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1. Introduction

The notion of prime submodules has been introduced by Dauns in [9]. A proper submodule
P of an R-module M is said to be prime if for any element r ∈ R and element m ∈ M with
rm ∈ P , we have m ∈ P or rM ⊆ P . Moreover, a non-zero R-module M is considered prime
if the zero submodules are prime. Some previous authors have studied the prime submodules
and prime modules, for example, in papers [14, 4, 12, 10].

In module theory, an R-module has been generalized into an (R,S)-bimodule, where R and
S are arbitrary rings. Khumprapussorn et al. in [13] have generalized the (R,S)-bimodule
structure to an (R,S)-module structure. Let R and S be rings and M an abelian group
under addition. Khumprapussorn et al. in [13] said M is an (R,S)-module if there exists a
function − ·− ·− : R ×M × S → M such that for all r1, r2, r ∈ R, s1, s2, s ∈ S, and m,n ∈ M

satisfied (1) r · (m + n) · s = r · m · s + r · m · s; (2) (r1 + r2) · m · s = r1 · m · s + r2 · m · s;
(3) r · m · (s1 + s2) = r · m · s1 + r · m · s2; (4) r1 · (r2 · m · s1) · s2 = (r1r2) · m · (s1s2).
Moreover, the concepts around (R,S)-module have been studied in [17]. An (R,S)-module
has an (R,S)-bimodule structure when both rings R and S have central idempotent elements.

According to [13], a proper (R,S)-submodule P of M is called a jointly prime (R,S)-
submodule if for each left ideal I of R, right ideal J of S, and (R,S)-submodule K of M

with IKJ ⊆ P implies IMJ ⊆ P or K ⊆ P . If R and S are commutative rings, then we
have a proper (R,S)-submodule P of M is called a jointly prime (R,S)-submodule if for each
ideal I of R, ideal J of S, and (R,S)-submodule K of M with IKJ ⊆ P implies IMJ ⊆ P

or K ⊆ P . Furthermore, a non-zero (R,S)-module M is said to be jointly prime if its zero
(R,S)-submodule is a jointly prime (R,S)-submodule of M .

Weakly prime submodules are generalizations of prime submodules. Weakly prime submod-
ules have been introduced and studied over an associative ring with identity in [7, 6]. Assume
that R is an associative ring with identity. According to [7], a proper submodule P of M is
said to be weakly prime if for any a, b ∈ R and submodule K of M with aRbK ⊆ P implies
either aK ⊆ P or bK ⊆ P . If R is a commutative ring, then a proper submodule P of M is
weakly prime if for each submodule K of M and elements a, b of R with abK ⊆ P , implies
either aK ⊆ P or bK ⊆ P . Moreover, weakly prime submodules over a commutative ring
have been studied in [3, 5, 2, 1]. Next, we extend these facts to (R,S)-modules. Following
to [16], a proper (R,S)-submodule P of M is said to be left weakly jointly prime if for each
(R,S)-submodule N of M and element a, b ∈ R such that abNS ⊆ P implies either aNS ⊆ P

or bNS ⊆ P . According to [7], an R-module M is called a weakly prime module if its zero
submodules is a weakly prime submodule of M . An R-module M is said to be weakly prime
if the annihilator of any non-zero submodule of M is a prime ideal. Moreover, this work aims
to define left weakly jointly prime (R,S)-modules and then investigate their properties.
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In Section 2, we present the definition of left weakly jointly prime (R,S)-module and give
some of their properties. First, we provide the necessary and sufficient condition for (R,S)-
modules to be left weakly jointly prime. And then we present the set of (0 :R ⟨m⟩) for each
0 ̸= m ∈ M is a chain of prime ideals if and only if M is a left weakly jointly prime (R,S)-
module where S2 = S and a ∈ RaS for all a ∈ M . At the end of this section, we present the
sufficient condition for every non-zero summand of (R,S)-module M to be left weakly jointly
prime.

