R/I))$ .

**Example 4.12.** Let  $R = \mathbb{Z}_{16} \times \mathbb{Z}_3$  and  $I = 0 \times \mathbb{Z}_3$  be an ideal of R. Then it easy to see that  $\Gamma_I(R) = \{(x,y) | x = 2,4,\ldots,14, y = 0,1,2\}$  and  $\Gamma(R/I) = \{(x,0) + I | x = 2,4,\ldots,14\}$ . Then  $T = \{(x,y) | x = 2,6,10,14, y = 0,1,2\} \cup \{(4,0)\}$  is an independent set of  $\Gamma_I(R)$  and so  $\alpha(\Gamma_I(R)) = 13$ . On the other hand  $S + I = \{(x,0) + I | x = 2,4,6,10,14\}$  is an independent set of  $\Gamma(R/I)$  and  $\alpha(\Gamma(R/I)) = 5$ . Let A be the set defined in Theorem 4.6, then  $A = \{4\}$ . So we have  $\alpha(\Gamma_I(R)) = 13 = 1 + 3(5 - 1) = |A| + |I|(\alpha(\Gamma(R/I)) - |A|)$ .

5. Independence, domination and clique number of small finite commutative rings

In this section similar to [15], we list the tables for graphs associated to commutative ring R, and write independence, domination and clique number of  $\Gamma(R)$ . Note that the tables for  $n = |V\Gamma| = 1, 2, 3, 4$  can be found in [4]. The results for n = 5 can be found in [16]. In [15], all graphs on  $6, 7, \ldots, 14$ 



Figure 1. Graph for  $\mathbb{Z}_2 \times \mathbb{Z}_4$  and  $\mathbb{Z}_2 \times \mathbb{Z}_2[X]/(X^2)$ 



Figure 2. Graph for  $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ 



Figure 3. Graph for  $\mathbb{Z}_3 \times \mathbb{Z}_4$  and  $\mathbb{Z}_3 \times \mathbb{Z}_2[X]/(X^2)$ 



FIGURE 4. Graph for  $\mathbb{Z}_4, \mathbb{Z}_2[X]/(X^4), \mathbb{Z}_4[X]/(X^2+2), \mathbb{Z}_4[X]/(X^2+3X)$  and  $\mathbb{Z}_4[X]/(X^3-2,2X^2,2X)$ 

vertices which can be realized as the zero-divisor graphs of a commutative rings with 1, and the list of all rings (up to isomorphism) which produce these graphs, are given.



FIGURE 5. Graph for  $\mathbb{Z}_2[X,Y]/(X^3,XY,Y^2), \mathbb{Z}_8[X]/(2X,X^2)$  and  $\mathbb{Z}_4[X]/(X^3,2X^2,2X)$ 



FIGURE 6. Graph for  $\mathbb{Z}_4[X]/(X^2+2X)$ ,  $\mathbb{Z}_8[X]/(2X,X^2+4)$ ,  $\mathbb{Z}_2[X,Y]/(X^2,Y^2-XY)$  and  $\mathbb{Z}_4[X]/(X^2,Y^2-XY,XY-2,2X,2Y)$ 

| Vertices | R                             | R  | Graph     | $\alpha(\Gamma(R))$ | $\gamma(\Gamma(R))$ | $\omega(\Gamma(R))$ |
|----------|-------------------------------|----|-----------|---------------------|---------------------|---------------------|
| 3        | $\mathbb{Z}_6$                | 6  | $K_{1,2}$ | 2                   | 1                   | 2                   |
|          | $\mathbb{Z}_8$                | 8  | $K_{1,2}$ | 2                   | 1                   | 2                   |
|          | $\mathbb{Z}_2[X]/(X^3)$       | 8  | $K_{1,2}$ | 2                   | 1                   | 2                   |
|          | $\mathbb{Z}_4[X]/(2X, X^2-2)$ | 8  | $K_{1,2}$ | 2                   | 1                   | 2                   |
|          | $\mathbb{Z}_2[X,Y]/(X,Y)^2$   | 8  | $K_3$     | 1                   | 1                   | 3                   |
|          | $\mathbb{Z}_4[X]/(2,X)^2$     | 8  | $K_3$     | 1                   | 1                   | 3                   |
|          | $\mathbb{F}_4[X]/(X^2)$       | 16 | $K_3$     | 1                   | 1                   | 3                   |
|          | $\mathbb{Z}_4[X]/(X^2+X+1)$   | 16 | $K_3$     | 1                   | 1                   | 3                   |



