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INDEPENDENT SETS OF SOME GRAPHS ASSOCIATED TO COMMUTATIVE

RINGS

SAEID ALIKHANI∗ AND SAEED MIRVAKILI

Communicated by A.R. Ashrafi

Abstract. Let G = (V,E) be a simple graph. A set S ⊆ V is independent set of G, if no two vertices

of S are adjacent. The independence number α(G) is the size of a maximum independent set in the

graph. In this paper we study and characterize the independent sets of the zero-divisor graph Γ(R)

and ideal-based zero-divisor graph ΓI(R) of a commutative ring R.

1. Introduction

A simple graph G = (V,E) is a finite nonempty set V (G) of objects called vertices together with a

(possibly empty) set E(G) of unordered pairs of distinct vertices of G called edges. The concept of

zero-divisor graph of a commutative ring with identity was introduced by Beck in [8] and has been

studied in [1, 2, 4, 5, 7]. Redmond in [14] has extended this concept to any arbitrary ring. Let R be

a commutative ring with 1. The zero-divisor graph of R, denoted Γ(R), is an undirected graph whose
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vertices are the nonzero zero-divisors of R and two distinct vertices x and y are adjacent if and only

if xy = 0. Thus Γ(R) is an empty graph if and only if R is an integral domain.

The concept of dominating set in zero-divisor graph has implicitly been studied in [11] and [13].

Throughout this article, all rings are commutative with identity 1 6= 0. For a subset A of a ring R, we

let A∗ = A \ {0}. We will denote the rings of integers modulo n, the integers, and a finite field with q

elements by Zn,Z and Fq, respectively. For commutative ring theory, see [6, 12].

An independent set of a graph G is a set of vertices where no two vertices are adjacent. The indepen-

dence number α(G) is the size of a maximum independent set in the graph. An independent set with

cardinality α(G) is called a α-set ([3, 9, 10]).

A graph G is called bipartite if its vertex set can be partitioned into X and Y such that every edge

of G has one endpoint in X and other endpoint in Y . A graph G is said to be star if G contains

one vertex in which all other vertices are joined to this vertex and G has no other edges. A complete

r-partite graph is one whose vertex set can be partitioned into r subsets so that no edge has both

ends in any one subset and each vertex of a partite set is joined to every vertex of the another partite

sets. We denote a complete bipartite graph by Km,n. The graph K1,n is called a star graph, and a

bistar graph is a graph generated by two K1,n graphs, where their centers are joined. For a nontrivial

connected graph G and a pair vertices u and v of G, the distance d(u, v) between u and v is the length

of a shortest path from u to v in G. The girth of a graph G, containing a cycle, is the smallest size of

the length of the cycles of G and is denoted by gr(G). If G has no cycles, we define the girth of G to

be infinite. A graph in which each pair of distinct vertices is joined by an edge is called a complete

graph Kn on n vertices. For a graph G, a complete subgraph of G is called a clique. The clique

number, ω(G), is the greatest integer n ≥ 1 such that Kn ⊆ G, and ω(G) is infinite if Kn ⊆ G for all

n ≥ 1, see [17].

Similar to paper [13], in this paper, we study the independent sets and independence number of zero-

divisor graphs and ideal-based zero-divisor graphs. In Section 2 we review some preliminary results

related to independence number of a graph. In Section 3, we study the independence number of zero-

divisor graphs associated to commutative rings. In Section 4, investigate the independence number of

an ideal based zero-divisor graph. Finally in Section 5, we list tables for graphs associated to small

commutative ring R, and write independence, domination and clique number of Γ(R).

2. Preliminary results

There are several classes of graphs whose independent sets and independence numbers are clear.

We state some of them in the following Lemma, which their proofs are straightforward.

Lemma 2.1. ([17])

(i) α(Kn) = 1.
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(ii) Let G be a complete r-partite graph (r ≥ 2) with partite sets V1, ..., Vr. If |Vi| ≥ 2 for 1 ≤ i ≤ r,

then α(G) = max|Vi|.

(iii) α(K1,n) = n for a star graph K1,n.

(iv) The independence number of a bistar graph is 2n.

(v) Let Cn, Pn be a cycle and a path with n vertices, respectively. Then α(Pn) = ⌊n+1
2 ⌋ and

α(Cn) = ⌊n2 ⌋.

Corollary 2.2. Let F1 and F2 be finite fields with |F ∗
1 | = m and |F ∗

2 | = n. Then

(i) α(Γ(F1 × F2)) = max{m,n}.

(ii) α(Γ(F1 × Z4)) = max{2m, 3}.

Proof.

(i) The graph Γ(F1 × F2) is bipartite ([4]) and we have the result by Lemma 2.1 (ii).

(ii) We have Z∗(F1 × Z4) = {(x, y)|x ∈ F ∗
1 , y = 0, 2} ∪ {(0, y)|y = 1, 2, 3}.

If F1 = Z2 then {(0, y)|y = 1, 2, 3} is a maximum independent set in the graph and so

α(Γ(F1 × Z4)) = 3. If F1 6= Z2 then {(x, y)|x ∈ F ∗
1 , y = 0, 2} is a maximum independent set

in the graph and so α(Γ(F1 × Z4)) = 2m. Therefore α(Γ(F1 × Z4)) = max{2m, 3}.