According to [7], a ring R is called a fully prime ring if each proper ideal of R is prime.
This ring type is fully investigated in [8, 15]. Based on [7], we have that an R-module M is
called a fully weakly prime module if each proper submodule of M is weakly prime. When we
extend these facts to (R,S)-module, we have an (R,S)-module of M is fully left weakly jointly
prime if every proper (R,S)-submodule of M is a left weakly jointly prime (R,S)-submodule.
Section 3 presents some properties of fully left weakly jointly prime (R,S)-modules. We
develop some properties of fully weakly prime modules studied in [7]. Moreover, at the end
of this section, we show our main results about the necessary and sufficient conditions for an
arbitrary (R,S)-module to be fully left weakly jointly prime.

Throughout this paper, R and S are commutative rings unless stated otherwise, and M is
an additive abelian group.

2. Left weakly jointly prime (R,S)-modules

In this section, we present the definition of left weakly jointly prime (R,S)-modules and give
some of their properties. We begin by defining a left weakly jointly prime (R,S)-submodule
as follows.

Definition 2.1. [16] Let M be an (R,S)-module. A proper (R,S)-submodule P of M is
called a left weakly jointly prime (R,S)-submodule if for each (R,S)-submodule N of M and
element a, b ∈ R such that abNS ⊆ P implies either aNS ⊆ P or bNS ⊆ P .

When a ∈ RaS for all a ∈ M , we have another definition of a left weakly jointly prime
(R,S)-submodule as follows.

Definition 2.2. [16] Let M be an (R,S)-module satisfied a ∈ RaS for all a ∈ M . A proper
(R,S)-submodule P of M is called a left weakly jointly prime (R,S)-submodule if for each
ideal I, J of R and (R,S)-submodule N of M with IJNS ⊆ P , implies either INS ⊆ P or
JNS ⊆ P .

Below, we give an example of left weakly jointly prime (R,S)-submodules.

Example 2.3. Let Z be a (4Z, 3Z)-module. A proper (4Z, 3Z)-submodule 12Z of Z is a left
weakly jointly prime (4Z, 3Z)-submodule of Z. Let a, b ∈ 4Z with a = 4k and b = 4l and N
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be a (4Z, 3Z)-submodule of Z with N = xZ for some k, l, x ∈ Z. We have

abN(3Z) = (4k)(4l)(xZ)(3Z) = 48klxZ2 ⊆ 48klxZ ⊆ 12Z.

In the other side, we obtain aN(3Z) = (4k)(xZ)(3Z) = 12kxZ2 ⊆ 12kxZ ⊆ 12Z or bN(3Z) =
(4l)(xZ)(3Z) = 12lxZ2 ⊆ 12lxZ ⊆ 12Z. Hence, 12Z is a left weakly jointly prime (4Z, 3Z)-
submodule of Z.

Now, we present the definition of left weakly jointly prime (R,S)-module.

Definition 2.4. An (R,S)-module M is called left weakly jointly prime if it’s zero (R,S)-
submodule is left weakly jointly prime.

Example 2.5. Let Z be an (4Z, 3Z)-module. It is easy to show that the zero (4Z, 3Z)-
submodule of Z is a left weakly jointly prime (4Z, 3Z)-submodule. Thus, Z is a left weakly
jointly prime (4Z, 3Z)-module.

Example 2.6. Let R and S are commutative rings with

R =

{ ā b̄

0̄ 0̄

∣∣∣∣∣ā, b̄ ∈ Z4

}
and S =

{ ā 0̄

b̄ 0̄

∣∣∣∣∣ā, b̄ ∈ Z4

}
.

Let an (R,S)-module M with

M =

{ ā 0̄

b̄ c̄

∣∣∣∣∣ā, b̄, c̄ ∈ Z4

}
.