FIGURE 7. Graph for  $\mathbb{Z}_4[X,Y]/(X^2,Y^2,XY-2,2X,2Y), \mathbb{Z}_2[X,Y]/(X^2,Y^2)$  and  $\mathbb{Z}_4[X]/(X^2)$ 

| Vertices | R                                  | R  | Graph     | $\alpha(\Gamma(R))$ | $\gamma(\Gamma(R))$ | $\omega(\Gamma(R))$ |
|----------|------------------------------------|----|-----------|---------------------|---------------------|---------------------|
| 4        | $\mathbb{Z}_2 \times \mathbb{F}_4$ | 8  | $K_{1,3}$ | 3                   | 1                   | 2                   |
|          | $\mathbb{Z}_3 \times \mathbb{Z}_3$ | 9  | $K_{2,2}$ | 2                   | 2                   | 2                   |
|          | $\mathbb{Z}_25$                    | 25 | $K_4$     | 1                   | 1                   | 4                   |
|          | $\mathbb{Z}_5[X]/(X^2)$            | 25 | $K_4$     | 1                   | 1                   | 4                   |



Figure 8. Graph for  $\mathbb{Z}_4[X]/(X^3-X^2-2,2X^2,2X)$ 



FIGURE 9. Graph for  $\mathbb{Z}_9[X]/(3X,X^2-3), \mathbb{Z}_9[X]/(3X,X^2-6)$  and  $\mathbb{Z}_3[X]/(X^3)$ 



FIGURE 10. Graph for  $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ 



FIGURE 11. Graph for  $\mathbb{Z}_4 \times \mathbb{F}_4$ ,  $\mathbb{Z}_2[X]/(X^2) \times F_4$ .



Figure 12. Graph for  $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ 

| Vertices | R                                  | R  | Graph     | $\alpha(\Gamma(R))$ | $\gamma(\Gamma(R))$ | $\omega(\Gamma(R))$ |
|----------|------------------------------------|----|-----------|---------------------|---------------------|---------------------|
| 5        | $\mathbb{Z}_2 	imes \mathbb{Z}_5$  | 10 | $K_{1,4}$ | 4                   | 1                   | 2                   |
|          | $\mathbb{Z}_3 \times \mathbb{F}_4$ | 12 | $K_{2,3}$ | 3                   | 2                   | 2                   |
|          | $\mathbb{Z}_2 	imes \mathbb{Z}_4$  | 8  | Fig. 1    | 3                   | 2                   | 2                   |
|          | $\mathbb{Z}_2 \times Z_2[X]/(X^2)$ | 8  | Fig. 1    | 2                   | 1                   | 2                   |



Figure 13. Graph for  $\mathbb{Z}_4 \times \mathbb{F}_4$ ,  $\mathbb{Z}_2[X]/(X^2) \times F_4$ 



FIGURE 14. Graph for  $\mathbb{Z}_2 \times \mathbb{Z}_9$  and  $\mathbb{Z}_2 \times \mathbb{Z}_3[X]/(X^2)$ 



FIGURE 15. Graph for  $\mathbb{Z}_5 \times \mathbb{Z}_4$  and  $\mathbb{Z}_5 \times \mathbb{Z}_2[X]/(X^2)$ 