3. Independence number of a zero-divisor graph

We begin this section with the following lemma:

Lemma 3.1. Let R be a ring and r ≥ 3. If Γ(R) is a r-partite graph with parts V1, . . . , Vr, then

α(Γ(R)) = max|Vi|.

Note that, for any prime number p and any positive integer n, there exists a finite ring R whose

zero-divisor graph Γ(R) is a complete pn-partite graph. For example, if Γ(R) is a finite field with pn

elements, then R = Fpn [x, y]/(xy, y
2 − x) is the desired ring.

Remark. It is easy to see that a graph G has independence number equal to 1, if for every x, y ∈

Z(R)∗, xy = 0, this means Γ(R) is a complete graph.

We need the following theorem:

Theorem 3.2. ([5]) If R is a commutative ring which is not an integral domain, then exactly one of

the following holds:

(i) Γ(R) has a cycle of length 3 or 4 (i.e., gr(R) ≤ 4);

(ii) Γ(R) is a star graph; or

(iii) Γ(R) is the zero-divisor graph of R ∼= Z2 × Z4 or R ∼= Z2 × Z[X]/(X2).

By Theorem 3.2 we have the following theorem:
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Theorem 3.3. If Γ(R) has no cycles, then α(Γ(R)) is either |Z∗(R)| − 1 or 3.

Theorem 3.4. (i) Let R be a finite ring. If Γ(R) is a regular graph of degree r, then α(Γ(R)) is

either 1 or r.

(ii) Let R be a finite decomposable ring. If Γ(R) is a Hamiltonian graph, then α(Γ(R)) = |Z∗(R)|
2 .

(iii) Let R be a finite principal ideal ring and not decomposable. If Γ(R) is Hamiltonian, then

α(Γ(R)) = 1

Proof.

(i) Since Γ(R) is a regular graph of degree r, Γ(R) is a complete graph Kr+1 or a complete

bipartite graph Kr,r. Consequently, α(Γ(R)) is either 1 or r.

(ii) In this case Γ(R) is Kn,n for some natural number n. So, α(Γ(R)) = n.

(iii) If R is not decomposable then in this case Γ(R) is a complete graph. Therefore we have the

result.

Corollary 3.5. The graph Γ(Zn) is a Hamiltonian graph if and only if α(Γ(Zn)) = 1.

Proof. By Corollary 2 of [2], we know that the graph Γ(Zn) is a Hamiltonian graph if and only if

n = p2, where p is a prime larger than 3 and Γ(Zn) is isomorphic to Kp−1. Thus, we have the result.

Here we state a notation which is useful for the study of the independence number of more graphs

associated to commutative rings.

Let R = F1 × . . .× Fn, where Fi is an integral domain, for every i, and |Fi| ≥ |Fi+1|. We set

Ei1...ik = {(x1, . . . , xn) ∈ R|∀i ∈ {i1, . . . , ik}, xi 6= 0 and ∀i 6∈ {i1, . . . , ik}, xi = 0}.

By this notation we have |Ei1...ik | = |F ∗
i1
||F ∗

i2
| . . . |F ∗

ik
|.

Theorem 3.6. Suppose that for a fixed integer n ≥ 2, R = R1 × · · · × Rn, where Ri is an integral

domain for each i = 1, . . . , n. We have

(i) α(Γ(R)) = ∞ if one of Ri is infinity,

(ii)

α(Γ(R)) ≥







∑

2≤i2≤...≤i
⌊ k−1

2
⌋
≤n

n1ni2 . . . ni
⌊ k−1

2
⌋






+

n−1
∑

⌊k−1

2
⌋+1





∑

1≤i1≤...≤il≤n

ni1 . . . nil



 .

Proof. (i) We can suppose that |R1| is infinity. So S = {(x, 0, . . . , 0)|x ∈ R∗
1} is an independent set

and therefore α(Γ(R)) = ∞.
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(ii) Let |R1| ≥ |R2| ≥ . . . ≥ |Rn|. It is easy to see that

A =







⋃

2≤i2≤...≤i
⌊k−1

2
⌋
≤n

E1i2...i
⌊ k−1

2
⌋







⋃







n−1
⋃

⌊k−1

2
⌋+1





⋃

1≤i1≤...≤il≤n

Ei1...il











is an independent set of Γ(R). So

α(Γ(R)) ≥ |A| =
n−1
∑

⌊k−1

2
⌋+1





∑

1≤i1≤...≤il≤n

ni1 . . . nil



+







∑

2≤i2≤...≤i
⌊k−1

2
⌋
≤n

n1ni2 . . . ni
⌊k−1

2
⌋







Theorem 3.7. Suppose that n1 ≥ n2 ≥ n3 and |F ∗
i | = ni for i = 1, 2, 3. If R = F1 × F2 × F3, then

α(Γ(R)) = n1n2 + n1n3 +max{n1, n2n3}.

Proof. It is not difficult to see that one of the following sets is a maximum independent set in the

zero-divisor graph of F1 × F2 × F3:

A1 = E12 ∪ E13 ∪E23,

A2 = E12 ∪ E13 ∪E1.