We can show that M is not a left weakly jointly prime (R,S)-module. Let (R,S)-submodule

N =

{ ā 0̄

0̄ b̄

∣∣∣∣∣ā, b̄ ∈ Z4

}
and any element a, b ∈ R with a =

 0̄ ȳ

0̄ 0̄

 and

b =

 0̄ x̄

0̄ 0̄

. Let any element n ∈ N with n =

 ā 0̄

0̄ b̄

. We obtain

abnS =

 0̄ ȳ

0̄ 0̄

 0̄ x̄

0̄ 0̄

 ā 0̄

0̄ b̄

S =

{ 0̄ 0̄

0̄ 0̄

}
.

However, we have

anS =

 0̄ ȳ

0̄ 0̄

 ā 0̄

0̄ b̄

S =

 0̄ yb

0̄ 0̄

S ̸=

{ 0̄ 0̄

0̄ 0̄

}
,

and

bnS =

 0̄ x̄

0̄ 0̄

 ā 0̄

0̄ b̄

S =

 0̄ xb

0̄ 0̄

 ̸=

{ 0̄ 0̄

0̄ 0̄

}
.

Thus, M is not a left weakly jointly prime (R,S)-module.
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According to [7], a proper submodule N of an R-module M is weakly prime if and only if
the quotient R-module M/N is weakly prime. Proposition 2.7 extends this result to (R,S)-
modules as follows.

Proposition 2.7. Let M be an (R,S)-module. Then a proper (R,S)-submodule X of M is
a left weakly jointly prime (R,S)-module if and only if M/X is a left weakly jointly prime
(R,S)-module.

Proof. Let X be a left weakly jointly prime (R,S)-submodule of M . We have M/X is a left
weakly jointly prime (R,S)-module. Conversely, assume that M/X is a left weakly jointly
prime (R,S)-module. Then X is a left weakly jointly prime (R,S)-submodule of M .

According to [13], for each (R,S)-submodule N of M , let (N :R M) = {r ∈ R | rMS ⊆ N}.
Clearly that (N :R M) is only an additive subgroup of R. However, if we have the condition
S2 = S, clearly that (N :R M) is an ideal of R. We may also say that (N :R M) is the
annihilator of the quotient (R,S)-module M/N over the ring R.

Before we present the next properties of left weakly jointly prime (R,S)-modules, we need
the following properties.

Proposition 2.8. Let M be an (R,S)-module with S2 = S and a ∈ RaS for all a ∈ M and N

be a proper (R,S)-submodule of M . Then N is a left weakly jointly prime (R,S)-submodule
of M if and only if (N :R K) is a prime ideal of R for each (R,S)-submodule K of M with
K ̸⊆ N .

Proof. Let K be an (R,S)-submodule of M with K ̸⊆ N . Since S2 = S and a ∈ RaS for
all a ∈ M , then (N :R K) is a proper ideal of R. Let any elements a and b of R such
that ab ∈ (N :R K), so we have abKS ⊆ N . Since N is a left weakly jointly prime (R,S)-
submodule, then aKS ⊆ N or bKS ⊆ N . Thus, we obtain a ∈ (N :R K) or b ∈ (N :R K).
Hence, (N :R K) is a prime ideal of R. Conversely, let a and b be elements of R and L

be an (R,S)-submodule of M such that abLS ⊆ N and aLS ̸⊆ N . Then L ̸⊆ N . So, we
have ab ∈ (N :R L). Based on the hypothesis, (N :R L) is a prime ideal of R. Thus from
ab ∈ (N :R L) and aLS ̸⊆ N we obtain a ̸∈ (N :R L) and b ∈ (N :R L). Thus, we have
bLS ⊆ N . Thus, N is a left weakly jointly prime (R,S)-submodule of M .

Proposition 2.9 presents the necessary and sufficient condition for an (R,S)-module to be
left weakly jointly prime.
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Proposition 2.9. Let M be an (R,S)-module with S2 = S and a ∈ RaS for all a ∈ M . Then
M is a left weakly jointly prime if and only if (0 :R K) is a prime ideal of R, for each non-zero
(R,S)-submodule K of M .