FIGURE 16. Graph for  $\mathbb{Z}_2 \times \mathbb{Z}_8$  and  $\mathbb{Z}_2 \times \mathbb{Z}_2[X]/(X^3)$  and  $\mathbb{Z}_2 \times \mathbb{Z}_4[X]/(2X, X^2 - 2)$ 



FIGURE 17. Graph for  $\mathbb{Z}_2 \times \mathbb{Z}_2[X,Y]/(X,Y)^2$  and  $\mathbb{Z}_2 \times \mathbb{Z}_4[X]/(2,X)^2$ 



FIGURE 18. Graph for  $\mathbb{Z}_4 \times \mathbb{Z}_4$ ,  $\mathbb{Z}_4 \times \mathbb{Z}_2[X]/(X^2)$  and  $\mathbb{Z}_2[X]/(X^2) \times \mathbb{Z}_2[X]/(X^2)$ 

| Vertices | R                                                      | R  | Graph     | $\alpha(\Gamma(R))$ | $\gamma(\Gamma(R))$ | $\omega(\Gamma(R))$ |
|----------|--------------------------------------------------------|----|-----------|---------------------|---------------------|---------------------|
| 6        | $\mathbb{Z}_3 \times \mathbb{Z}_5$                     | 15 | $K_{2,4}$ | 4                   | 2                   | 2                   |
|          | $\mathbb{F}_4 \times \mathbb{F}_4$                     | 16 | $K_{3,3}$ | 3                   | 2                   | 2                   |
|          | $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ | 8  | Fig. 2    | 3                   | 3                   | 3                   |
|          | $\mathbb{Z}_{49}$                                      | 49 | $K_6$     | 1                   | 1                   | 6                   |
|          | $\mathbb{Z}_7[X]/(X^2)$                                | 49 | $K_6$     | 1                   | 1                   | 6                   |

| Vertices | R                                           | R  | Graph     | $\alpha(\Gamma(R))$ | $\gamma(\Gamma(R))$ | $\omega(\Gamma(R))$ |
|----------|---------------------------------------------|----|-----------|---------------------|---------------------|---------------------|
| 7        | $\mathbb{Z}_2 	imes \mathbb{Z}_7$           | 14 | $K_{1,6}$ | 6                   | 1                   | 2                   |
|          | $\mathbb{F}_4	imes\mathbb{Z}_5$             | 10 | $K_{3,4}$ | 4                   | 2                   | 2                   |
|          | $\mathbb{Z}_3 	imes \mathbb{Z}_4$           | 12 | Fig. 3    | 4                   | 2                   | 2                   |
|          | $\mathbb{Z}_3 \times \mathbb{Z}_2[X]/(X^2)$ | 12 | Fig. 3    | 4                   | 2                   | 2                   |
|          | $\mathbb{Z}_{16}$                           | 16 | Fig. 4    | 5                   | 1                   | 3                   |
|          | $\mathbb{Z}_2[X]/(X^4)$                     | 16 | Fig. 4    | 5                   | 1                   | 3                   |
|          | $\mathbb{Z}_4[X]/(X^2+2)$                   | 16 | Fig. 4    | 5                   | 1                   | 3                   |
|          | $\mathbb{Z}_4[X]/(X^2+3X)$                  | 16 | Fig. 4    | 5                   | 1                   | 3                   |
|          | $\mathbb{Z}_4[X]/(X^3-2,2X^2,2X)$           | 16 | Fig. 4    | 5                   | 1                   | 3                   |
|          | $\mathbb{Z}_2[X,Y]/(X^3,XY,Y^2)$            | 16 | Fig. 5    | 4                   | 1                   | 4                   |
|          | $\mathbb{Z}_8[X]/(2X,X^2)$                  | 16 | Fig. 5    | 4                   | 1                   | 4                   |
|          | $\mathbb{Z}_4[X]/(X^3, 2X^2, 2X)$           | 16 | Fig. 5    | 4                   | 1                   | 4                   |
|          | $\mathbb{Z}_4[X]/(X^2+2X)$                  | 16 | Fig. 6    | 3                   | 1                   | 3                   |
|          | $\mathbb{Z}_8[X]/(2X,X^2+4)$                | 16 | Fig. 6    | 3                   | 1                   | 3                   |
|          | $\mathbb{Z}_2[X,Y]/(X^2,Y^2-XY)$            | 16 | Fig. 6    | 3                   | 1                   | 3                   |
|          | $\mathbb{Z}_4[X,Y]/(X^2,Y^2-XY,XY-2,2X,2Y)$ | 16 | Fig. 6    | 3                   | 1                   | 3                   |
|          | $\mathbb{Z}_4[X,Y]/(X^2,Y^2,XY-2,2X,2Y)$    | 16 | Fig. 7    | 3                   | 1                   | 3                   |
|          | $\mathbb{Z}_2[X,Y]/(X^2,Y^2)$               | 16 | Fig. 7    | 3                   | 1                   | 3                   |
|          | $\mathbb{Z}_4[X]/(X^2)$                     | 16 | Fig. 7    | 3                   | 1                   | 3                   |
|          | $\mathbb{Z}_4[X]/(X^3-X^2-2,2X^2,2X)$       | 16 | Fig. 8    | 4                   | 1                   | 3                   |
|          | $\mathbb{Z}_2[X,Y,Z]/(X,Y,Z)^2$             | 16 | $K_7$     | 1                   | 1                   | 7                   |
|          | $\mathbb{Z}_4[X,Y]/(X^2,Y^2,XY,2X,2Y)$      | 16 | $K_7$     | 1                   | 1                   | 7                   |
|          | $\mathbb{F}_8[X]/(X^2)$                     | 64 | $K_7$     | 1                   | 1                   | 7                   |
|          | $\mathbb{Z}_4[X]/(X^3+X+1)$                 | 64 | $K_7$     | 1                   | 1                   | 7                   |