So α(Γ(R)) = max{|A1|, |A2|} = n1n2 + n1n3 +max{n1, n2n3}.

Let us to state two examples for the above theorem:

Example 3.8. Let R = Z5 × Z2 × Z2. Here A2 = E12 ∪ E13 ∪ E1 is a α-set of graph Γ(R) and so

α(Γ(R)) = n1n2 + n1n3 + n1 = 9.

Example 3.9. Let R = Z7 × Z5 × Z5. Here A1 = E12 ∪ E13 ∪ E23 is a α-set and α(Γ(R)) =

n1n2 + n1n3 + n2n3 = 64.

Theorem 3.10. Suppose that n1 ≥ n2 ≥ n3 ≥ n4 and |F ∗
i | = ni for i = 1, 2, 3, 4. Let R =

F1 × F2 × F3 × F4.

(i) If n1 ≥ n2n3n4, then α(Γ(R)) = n1(n2n3 + n2n4 + n3n4 + n2 + n3 + n4 + 1).

(ii) If n1 ≤ n2n3n4 and n1n4 ≥ n2n3, then α(Γ(R)) = n1(n2n3+n2n4+n3n4+n2+n3+n4)+n2n3n4.

(iii) If n1n4 ≤ n2n3, then α(Γ(R)) = n1(n2n3 + n2n4 + n3n4 + n2 + n3) + n2n3 + n2n3n4.

Proof. Since n1 ≥ n2 ≥ n3 ≥ n4, it is easy to check that one of the following sets is a α-set of the

graph Γ(R):

I1 = E123 ∪ E124 ∪ E134 ∪ E12 ∪ E13 ∪ E14 ∪E1,

I2 = E123 ∪ E124 ∪ E134 ∪ E12 ∪ E13 ∪ E14 ∪E234,

I3 = E123 ∪ E124 ∪ E134 ∪ E12 ∪ E13 ∪ E23 ∪E234,
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(i) If n1 ≥ n2n3n4 then n1n4 ≥ n2n3n4, and I1 is a α-set in the graph. Therefore α(Γ(R)) =

n1(n2n3 + n2n4 + n3n4 + n2 + n3 + n4 + 1).

(ii) If n1 ≤ n2n3n4 and n1n4 ≥ n2n3, then I2 is a α-set in the graph. Therefore α(Γ(R)) =

n1(n2n3 + n2n4 + n3n4 + n2 + n3 + n4) + n2n3n4.

(iii) If n1n4 ≤ n2n3 then n1 ≤ n2n3n4 and I3 is a α-set in the graph. So α(Γ(R)) = n1(n2n3 +

n2n4 + n3n4 + n2 + n3) + n2n3 + n2n3n4.

The following corollary is an immediate consequence of Theorem 3.10.

Corollary 3.11. Suppose that n1 ≥ n2 ≥ n3 ≥ n4 and |F ∗
i | = ni for i = 1, 2, 3, 4. If R = F1 × F2 ×

F3 × F4, then

α(Γ(R)) = n1(n2n3 + n2n4 + n3n4 + n2 + n3) + max{n1 + n1n4, n2n3 + n2n3n4, n1n4 + n2n3n4}.

Here we bring up some examples for Theorem 3.10.

Example 3.12. Let R = Z5 ×Z2 ×Z2 × Z2. The set I1 in Theorem 3.10, is a α-set in the graph and

so α(Γ(R)) = 28.

Example 3.13. Let R = Z5 ×Z3 × Z3 × Z3. The set I2 in Theorem 3, is a α-set in the graph and so

α(Γ(R)) = 80.

Example 3.14. Let R = Z5 ×Z5 × Z3 × Z2. The set I3 in Theorem 3, is a α-set in the graph and so

α(Γ(R)) = 88.

Theorem 3.15. Suppose that |F ∗
i | = ni, where ni ≥ nj and i ≥ j for i, j = 1, . . . , 5. Let R =

F1 × . . .× F5. If t = n1(
∑

2≤i<j<k≤5

ninjnk) + n1(
∑

2≤i<j≤5

(i,j)6=(4,5)

ninj), then

(i) If n1 ≥ n2n3n4n5, then α(Γ(R)) = t+ n1(n4n5 + n2 + n3 + n4 + n5 + 1).

(ii) If n2n3 ≥ n1n4n5, then α(Γ(R)) = t+ n2(n3n4n5 + n3n4 + n3n5 + n1 + n3) + n1n3.

(iii) If n1n5 ≥ n2n3n4, then α(Γ(R)) = t+ n1(n4n5 + n2 + n3 + n4 + n5) + n2n3n4n5.

(iv) If n1n5 ≤ n2n3n4 and n1n4 ≥ n2n3n5, then α(Γ(R)) = t+n1(n4n5+n2+n3+n4)+n2(n3n4n5+

n3n4).

(v) If n1n4 ≤ n2n3n5 and n1n3 ≥ n2n4n5, then α(Γ(R)) = t+ n1(n4n5 + n2 + n3) + n2(n3n4n5 +

n3n4 + n3n5).

(vi) If n1n3 ≤ n2n4n5 and n1n2 ≥ n3n4n5, then α(Γ(R)) = t+n1(n4n5+n2)+n2(n3n4n5+n3n4+

n3n5 + n4n5).