Proof. Let K be a non-zero (R,S)-submodule of M . Clearly that (0 :R K) = {r ∈ R | rKS =

0} is a proper ideal of R. Since M is a left weakly jointly prime (R,S)-module, 0 is a left weakly
jointly prime (R,S)-submodule of M . Thus, based on Proposition 2.8, we have (0 :R K) is a
prime ideal of R. Conversely, it is known that for each non-zero (R,S)-submodule K of M

satisfy (0 :R K) is a prime ideal of R. Using Proposition 2.8, 0 is a left weakly jointly prime
(R,S)-submodule of M . Hence, M is a left weakly jointly prime (R,S)-module.

Let M be an (R,S)-modules. Following to [13], for any non-empty subsets Y of M we define

⟨Y ⟩ =
⋂

{K | K is an (R,S)− submodule of M containing Y }.

It is obvious that ⟨Y ⟩ is an (R,S)-submodule of M containing Y . If Y = {a}, then we have

⟨{a}⟩ = ⟨a⟩ =
⋂

{K | K is an (R,S)− submodule of M containing a}.

Clearly that ⟨a⟩ is an (R,S)-submodule of M for any element a ∈ M . Moreover, element a is
contained in ⟨a⟩.

Next, we give a proposition explaining the elements’ form in (R,S)-submodule ⟨Y ⟩.

Theorem 2.10. Let M be an (R,S)-module and the set Y ⊆ M . If Y = ∅, then ⟨Y ⟩ = {0}.
If Y ̸= ∅, then we get

⟨Y ⟩ =
{ t∑

i=1

riyisi +
k∑

j=1

njy
′
j

∣∣∣ri ∈ R, yi, y
′
j ∈ Y, si ∈ S, nj ∈ Z, ∀i = 1, 2, ..., t, ∀j = 1, 2, ..., k

}
.

Proof. We assume Y ̸= ∅ and

A =
{ t∑

i=1

riyisi +

k∑
j=1

njy
′
j

∣∣∣ri ∈ R, yi, y
′
j ∈ Y, si ∈ S, nj ∈ Z, ∀i = 1, 2, ..., t, ∀j = 1, 2, ..., k

}
.

We will prove that ⟨Y ⟩ = A. Since ⟨Y ⟩ is the intersection of all (R,S)-submodules of M that
contain Y , it is clear that Y ⊆ ⟨Y ⟩. Since ⟨Y ⟩ is closed to the scalar addition and multiplication
operations, then A ⊆ Y ⊆ ⟨Y ⟩. Next, we will prove ⟨Y ⟩ ⊆ A. It is equivalent to show that
A is an (R,S)-submodule of M containing Y . Let any y ∈ Y , we have y = 0y0 + 1y ∈ A, so

Y ⊆ A. Let any
( t∑

i=1
riyisi +

k∑
j=1

njy
′
j

)
,
( q∑

i=1
r′iy

′
is

′
i +

l∑
j=1

n′
jy”j

)
∈ A, we have
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( t∑
i=1

riyisi +

k∑
j=1

njy
′
j

)
−
( q∑

i=1

r′iy
′
is

′
i +

l∑
j=1

n′
jy”j

)
=

( t∑
i=1

riyisi −
q∑

i=1

r′iy
′
is

′
i

)

+
( k∑

j=1

njy
′
j −

l∑
j=1

n′
jy”j

)
∈ A.

Next, let any element r ∈ R and s ∈ S, we obtain

r
( t∑

i=1

riyisi +

k∑
j=1

njy
′
j

)
s =

t∑
i=1

(rri)yi(sis) +

k∑
j=1

(rnj)y
′
js ∈ A.

Thus, A is an (R,S)-submodule of M containing Y . So, we obtain ⟨Y ⟩ ⊆ A. Hence, it has
proved that ⟨Y ⟩ = A.