FIGURE 19. Graph for  $\mathbb{Z}_2 \times \mathbb{Z}_2 \times F_4$ 



FIGURE 20. Graph for  $\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3$ .



FIGURE 21. Graph for  $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_4$  and  $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2[X]/(X^2)$ 

FIGURE 22. Graph for  $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ 

FIGURE 23.

Graph for

Graph for  $\mathbb{Z}_3 \times \mathbb{Z}_9$  and  $\mathbb{Z}_3 \times \mathbb{Z}_9$ 

| Vertices | R                                  | R  | Graph     | $\alpha(\Gamma(R))$ | $\gamma(\Gamma(R))$ | $\omega(\Gamma(R))$ |
|----------|------------------------------------|----|-----------|---------------------|---------------------|---------------------|
| 8        | $\mathbb{Z}_2 \times \mathbb{F}_8$ | 16 | $K_{1,7}$ | 7                   | 1                   | 2                   |
|          | $\mathbb{Z}_3 	imes \mathbb{Z}_7$  | 21 | $K_{2,6}$ | 6                   | 2                   | 2                   |
|          | $\mathbb{Z}_5 \times \mathbb{Z}_5$ | 25 | $K_{4,4}$ | 4                   | 2                   | 2                   |
|          | $\mathbb{Z}_{27}$                  | 27 | Fig. 9    | 6                   | 1                   | 3                   |
|          | $\mathbb{Z}_9[X]/(3X, X^2-3)$      | 27 | Fig. 9    | 6                   | 1                   | 3                   |
|          | $\mathbb{Z}_9[X]/(3X, X^2-6)$      | 27 | Fig. 9    | 6                   | 1                   | 3                   |
|          | $\mathbb{Z}_3[X]/(X^3)$            | 27 | Fig. 9    | 6                   | 1                   | 3                   |
|          | $\mathbb{Z}_3[X,Y]/(X,Y)^2$        | 27 | $K_8$     | 1                   | 1                   | 8                   |
|          | $\mathbb{Z}_9[X]/(3,X)^2$          | 27 | $K_8$     | 1                   | 1                   | 8                   |
|          | $\mathbb{F}_9[X]/(X^2)$            | 81 | $K_8$     | 1                   | 1                   | 8                   |
|          | $\mathbb{Z}_9[X]/(X^2+1)$          | 81 | $K_8$     | 1                   | 1                   | 8                   |