(vii) If n1n2 ≤ n3n4n5, then α(Γ(R)) = t+ (n1 + n3)n4n5 + n2(n3n4n5 + n3n4 + n3n5 + n4n5).
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proof. We put A = (
⋃

2≤i<j<k≤5

E1ijk)
⋃

(
⋃

2≤i<j≤5

(i,j)6=(4,5)

E1ij). Consider the sets Ai and Bi for i = 1, . . . , 6

as shown in the following table.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

Ai E1 E23 E12 E13 E14 E15

Bi E2345 E145 E345 E245 E235 E234

We have:

(i) If n1 ≥ n2n3n4n5, then by the above table |A1| ≥ |B1| and this implies |B2| ≥ |A2| and for

i = 3, 4, 5, 6, |Ai| ≥ |Bi|. So A ∪ A1 ∪ B2 ∪ A3 ∪ A4 ∪ A5 ∪ A6 has the size of a maximum

independent set in the graph and α(Γ(R)) = t+ n1(n4n5 + n2 + n3 + n4 + n5 + 1).

(ii) If n2n3 ≥ n1n4n5 then |A2| ≥ |B2| and this implies |B1| ≥ |A1|,|A3| ≥ |B3|,|A4| ≥ |B4|,|B5| ≥

|A5| and |B6| ≥ |A6|, so A∪B1∪A2∪A3∪A4∪B5∪B6 has the size of a maximum independent

set in the graph and α(Γ(R)) = t+ n2(n3n4n5 + n3n4 + n3n5 + n1 + n3) + n1n3.

(iii) If n1n5 ≥ n2n3n4 and n1 ≤ n2n3n4n5 then |A6| ≥ |B6| and |B1| ≥ |A1|, now |B2| ≥ |A2| and

for i = 3, 4, 5, |Ai| ≥ |Bi|, so A ∪ B1 ∪ B2 ∪ A3 ∪ A4 ∪ A5 ∪ A6 has the size of a maximum

independent set in the graph and α(Γ(R)) = t+ n1(n4n5 + n2 + n3 + n4 + n5) + n2n3n4n5.

(iv) If n1n5 ≤ n2n3n4 and n1n4 ≥ n2n3n5 then |B6| ≥ |A6| and |A5| ≥ |B5|, now |B1| ≥ |A1|, |B2| ≥

|A2| and for i = 3, 4, |Ai| ≥ |Bi|, so A∪B1∪B2∪A3∪A4∪A5∪B6 has the size of a maximum

independent set in the graph and α(Γ(R)) = t+n1(n4n5+n2+n3+n4)+n2(n3n4n5+n3n4).

(v) If n1n4 ≤ n2n3n5 and n1n3 ≥ n2n4n5 then |B5| ≥ |A5| and |A4| ≥ |B4|, therefore |A3| ≥ |B3|

and for i = 1, 2, 6, |Bi| ≥ |Ai|, so A ∪B1 ∪B2 ∪A3 ∪A4 ∪B5 ∪B6 has the size of a maximum

independent set in the graph and α(Γ(R)) = t+n1(n4n5+n2+n3)+n2(n3n4n5+n3n4+n3n5).

(vi) If n1n3 ≤ n2n4n5 and n1n2 ≥ n3n4n5 then |B4| ≥ |A4| and |A3| ≥ |B3|, so for i = 1, 2, 5, 6,

|Bi| ≥ |Ai|, hence A ∪ B1 ∪ B2 ∪ A3 ∪ B4 ∪ B5 ∪ B6 has the size of a maximum independent

set in the graph and α(Γ(R)) = t+ n1(n4n5 + n2) + n2(n3n4n5 + n3n4 + n3n5 + n4n5).

(vii) If n1n2 ≤ n3n4n5 then |B3| ≥ |A3| and for i = 1, 2, 4, 5, 6, |Bi| ≥ |Ai|, hence A ∪ B1 ∪ B2 ∪

B3 ∪ B4 ∪ B5 ∪ B6 has the size of a maximum independent set in the graph and α(Γ(R)) =

t+ (n1 + n3)n4n5 + n2(n3n4n5 + n3n4 + n3n5 + n4n5).

Corollary 3.16. Let R = F1 × . . .× F5, |F
∗
i | = ni and ni ≥ nj, where i, j = 1, . . . , 5 and i ≥ j. Then

α(Γ(R)) = n1(
∑

2≤i<j<k≤5

ninjnk) + n1(
∑

2≤i<j≤5

(i,j)6=(4,5)

ninj) + max
i

{∆i},
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where

∆1 = n1(n4n5 + n2 + n3 + n4 + n5 + 1)

∆2 = n2(n3n4n5 + n3n4 + n3n5 + n1 + n3) + n1n3

∆3 = n1(n4n5 + n2 + n3 + n4 + n5) + n2n3n4n5

∆4 = n1(n4n5 + n2 + n3 + n4) + n2(n3n4n5 + n3n4)

∆5 = n1(n4n5 + n2 + n3) + n2(n3n4n5 + n3n4 + n3n5)

∆6 = n1(n4n5 + n2) + n2(n3n4n5 + n3n4 + n3n5 + n4n5)