Following to Theorem 2.10, If Y = {a}, then we have

⟨a⟩ =
{ t∑

i=1

riasi +
k∑

j=1

njx
∣∣∣ri ∈ R, si ∈ S, nj ∈ Z, ∀i = 1, 2, ..., t, ∀j = 1, 2, ..., k

}
.

If a ∈ RaS for all a ∈ M , then we have

⟨a⟩ =
{ t∑

i=1

riasi

∣∣∣ri ∈ R, si ∈ S, ∀i = 1, 2, ..., t
}
.

Next, we define cyclic (R,S)-submodules as follows.

Definition 2.11. Let M be an (R,S)-module. An (R,S)-submodule N of M is called a cyclic
(R,S)-submodule of M if N is generated by an element x ∈ M , i.e. N = ⟨x⟩.

Clearly that (R,S)-module M is cyclic if M is generated by an element a ∈ M , i.e. M = ⟨a⟩.
We have the following properties according to Proposition 2.9.

Corollary 2.12. Let M be an (R,S)-module with S2 = S and a ∈ RaS for all a ∈ M . Then
M is a left weakly jointly prime (R,S)-module if and only if for each 0 ̸= m ∈ M satisfy
(0 :R ⟨m⟩) is a prime ideal of R.

Proof. Let m ∈ M \{0} and we form the set (0 :R ⟨m⟩). Let x, y ∈ R such that xy ∈ (0 :R ⟨m⟩),
so we have xy ⟨m⟩S = 0. Since M is a left weakly jointly prime (R,S)-modules, we have
x ⟨m⟩S = 0 or y ⟨m⟩S = 0. Thus, we obtain x ∈ (0 :R ⟨m⟩) or y ∈ (0 :R ⟨m⟩). Hence,
(0 :R ⟨m⟩) is a prime ideal of R. Conversely, let any (R,S)-submodule N of M and elements
a, b ∈ R such that abNS = 0 and aNS ̸= 0. Let element n ∈ N . If element n = 0, clearly
that from abnS ⊆ abNS = 0 we have bnS = 0. If element n ̸= 0, then we get a cyclic
(R,S)-submodule ⟨n⟩. Clearly that ⟨n⟩ ⊆ N . So, we have ab ⟨n⟩S ⊆ abNS = 0. Based on the
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hypothesis, we obtain b ⟨n⟩S = 0. Since n ∈ ⟨n⟩, then we have bnS = 0. Thus, we get bnS = 0

for all element n ∈ N , so bNS = 0. Hence, M is left weakly jointly prime (R,S)-modules.

Based on Corollary 2.12, we have the following properties.

Proposition 2.13. Let M be an (R,S)-module with S2 = S and a ∈ RaS for all a ∈ M .
Then M is a left weakly jointly prime (R,S)-module if and only if the set J = {(0 :R ⟨m⟩) |
0 ̸= m ∈ M} is a chain of prime ideals of R.

Proof. Let M be a left weakly jointly prime (R,S)-module. Then for each 0 ̸= m ∈ M satisfy
(0 :R ⟨m⟩) is a prime ideal of R. We have to show that J is a chain of prime ideals of R.
Let m,n ∈ M \ {0}. Clearly, (0 :R ⟨m⟩) ∩ (0 :R ⟨n⟩) ⊆ (0 :R ⟨m⟩ + ⟨n⟩). Since M is a left
weakly jointly prime (R,S)-module, then (0 :R ⟨m⟩ + ⟨n⟩) is a prime ideal of R. Since (0 :R