| Vertices | R                                                      | R  | Graph     | $\alpha(\Gamma(R))$ | $\gamma(\Gamma(R))$ | $\omega(\Gamma(R))$ |
|----------|--------------------------------------------------------|----|-----------|---------------------|---------------------|---------------------|
| 9        | $\mathbb{Z}_2 \times F_9$                              | 18 | $K_{1,8}$ | 8                   | 1                   | 2                   |
|          | $\mathbb{Z}_3 \times F_8$                              | 24 | $K_{2,7}$ | 7                   | 2                   | 2                   |
|          | $F_4 \times \mathbb{Z}_7$                              | 28 | $K_{3,6}$ | 6                   | 2                   | 2                   |
|          | $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$ | 12 | Fig. 10   | 6                   | 3                   | 3                   |
|          | $\mathbb{Z}_4 \times F_4$                              | 16 | Fig. 11   | 6                   | 2                   | 2                   |
|          | $\mathbb{Z}_2[X]/(X^2) \times F_4$                     | 16 | Fig. 11   | 6                   | 2                   | 2                   |

| Vertices | R                                  | R   | Graph     | $\alpha(\Gamma(R))$ | $\gamma(\Gamma(R))$ | $\omega(\Gamma(R))$ |
|----------|------------------------------------|-----|-----------|---------------------|---------------------|---------------------|
| 10       | $\mathbb{Z}_3 \times F_9$          | 27  | $K_{2,8}$ | 8                   | 2                   | 2                   |
|          | $\mathbb{F}_4 \times F_8$          | 32  | $K_{3,7}$ | 7                   | 2                   | 2                   |
|          | $\mathbb{Z}_5 \times \mathbb{Z}_7$ | 35  | $K_{4,6}$ | 6                   | 2                   | 2                   |
|          | $\mathbb{Z}_{121}$                 | 121 | $K_{10}$  | 1                   | 1                   | 10                  |
|          | $\mathbb{Z}_{11}[X]/(X^2)$         | 121 | $K_{10}$  | 1                   | 1                   | 10                  |