∆7 = (n1 + n3)n4n5 + n2(n3n4n5 + n3n4 + n3n5 + n4n5)

Example 3.17. (i) Let R = Z5 × Z2 × Z2 × Z2 × Z2. Then in Theorem 3.15, α(Γ(R)) = t+∆1,

(ii) Let R = Z5 × Z5 × Z5 × Z2 × Z2. Then in Theorem 3.15, α(Γ(R)) = t+∆2,

(iii) Let R = Z7 × Z3 × Z3 × Z3 × Z3. Then in Theorem 3.15, α(Γ(R)) = t+∆3,

(iv) Let R = Z7 × Z3 × Z3 × Z3 × Z2. Then in Theorem 3.15, α(Γ(R)) = t+∆4,

(v) Let R = Z5 × Z5 × Z5 × Z2 × Z2. Then in Theorem 3.15, α(Γ(R)) = t+∆5,

(vi) Let R = Z7 × Z7 × Z3 × Z2 × Z2. Then in Theorem 3.15, α(Γ(R)) = t+∆6,

(vii) Let R = Z3 × Z3 × Z3 × Z3 × Z3. Then in Theorem 3.15, α(Γ(R)) = t+∆7.

Theorem 3.18. Let (R, m) be a finite local ring and m 6= {0}.

(i) If m2 = {0}, then α(Γ(R)) = 1.

(ii) If m2 6= {0}, then 2 ≤ α(Γ(R)) ≤ |Z∗(R)| − |Ann(Z(R))∗|.

Proof. If R is a finite local ring, then the Jacobson radical of R equals Z(R) and Z(R) = m. Thus

Z(R) is a nilpotent ideal and since R is not a field, then Ann(Z(R)) 6= {0}. Moreover, each element

of Ann(Z(R)) is adjacent to each other vertex of Z∗(R).

(i) If m2 = {0} then Ann(Z(R)) = Z∗(R) and Γ(R) is a complete graph.

(ii) If m2 6= {0}, then every element of Ann(Z(R))∗ is adjacent to each other vertex of Z∗(R) and

this implies 2 ≤ α(Γ(R)) ≤ |Z∗(R)| − |Ann(Z(R))∗|.

Example 3.19. Let R = Zp3 then Z∗(R) = {pk|(p, k) = 1} ∪ {p2k|(p2, k) = 1}. We have

Ann(Z(R))∗ = {p2k|(p2, k) = 1} and {pk|(p, k) = 1} is an independent set in the Γ(R) of maxi-

mum size. So α(Γ(R)) = |{pk|(p, k) = 1}| = |Z∗(R)| − |Ann(Z(R))∗|.

4. The independence number of an ideal-based zero-divisor graph

In this section, we study the relationship between the independence numbers of ΓI(R) and Γ(R/I).

Suppose that R is a commutative ring with nonzero identity, and I is an ideal of R. The ideal-based

zero-divisor graph of R, denoted by ΓI(R), is the graph which vertices are the set {x ∈ R\I|xy ∈

I forsome y ∈ R\I} and two distinct vertices x and y are adjacent if and only if xy ∈ I, see [16].

In the case I = 0, Γ0(R) is denoted by Γ(R). Also, ΓI(R) is empty if and only if I is prime. Note that
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Proposition 2.2(b) of [16] is equivalent to saying ΓI(R) = ∅ if and only if R/I is an integral domain.

That is, ΓI(R) = ∅ if and only if Γ(R/I) = ∅.

This naturally raises the question: If R is a commutative ring with ideal I, whether α(ΓI(R)) is equal

to α(Γ(R/I))? We show that the answer is negative in general.

Lemma 4.1. Let m be a composite natural number and p a prime number. Then

α(ΓmZ(Z)) =















α(Z/mZ) = 1; if m = p2,

∞; otherwise.

Note that for the second case α(ΓmZ(Z)) = ∞ and α(Z/mZ) < ∞.

Proof. If m = p2 then for every x ∈ ΓmZ(Z) we have x = pk, where (p, k) = 1. So x, y ∈ ΓmZ(Z)

are adjacent in ΓI(R) and ΓI(R) is a complete graph. Also Z/mZ ∼= Zp2 and Γ(Z/mZ) is a complete

graph.

Now let m be a non-prime number and for every prime number p, m 6= p2. Then we have m = pin, p

is prime, n 6= 1 and (n, p) = 1, or m = pl, p is prime and l ≥ 3.

If m = pl then S = {kp|(k, p) = 1} is an independent set and therefore α(ΓmZ(Z)) = ∞.

If m = pin then S = {kp|(k, p) = 1 and n|k} is an independent set and therefore α(ΓmZ(Z)) = ∞.

But, we have Z/mZ is a finite ring and α(Γ(Z/mZ)) is finite.

Now we state the following results of [16].

Lemma 4.2. ([16]) Let I be an ideal of a ring R, and x, y be in R\I. Then:

(i) If x+ I is adjacent to y + I in Γ(R/I), then x is adjacent to y in ΓI(R);

(ii) If x is adjacent to y in ΓI(R) and x+ I 6= y + I, then x+ I is adjacent to y + I in Γ(R/I);

(iii) If x is adjacent to y in ΓI(R) and x+ I = y + I, then x2, y2 ∈ I.