⟨m⟩)(0 :R ⟨n⟩) ⊆ (0 :R ⟨m⟩)∩(0 :R ⟨n⟩) ⊆ (0 :R ⟨m⟩+⟨n⟩) then (0 :R ⟨m⟩) ⊆ (0 :R ⟨m⟩+⟨n⟩) or
(0 :R ⟨n⟩) ⊆ (0 :R ⟨m⟩+⟨n⟩). So, we have (0 :R ⟨m⟩) = (0 :R ⟨m⟩)∩(0 :R ⟨m⟩+⟨n⟩) ⊆ (0 :R ⟨n⟩)
or (0 :R ⟨n⟩) = (0 :R ⟨n⟩)∩ (0 :R ⟨m⟩+ ⟨n⟩) ⊆ (0 :R ⟨m⟩). Thus, J is a chain of prime ideals of
R. Conversely, assume that J is a chain prime ideal of R. It means that for each 0 ̸= m ∈ M ,
(0 :R ⟨m⟩) is a prime ideal of R. Thus, using Corollary 2.12, we have M a left weakly jointly
prime (R,S)-module.

Now, we recall from [7] that each summand of a weakly prime R-module is a weakly prime
R-module. Next, we present the generalization of these properties to (R,S)-modules.

Proposition 2.14. An (R,S)-module M is left weakly jointly prime if and only if every direct
summand of M , including the zero summands, is a left weakly jointly prime (R,S)-submodule.

Proof. Assume that M = N ⊕ K. Let a, b ∈ R and x ∈ M \ N such that ab ⟨x⟩S = 0.
Since M is a left weakly jointly prime (R,S)-module, then we have a ⟨x⟩S = 0 or b ⟨x⟩S = 0.
Since 0 ⊆ N , then for each a, b ∈ R that satisfy ab ⟨x⟩S ⊆ N implies either a ⟨x⟩S ⊆ N

or b ⟨x⟩S ⊆ N . Thus, N is a left weakly jointly prime (R,S)-submodule of M . Hence,
every direct summand of M is a left weakly jointly prime (R,S)-submodule. Conversely, let
M = M ⊕ {0}. By our hypothesis, {0} is a left weakly jointly prime (R,S)-submodule, i.e.,
M is a left weakly jointly prime (R,S)-module.

From Proposition 2.14, we have that each direct summand of left weakly jointly prime
(R,S)-modules is a left weakly jointly prime (R,S)-module. Therefore it is natural to consider
(R,S)-modules which are not indecomposable and not left weakly jointly prime, but their non-
zero summands are left weakly jointly prime (R,S)-modules.
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Corollary 2.15. Let M be an (R,S)-module with S2 = S and a ∈ RaS for all a ∈ M , M is
not a left weakly jointly prime (R,S)-module and not indecomposable. If every decomposition
of M is of the form M = N ⊕ K, where N and K are non-zero indecomposable left weakly
jointly prime (R,S)-module, then every non-zero summand of M is left weakly jointly prime
(R,S)-modules.

Proof. Assume that M = N ⊕K where N,K are non-zero indecomposable left weakly jointly
prime (R,S)-submodule. Following Proposition 2.14, the non-zero summand of M is a left
weakly jointly prime (R,S)-module.

3. Fully left weakly jointly prime (R,S)-modules

In this section, we present the definition of fully left weakly jointly prime (R,S)-modules
and give some of their properties. We recall the definition of the fully prime ring and fully
weakly prime modules as follows.

Definition 3.1. [8] Let R be an associative ring with identity. A ring R is called a fully prime
ring if each proper ideal of R is prime.

Definition 3.2. [7] Let R be an associative ring with identity. An R-module M is a fully
weakly prime module if every proper submodule of M is a weakly prime submodule.

We extend the definition of fully weakly prime modules to (R,S)-modules as follows.

Definition 3.3. An (R,S)-module M is called fully left weakly jointly prime if every proper
(R,S)-submodule of M is left weakly jointly prime.

Example 3.4. Let Z6 be a (2Z,Z)-module. The proper (2Z,Z)-submodules of Z6 are
{0̄}, {0̄, 2̄, 4̄}, and {0̄, 3̄}. Those proper submodules are left weakly jointly prime (2Z,Z)-
submodules. Thus, Z6 is a fully left weakly jointly prime (2Z,Z)-module.