| Vertices | R                                                    | R  | Graph      | $\alpha(\Gamma(R))$ | $\gamma(\Gamma(R))$ | $\omega(\Gamma(R))$ |
|----------|------------------------------------------------------|----|------------|---------------------|---------------------|---------------------|
| 11       | $\mathbb{Z}_2 \times \mathbb{Z}_{11}$                | 22 | $K_{1,10}$ | 10                  | 1                   | 2                   |
|          | $F_4 \times \mathbb{F}_9$                            | 36 | $K_{3,8}$  | 8                   | 2                   | 2                   |
|          | $\mathbb{Z}_5 \times F_8$                            | 40 | $K_{4,7}$  | 7                   | 2                   | 2                   |
|          | $\mathbb{Z}_2 \times \mathbb{Z}_9$                   | 18 | Fig. 12    | 8                   | 3                   | 3                   |
|          | $\mathbb{Z}_2 \times \mathbb{Z}_3[X]/(X^2)$          | 18 | Fig. 12    | 8                   | 3                   | 3                   |
|          | $\mathbb{Z}_5 	imes \mathbb{Z}_4$                    | 20 | Fig. 13    | 8                   | 3                   | 2                   |
|          | $\mathbb{Z}_5 \times \mathbb{Z}_2[X]/(X^2)$          | 20 | Fig. 13    | 8                   | 3                   | 2                   |
|          | $\mathbb{Z}_2 \times \mathbb{Z}_8$                   | 16 | Fig. 14    | 8                   | 2                   | 3                   |
|          | $\mathbb{Z}_2 \times \mathbb{Z}_2[X]/(X^3)$          | 16 | Fig. 14    | 8                   | 2                   | 3                   |
|          | $\mathbb{Z}_2 \times \mathbb{Z}_4[X]/(2X, X^2 - 2)$  | 16 | Fig. 14    | 8                   | 2                   | 3                   |
|          | $\mathbb{Z}_2 \times \mathbb{Z}_2[X,Y]/(X,Y)^2$      | 16 | Fig. 15    | 7                   | 2                   | 4                   |
|          | $\mathbb{Z}_2 \times \mathbb{Z}_4[X]/(2,X)^2$        | 16 | Fig. 15    | 7                   | 2                   | 4                   |
|          | $\mathbb{Z}_4 \times \mathbb{Z}_4$                   | 16 | Fig. 16    | 6                   | 2                   | 3                   |
|          | $\mathbb{Z}_4 \times \mathbb{Z}_2[X]/(X^2)$          | 16 | Fig. 16    | 6                   | 2                   | 3                   |
|          | $\mathbb{Z}_2[X]/(X^2) \times \mathbb{Z}_2[X]/(X^2)$ | 16 | Fig. 16    | 6                   | 2                   | 3                   |

| Vertices | R                                                      | R   | Graph      | $\alpha(\Gamma(R))$ | $\gamma(\Gamma(R))$ | $\omega(\Gamma(R))$ |
|----------|--------------------------------------------------------|-----|------------|---------------------|---------------------|---------------------|
| 12       | $\mathbb{Z}_3 \times \mathbb{Z}_{11}$                  | 33  | $K_{2,10}$ | 10                  | 2                   | 2                   |
|          | $\mathbb{Z}_5 \times \mathbb{Z}_9$                     | 45  | $K_{4,8}$  | 8                   | 2                   | 2                   |
|          | $\mathbb{Z}_7 	imes \mathbb{Z}_7$                      | 49  | $K_{6,6}$  | 6                   | 2                   | 2                   |
|          | $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_4$ | 16  | Fig. 17    | 6                   | 2                   | 2                   |
|          | $\mathbb{Z}_{169}$                                     | 169 | $K_{12}$   | 1                   | 1                   | 12                  |
|          | $\mathbb{Z}_{13}[X]/(X^2)$                             | 169 | $K_{12}$   | 1                   | 1                   | 12                  |

| Vertices | R                                                               | R  | Graph      | $\alpha(\Gamma(R))$ | $\gamma(\Gamma(R))$ | $\omega(\Gamma(R))$ |
|----------|-----------------------------------------------------------------|----|------------|---------------------|---------------------|---------------------|
| 13       | $\mathbb{Z}_2 \times \mathbb{Z}_{13}$                           | 26 | $K_{1,12}$ | 12                  | 1                   | 2                   |
|          | $F_4 \times \mathbb{Z}_{11}$                                    | 44 | $K_{3,10}$ | 10                  | 2                   | 2                   |
|          | $\mathbb{Z}_7 \times F_8$                                       | 56 | $K_{6,7}$  | 7                   | 2                   | 2                   |
|          | $\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3$          | 18 | Fig. 18    | 8                   | 3                   | 3                   |
|          | $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_4$          | 16 | Fig. 19    | 8                   | 3                   | 3                   |
|          | $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2[X]/(X^2)$ | 16 | Fig. 19    | 8                   | 3                   | 3                   |