Lemma 4.3. ([16]) If x and y are (distinct) adjacent vertices in ΓI(R), then all (distinct) elements

x+ I and y + I are adjacent in ΓI(R). If x2 ∈ I, then all the distinct elements of x+ I are adjacent

in ΓI(R).

Theorem 4.4. Let S be a nonempty subset of R\I. If S + I = {s + I|s ∈ S} is an independent set

of Γ(R/I), then S is a independent set of ΓI(R).

Proof. Let S be a nonempty subset of R\I and S + I = {s + I|s ∈ S} be an independent set of

Γ(R/I). If x, y ∈ S, then x+ I and y + I are not adjacent in Γ(R/I) and by Lemma 4.2(i), x and y

are not adjacent in ΓI(R).

The following corollary is an immediate consequence of the above theorem:
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Corollary 4.5. α(Γ(R/I)) ≤ α(ΓI(R)).

Theorem 4.6. Let S + I be an independent set with cardinality α(Γ(R/I)) and A = {s + I ∈

S + I|s2 + I = I}. Then α(ΓI(R)) = |A|+ |I|(α(Γ(R/I)) − |A|).

Proof. Suppose that s ∈ S, x ∈ s + I and y ∈ s + I. If s2 ∈ I then x ∈ s + I and y ∈ s + I are

adjacent vertices in ΓI(R). If s2 6∈ I then x ∈ s+ I and y ∈ s+ I are not adjacent in ΓI(R). Therefore

T = {s|s2 ∈ I} ∪ {s+ i|i ∈ I, s2 6∈ I} is an independent set with maximum cardinality.

Corollary 4.7. α(Γ(R/I)) ≤ α(ΓI(R)) ≤ |I|α(Γ(R/I))

Corollary 4.8. If S is an independent set with cardinality α(ΓI(R)), and s2 ∈ I for every s ∈ S,

then α(ΓI(R)) = α(Γ(R/I)).

Corollary 4.9. If S is an independent set with cardinallity α(ΓI(R)), and s2 6∈ I for every s ∈ S,

then α(ΓI(R)) = |I|α(Γ(R/I)).

We state two following examples for corollaries:

Example 4.10. Let R = Z6 × Z3 and I = 0 × Z3 be an ideal of R. Then it easy to see that

ΓI(R) = {(2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2), (4, 0), (4, 1), (4, 2)} and Γ(R/I) = {(2, 0) + I, (3, 0) +

I, (4, 0) + I}. The set T = {(2, 0), (2, 1), (2, 2), (4, 0), (4, 1), (4, 2)} is an independent set of ΓI(R) and

so α(ΓI(R)) = 6. On the other hand S + I = {(2, 0) + I, (4, 0) + I} is an independent set of Γ(R/I)

and α(Γ(R/I)) = 2. Therefore α(ΓI(R)) = |I|α(Γ(R/I)).

Example 4.11. Let R = Z16 and I = 4Z16. Then ΓI(R) = {2, 6, 10, 14} and Γ(R/I) = {2+ I}. Then

T = {2} is an independent set of ΓI(R) and α(ΓI(R)) = 1. On the other hand S + I = {2 + I} is an

independent set of Γ(R/I) and α(Γ(R/I)) = 1. So we have α(ΓI(R)) = α(Γ(R/I)).

Example 4.12. Let R = Z16 × Z3 and I = 0 × Z3 be an ideal of R. Then it easy to see that

ΓI(R) = {(x, y)|x = 2, 4, . . . , 14, y = 0, 1, 2} and Γ(R/I) = {(x, 0) + I|x = 2, 4, . . . , 14}. Then T =

{(x, y)|x = 2, 6, 10, 14, y = 0, 1, 2} ∪ {(4, 0)} is an independent set of ΓI(R) and so α(ΓI(R)) = 13.

On the other hand S + I = {(x, 0) + I|x = 2, 4, 6, 10, 14} is an independent set of Γ(R/I) and

α(Γ(R/I)) = 5. Let A be the set defined in Theorem 4.6, then A = {4}. So we have α(ΓI(R)) = 13 =

1 + 3(5− 1) = |A|+ |I|(α(Γ(R/I)) − |A|).

5. Independence, domination and clique number of small finite commutative rings

In this section similar to [15], we list the tables for graphs associated to commutative ring R, and write

independence, domination and clique number of Γ(R). Note that the tables for n = |V Γ| = 1, 2, 3, 4

can be found in [4]. The results for n = 5 can be found in [16]. In [15], all graphs on 6, 7, . . . , 14
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Figure 1. Graph for Z2 × Z4 and Z2 × Z2[X]/(X2)

Figure 2. Graph for Z2 × Z2 × Z2

Figure 3. Graph for Z3 × Z4 and Z3 × Z2[X]/(X2)

Figure 4. Graph for Z4,Z2[X]/(X4),Z4[X]/(X2 + 2),Z4[X]/(X2 + 3X) and

Z4[X]/(X3 − 2, 2X2, 2X)

vertices which can be realized as the zero-divisor graphs of a commutative rings with 1, and the list

of all rings (up to isomorphism) which produce these graphs, are given.
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Figure 5. Graph for Z2[X,Y ]/(X3,XY, Y 2),Z8[X]/(2X,X2) and Z4[X]/(X3, 2X2, 2X)