Example 3.5. Let 4Z be a (2Z, 3Z)-module. The proper (2Z, 3Z)-submodules of 4Z are {0̄}
and (4n)Z for all n > 1. Both of them are left weakly jointly prime (2Z, 3Z)-submodules.
Thus, 4Z is a fully left weakly jointly prime (2Z, 3Z)-module.

Example 3.6. Following to Example 2.6, M is not a fully left weakly jointly prime (R,S)-

module since
{ 0̄ 0̄

0̄ 0̄

}
is not a left weakly jointly prime (R,S)-submodule of M .

Next, this proposition below shows that fully prime rings give us a big set of fully left weakly
jointly prime (R,S)-modules.
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Proposition 3.7. Let R be a fully prime ring. Then each (R,S)-module M with S2 = S and
a ∈ RaS for all a ∈ M is fully left weakly jointly prime (R,S)-module.

Proof. Let R be a fully prime ring. We will show that M is a fully left weakly jointly prime
(R,S)-module. Let N be a proper (R,S)-submodule of M . We will prove that N is a left
weakly jointly prime (R,S)-submodule of M . Let K be an (R,S)-submodule of M that is not
contained in N , so we have (N :R K) is an ideal of R. Since a ∈ RaS for all a ∈ M , then
(N :R K) is a proper ideal of R. Since R is a fully prime ring, (N :R K) is a prime ideal of R.
Using Proposition 2.8, N is a left weakly jointly prime (R,S)-submodule of M .

Proposition 3.8. Let M be an (R,S)-module with S2 = S and a ∈ RaS for all a ∈ M . Then
the following statements are equivalent. (i) Each (R,S)-module M is fully left weakly jointly
prime.

(ii) If R2 = R and a ∈ RaR for all a ∈ R, then the (R,R)-module R is fully left weakly
jointly prime.

(iii) R is a fully prime ring.

Proof. (i) ⇒ (ii). The proof is trivial.
(ii) ⇒ (iii). Let N be an ideal of R. Then N is an (R,R)-submodule of R. Let a, b ∈ R with
ab ∈ N . Thus, we get abR ⊆ NR ⊆ N so abRR ⊆ NR ⊆ N . Since N is an (R,R)-submodule
of R and R is fully left weakly jointly prime, we have N is a left weakly jointly prime (R,R)-
submodule. Consequently, we obtain aRR ⊆ N or bRR ⊆ N . Since R is commutative and
a, b ∈ R then we have RaR ⊆ N or RbR ⊆ N . Since a ∈ RaR for all a ∈ R, then we obtain
a ∈ N or b ∈ N . Thus, N is a prime ideal of R.
(iii) ⇒ (i). The proof is equal to the proof of Proposition 3.7.

The following result extends a fact of fully prime rings to fully left weakly jointly prime
(R,S)-modules. This result is based on papers [8, 15].

Proposition 3.9. Let M be an (R,S)-module with a ∈ RaS for all a ∈ M . Then M is a
fully left weakly jointly prime (R,S)-module if and only if for each (R,S)-submodule K of M
and each ideal I of R, IKS = I2KS and also for any two ideals A and B of R satisfy AKS

and BKS are comparable.

Proof. Let M be a fully left weakly jointly prime (R,S)-module. Let K be an (R,S)-submodule
of M and I be an ideal of R. If I2KS = M , then clearly M = I2KS ⊆ IKS ⊆ M so that
M = I2KS = IKS. Thus, we may assume that I2KS ̸= M , then I2KS is a left weakly jointly
prime (R,S)-submodule. Consequently, from IIKS ⊆ I2KS implies that IKS = I2KS.
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Now, if A and B are two ideals of R, we may assume that AKS ̸= M ̸= BKS. However,
AKS ∩ BKS is a left weakly jointly prime (R,S)-submodule of M . Consequently, from
ABKS ⊆ AKS∩BKS implies that AKS ⊆ BKS or BKS ⊆ AKS. Thus, it has proved that
AKS and BKS are comparable. Conversely, we must show that each proper (R,S)-submodule
N of M is a left weakly jointly prime (R,S)-submodule. To see this, let A and B be ideals of
R and K be an (R,S)-submodule of M such that ABKS ⊆ N . By our hypothesis, we may
assume that AKS ⊆ BKS. Then we obtain AKS = A2KS ⊆ ABKS ⊆ N . Assuming that
BKS ⊆ AKS we get BKS = B2KS ⊆ BAKS = ABKS ⊆ N . Hence, N is a left weakly
jointly prime (R,S)-submodule. Thus, M is a fully left weakly jointly prime (R,S)-module.