| Vertices | R                                                                          | R  | Graph      | $\alpha(\Gamma(R))$ | $\gamma(\Gamma(R))$ | $\omega(\Gamma(R))$ |
|----------|----------------------------------------------------------------------------|----|------------|---------------------|---------------------|---------------------|
| 14       | $\mathbb{Z}_3 \times \mathbb{Z}_{13}$                                      | 39 | $K_{2,12}$ | 12                  | 2                   | 2                   |
|          | $\mathbb{Z}_5 \times \mathbb{Z}_{11}$                                      | 55 | $K_{4,10}$ | 10                  | 2                   | 2                   |
|          | $\mathbb{Z}_7 \times F_9$                                                  | 63 | $K_{6,8}$  | 8                   | 2                   | 2                   |
|          | $\mathbb{F}_8 \times F_8$                                                  | 64 | $K_{7,7}$  | 7                   | 2                   | 2                   |
|          | $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ | 16 | Fig. 20    | 7                   | 4                   | 3                   |
|          | $\mathbb{Z}_3 \times \mathbb{Z}_9$                                         | 27 | Fig. 21    | 10                  | 2                   | 3                   |
|          | $\mathbb{Z}_3 \times \mathbb{Z}_3[X]/(X^2)$                                | 27 | Fig. 21    | 10                  | 2                   | 3                   |

### REFERENCES

- [1] S. Akbari, H.R. Maimani, S. Yassemi, When a zero-divisor graph is planar or a complete r-partite graph, J. Algebra 270 (2003) 169-180.
- [2] S. Akbari, A. Mohammadian, On the zero-divisor graph of a commutative ring, J. Algebra 274 (2004) 847-855.
- [3] S. Alikhani and Y.H. Peng, *Independence roots and independence fractals of certain graphs*, J. Appl. Math. Computing, vol. 36, no. 1-2, (2011) 89-100.
- [4] D.F. Anderson, A. Frazier, A. Lauve, P.S. Livingston, *The zero-divisor graph of a commutative ring, II*, in: Lecture Notes in Pure and Appl. Math., vol. 220, Dekker, New York, (2001) 61-72.
- [5] D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999) 434 447.
- [6] M.F. Atiyah and I.G. MacDonald, Introduction to Commutative Algebra. Reading, MA: Addison-Wesley, 1969.

- [7] M. Axtell, J. Coykendall, J. Stickles, Zero-divisor graphs of polynomials and power series over commutative rings, Comm. Algebra. 6 (2005) 2043-2050.
- [8] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208-226.
- [9] I. Gutman, F. Harary, Generalization of the matching polynomial, Utilitas Mathematica 24 (1983) 97-106.
- [10] C. Hoede, and X. Li, Clique polynomials and independent set polynomials of graphs, Discrete Math. 25 (1994) 219-228.
- [11] N. Jafari Rad, S. H. Jafari, D.A. Mojdeh, On domination in zero-divisor graphs, Canad. Math. Bull. DOI:10.4153/CMB-2011-156-1 (2012).
- [12] I. Kaplansky, Commutative Rings, Chicago-London: The University of Chicago Press, 1974.
- [13] D. A. Mojdeh and A. M. Rahimi, Dominating Sets of Some Graphs Associated to Commutative Rings, Comm. Alg., 40:9 (2012) 3389-3396.
- [14] S.P. Redmond, *The zero-divisor graph of a non-commutative ring*, Internat. J. Commutative Rings 1 (4) (2002) 203-211.
- [15] S.P. Redmond, On zero-divisor graphs of small finite commutative rings, Discrete Math. 307 (2007) 1155–1166.
- [16] S.P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Alg. 31, (2003) 4425-4443.
- [17] D.B. West, Introduction to Graph Theory, 2nd ed. USA: Prentice Hal, (2001).

#### Saeid Alikhani

Department of Mathematics, Yazd University 89195-741, Yazd, Iran alikhani@yazd.ac.ir

#### Saeed Mirvakili

Department of Mathematics, Payame Noor University 19395-4697 Tehran, I.R. Iran saeed\_mirvakili@pnu.ac.ir