Figure 6. Graph for Z4[X]/(X2+2X),Z8[X]/(2X,X2+4),Z2[X,Y ]/(X2, Y 2−XY )

and Z4[X]/(X2, Y 2 −XY,XY − 2, 2X, 2Y )

Vertices R |R| Graph α(Γ(R)) γ(Γ(R)) ω(Γ(R))

3 Z6 6 K1,2 2 1 2

Z8 8 K1,2 2 1 2

Z2[X]/(X3) 8 K1,2 2 1 2

Z4[X]/(2X,X2 − 2) 8 K1,2 2 1 2

Z2[X,Y ]/(X,Y )2 8 K3 1 1 3

Z4[X]/(2,X)2 8 K3 1 1 3

F4[X]/(X2) 16 K3 1 1 3

Z4[X]/(X2 +X + 1) 16 K3 1 1 3

Figure 7. Graph for Z4[X,Y ]/(X2, Y 2,XY − 2, 2X, 2Y ),Z2[X,Y ]/(X2, Y 2) and Z4[X]/(X2)

Vertices R |R| Graph α(Γ(R)) γ(Γ(R)) ω(Γ(R))

4 Z2 × F4 8 K1,3 3 1 2

Z3 × Z3 9 K2,2 2 2 2

Z25 25 K4 1 1 4

Z5[X]/(X2) 25 K4 1 1 4
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Figure 8. Graph for Z4[X]/(X3 −X2 − 2, 2X2, 2X)

Figure 9. Graph for Z9[X]/(3X,X2 − 3),Z9[X]/(3X,X2 − 6) and Z3[X]/(X3)

Figure 10. Graph for Z2 ×

Z2 × Z2

Figure 11. Graph for Z4 ×

F4,Z2[X]/(X2)× F4.

Figure 12. Graph for Z2 × Z2 × Z2

Vertices R |R| Graph α(Γ(R)) γ(Γ(R)) ω(Γ(R))

5 Z2 × Z5 10 K1,4 4 1 2

Z3 × F4 12 K2,3 3 2 2

Z2 × Z4 8 Fig. 1 3 2 2

Z2 × Z2[X]/(X2) 8 Fig. 1 2 1 2
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Figure 13. Graph for Z4 × F4,Z2[X]/(X2)× F4

Figure 14. Graph for Z2 ×

Z9 and Z2 × Z3[X]/(X2)

Figure 15. Graph for Z5 ×

Z4 and Z5 × Z2[X]/(X2)

Figure 16. Graph for Z2 ×

Z8 and Z2 × Z2[X]/(X3) and

Z2 × Z4[X]/(2X,X2 − 2)

Figure 17. Graph for Z2 ×

Z2[X,Y ]/(X,Y )2 and Z2 ×

Z4[X]/(2,X)2

Figure 18. Graph for Z4 × Z4,Z4 × Z2[X]/(X2) and Z2[X]/(X2)× Z2[X]/(X2)

Vertices R |R| Graph α(Γ(R)) γ(Γ(R)) ω(Γ(R))

6 Z3 × Z5 15 K2,4 4 2 2

F4 × F4 16 K3,3 3 2 2

Z2 × Z2 × Z2 8 Fig. 2 3 3 3

Z49 49 K6 1 1 6

Z7[X]/(X2) 49 K6 1 1 6
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Vertices R |R| Graph α(Γ(R)) γ(Γ(R)) ω(Γ(R))

7 Z2 × Z7 14 K1,6 6 1 2

F4 × Z5 10 K3,4 4 2 2

Z3 × Z4 12 Fig. 3 4 2 2

Z3 × Z2[X]/(X2) 12 Fig. 3 4 2 2

Z16 16 Fig. 4 5 1 3

Z2[X]/(X4) 16 Fig. 4 5 1 3

Z4[X]/(X2 + 2) 16 Fig. 4 5 1 3

Z4[X]/(X2 + 3X) 16 Fig. 4 5 1 3

Z4[X]/(X3 − 2, 2X2, 2X) 16 Fig. 4 5 1 3

Z2[X,Y ]/(X3,XY, Y 2) 16 Fig. 5 4 1 4

Z8[X]/(2X,X2) 16 Fig. 5 4 1 4

Z4[X]/(X3, 2X2, 2X) 16 Fig. 5 4 1 4

Z4[X]/(X2 + 2X) 16 Fig. 6 3 1 3

Z8[X]/(2X,X2 + 4) 16 Fig. 6 3 1 3

Z2[X,Y ]/(X2, Y 2 −XY ) 16 Fig. 6 3 1 3

Z4[X,Y ]/(X2, Y 2 −XY,XY − 2, 2X, 2Y ) 16 Fig. 6 3 1 3

Z4[X,Y ]/(X2, Y 2,XY − 2, 2X, 2Y ) 16 Fig. 7 3 1 3

Z2[X,Y ]/(X2, Y 2) 16 Fig. 7 3 1 3

Z4[X]/(X2) 16 Fig. 7 3 1 3

Z4[X]/(X3 −X2 − 2, 2X2, 2X) 16 Fig. 8 4 1 3

Z2[X,Y,Z]/(X,Y,Z)2 16 K7 1 1 7

Z4[X,Y ]/(X2, Y 2,XY, 2X, 2Y ) 16 K7 1 1 7

F8[X]/(X2) 64 K7 1 1 7

Z4[X]/(X3 +X + 1) 64 K7 1 1 7
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Figure 19. Graph for Z2 ×

Z2 × F4

Figure 20. Graph for Z2 ×

Z3 × Z3.