Next, we present the necessary and sufficient condition of fully left weakly jointly prime
(R,S)-modules related to their cyclic (R,S)-submodules.

Proposition 3.10. Let M be an (R,S)-module. Then M is a fully left weakly jointly prime
if and only if each proper cyclic (R,S)-submodule of M is a left weakly jointly prime (R,S)-
submodule.

Proof. Let M be a fully left weakly jointly prime (R,S)-module. Thus, every proper (R,S)-
submodule of M is a left weakly jointly prime (R,S)-submodule, and each proper cyclic (R,S)-
submodule of M is a left weakly jointly prime. Conversely, assume that each proper cyclic
(R,S)-submodule of M is a left weakly jointly prime. Let N be a proper (R,S)-submodule of
M that is not cyclic. Let element n ∈ N , we can construct a proper cyclic (R,S)-submodule
⟨n⟩. Let a, b ∈ R and (R,S)-submodule K of M with abKS ⊆ ⟨n⟩. Based on our hypothesis,
⟨n⟩ is a left weakly jointly prime (R,S)-submodule. Then we have aKS ⊆ ⟨n⟩ or bKS ⊆ ⟨n⟩.
Since ⟨n⟩ is contained in N , then from abKS ⊆ ⟨n⟩ ⊆ N we have aKS ⊆ N or bKS ⊆ N .
Thus, it is proved that N a left weakly jointly prime (R,S)-submodule of M . Hence, M is a
fully left weakly jointly prime (R,S)-module.

We recall the following properties, a left weakly jointly prime (R,S)-submodule N of M is
said to be minimal if it is minimal in the class of left weakly jointly prime (R,S)-submodules
of M . Moreover, an (R,S)-module M satisfies the minimum condition if every non-empty
family of (R,S)-submodules of M contains a minimal number.

According to [11], every prime submodule contains a minimal prime submodule. Based
on this property, it is easy to show that every left weakly jointly prime (R,S)-submodule of
M contains a minimal left weakly jointly prime (R,S)-submodule. Using this property, we
present the last property of fully left weakly jointly prime (R,S)-modules as follows.
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Proposition 3.11. Let M be an (R,S)-module. If M is a fully left weakly jointly prime
(R,S)-module, then M is a left weakly jointly prime (R,S)-module, and the set of proper
cyclic (R,S)-submodules satisfies the minimum condition.

Proof. Since M is a fully left weakly jointly prime (R,S)-module then (R,S)-submodule 0 is
left weakly jointly prime. Therefore, M is a left weakly jointly prime (R,S)-module. Moreover,
based on Proposition 3.10, we have that every proper cyclic (R,S)-submodule is left weakly
jointly prime. Based on [Proposition 3.10, [16]], we have every cyclic (R,S)-submodule of M
contains a minimal left weakly jointly prime (R,S)-submodule. Therefore, the set of proper
cyclic (R,S)-submodules of M contains a minimal number. Hence, the proper cyclic (R,S)-
submodules set satisfies the minimum condition.

4. Conclusion

Further work on the properties of left weakly jointly prime (R,S)-submodules can be carried
out. For example, research on the radical structure of the left weakly jointly prime (R,S)-
modules and the dualization of the left weakly jointly prime (R,S)-modules.
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