Figure 21.

Graph for

Z2 × Z2 × Z4

and Z2×Z2×

Z2[X]/(X2)

Figure 22.

Graph for

Z2 × Z2 × Z2

× Z2

Figure 23.

Graph for

Graph for

Z3 × Z9 and

Z3 ×

Z3[X]/(X2).

Vertices R |R| Graph α(Γ(R)) γ(Γ(R)) ω(Γ(R))

8 Z2 × F8 16 K1,7 7 1 2

Z3 × Z7 21 K2,6 6 2 2

Z5 × Z5 25 K4,4 4 2 2

Z27 27 Fig. 9 6 1 3

Z9[X]/(3X,X2 − 3) 27 Fig. 9 6 1 3

Z9[X]/(3X,X2 − 6) 27 Fig. 9 6 1 3

Z3[X]/(X3) 27 Fig. 9 6 1 3

Z3[X,Y ]/(X,Y )2 27 K8 1 1 8

Z9[X]/(3,X)2 27 K8 1 1 8

F9[X]/(X2) 81 K8 1 1 8

Z9[X]/(X2 + 1) 81 K8 1 1 8
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Vertices R |R| Graph α(Γ(R)) γ(Γ(R)) ω(Γ(R))

9 Z2 × F9 18 K1,8 8 1 2

Z3 × F8 24 K2,7 7 2 2

F4 × Z7 28 K3,6 6 2 2

Z2 × Z2 × Z3 12 Fig. 10 6 3 3

Z4 × F4 16 Fig. 11 6 2 2

Z2[X]/(X2)× F4 16 Fig. 11 6 2 2

Vertices R |R| Graph α(Γ(R)) γ(Γ(R)) ω(Γ(R))

10 Z3 × F9 27 K2,8 8 2 2

F4 × F8 32 K3,7 7 2 2

Z5 × Z7 35 K4,6 6 2 2

Z121 121 K10 1 1 10

Z11[X]/(X2) 121 K10 1 1 10

Vertices R |R| Graph α(Γ(R)) γ(Γ(R)) ω(Γ(R))

11 Z2 × Z11 22 K1,10 10 1 2

F4 × F9 36 K3,8 8 2 2

Z5 × F8 40 K4,7 7 2 2

Z2 × Z9 18 Fig. 12 8 3 3

Z2 × Z3[X]/(X2) 18 Fig. 12 8 3 3

Z5 × Z4 20 Fig. 13 8 3 2

Z5 × Z2[X]/(X2) 20 Fig. 13 8 3 2

Z2 × Z8 16 Fig. 14 8 2 3

Z2 × Z2[X]/(X3) 16 Fig. 14 8 2 3

Z2 × Z4[X]/(2X,X2 − 2) 16 Fig. 14 8 2 3

Z2 × Z2[X,Y ]/(X,Y )2 16 Fig. 15 7 2 4

Z2 × Z4[X]/(2,X)2 16 Fig. 15 7 2 4

Z4 × Z4 16 Fig. 16 6 2 3

Z4 × Z2[X]/(X2) 16 Fig. 16 6 2 3

Z2[X]/(X2)× Z2[X]/(X2) 16 Fig. 16 6 2 3
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Vertices R |R| Graph α(Γ(R)) γ(Γ(R)) ω(Γ(R))

12 Z3 × Z11 33 K2,10 10 2 2

Z5 × Z9 45 K4,8 8 2 2

Z7 × Z7 49 K6,6 6 2 2

Z2 × Z2 × Z4 16 Fig. 17 6 2 2

Z169 169 K12 1 1 12

Z13[X]/(X2) 169 K12 1 1 12

Vertices R |R| Graph α(Γ(R)) γ(Γ(R)) ω(Γ(R))

13 Z2 × Z13 26 K1,12 12 1 2

F4 × Z11 44 K3,10 10 2 2

Z7 × F8 56 K6,7 7 2 2

Z2 × Z3 × Z3 18 Fig. 18 8 3 3

Z2 × Z2 × Z4 16 Fig. 19 8 3 3

Z2 × Z2 × Z2[X]/(X2) 16 Fig. 19 8 3 3

Vertices R |R| Graph α(Γ(R)) γ(Γ(R)) ω(Γ(R))

14 Z3 × Z13 39 K2,12 12 2 2

Z5 × Z11 55 K4,10 10 2 2

Z7 × F9 63 K6,8 8 2 2

F8 × F8 64 K7,7 7 2 2

Z2 × Z2 × Z2 × Z2 16 Fig. 20 7 4 3

Z3 × Z9 27 Fig. 21 10 2 3

Z3 × Z3[X]/(X2) 27 Fig. 21 10 2 3
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