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HYBRID IDEALS ON A LATTICE

S. MEENAKSHI, YOUNG BAE JUN, SEOK-ZUN SONG AND B. ELAVARASAN~*

ABSTRACT. The fuzzy set is a fantastic tool for expressing hesitancy and dealing with un-
certainty in real-world circumstances. Soft set theory has recently been developed to deal
with practical problems. The soft and fuzzy sets were combined by Jun et al. to generate
hybrid structures. The idea of hybrid ideals on a distributive lattice is discussed in this work.
The relation between hybrid congruences and hybrid ideals on a distributive lattice is also

examined. In addition, the product of hybrid ideals and its numerous results are discussed.

1. INTRODUCTION

Zadeh [@] defined the notion of a fuzzy set in 1965, and it opened a different way of thinking
for many engineers, mathematicians, physicists, chemists, and others, due to the fact that it
has several applications in multiple fields. In 1971, Rosenfeld [] defined a fuzzy subgroup of

a group based on the idea of a fuzzy subset of a set.
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In 1990, Yuan et al., [24] pioneered the idea of fuzzy ideals on a distributive lattice. The
relation between fuzzy congruences and fuzzy ideals on a distributive lattice is explored. On
a generalised Boolean algebra, they proved that the lattice of fuzzy congruence and fuzzy
ideals are isomorphic. In [1], the idea of fuzzy lattices was established in 1994 by Ajmal et
al. Several characterizations of fuzzy sublattices, fuzzy prime ideals, fuzzy ideals are also
established. Swamy et al. [23] proposed the idea of fuzzy ideals and congruences of lattices
in 1998. Chon [3] pioneered the notion of fuzzy lattices and fuzzy partial order relations, and
also developed several basic aspects of fuzzy lattices, characterised a fuzzy lattice as a fuzzy
relation, and defined a fuzzy partial order relation using its level set. In 2011, Ramarao et al.
[21] introduced the notion of fuzzy ideals and filters of lattice and also some of their results
are discussed.

Soft set theory, which was created by Molodtsov [[14] in 1999 as a generalisation of fuzzy
set theory, has been successfully tested in many different fields. In [12], soft sets were first
applied to decision-making issues by Maji et al. It is based on the knowledge reduction theory
of rough sets.

Jun et al. [11] created hybrid structures by the fusion of fuzzy and soft sets. In a set of
parameters over an initial universe set, they looked into a variety of characteristics of hybrid
structure. Based on this approach, they developed the notions of hybrid subalgebra, hybrid
field, and hybrid linear space. Hybrid structures have been utilised to solve a number of
algebraic systems with varying results (see [2], [4], [B], [6], [7], [8], [9], [13], [L5], [L6], [17], [18],
[19] and [20]).

In this work, we discuss the relations between hybrid congruences and hybrid ideals on
a distributive lattice .%. In a generalized Boolean algebra, we obtain some results related
to hybrid congruence and hybrid ideals. Furthermore, the product of hybrid ideals is also
introduced, and a hybrid ideal is obtained on the direct sum of lattices to be representable as

a direct sum of hybrid ideals on each lattice.

2. PRELIMINARIES

In this section, we will collect some definitions and observations to support us with our main
findings. Throughout this paper, .# = (%, +, -) represents a lattice, where t + k =tV k and
t-k=tANk, P(A) represents the power set of a non-empty set A.

Definition 2.1. [11] Let Q be an universal set, a hybrid structure in a non-empty set .#

over Q is jy := (j,9) : F — P(Q) x [0,1], vo — (j(v0),¥(vp)), where j : F — P(Q) and
¥ F — |0, 1] are mappings.
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A relation < is defined on the family of all hybrid structures, represented by H(.%), in %
over Q as follows:
vV @, 2, € H(F)) (ag <7, eaCicr g) :
where @ C Z means: a(q) C 2(q) and ¢ = o means: <(¢) > o(q) Vg € .Z. Then (H(.F), <) is a

poset.

Definition 2.2. [10] A subset . (# () of .# is said to be an ideal of .Z if for any ¢ € £, b € .F
gNbe S and q,be L, qVvbe S,

Definition 2.3. [10] A subset J(# 0) of .7 is described as a filter of .Z if for any ¢ € J,b €
F,qvbe Jand g,be T, qANbe J.

Definition 2.4. [24] An element z € .Z is relatively complemented if z is complemented in
every [j,w] with j < z <w (i.e., z+u = w and zu = j for some u € [j,w]). The lattice .Z is

relatively complemented if every z € % is relatively complemented.

Definition 2.5. [24] A relatively complemented distributive lattice with smallest element 0O
is a generalized Boolean algebra.

In a generalized Boolean algebra .%, co, hg € %, the difference is defined by ¢y — hg, to
be the relative complement of cohy in [0,¢p], and the symmetric difference is described as

co D hg = (Co — ho) + (ho — Co).

It is easy to show that

(i) co — ho < co,

(ii) ho(co — ho) = 0,

(iii) ho + (co — ho) = co + ho for any co, hg € Z.

Lemma 2.6. [24] If .F is a generalized Boolean algebra, then ty + ag = to ® ag @ toag holds
for all tg,ag € .

3. HYBRID IDEALS AND HYBRID FILTERS ON LATTICES

We define hybrid ideals and hybrid filters on a distributive lattice in this section. We prove

some equivalent conditions related to hybrid ideals and hybrid filters.

Definition 3.1. Let ke € H(.Z). Then ky is said to be a hybrid sublattice of .7 if
E(xo + bo) 2 k(o) N k(bo)
w(zo + by) < w(xg) V w(by)
E(zo - bo) 2 k(o) N k(bo)
@(zo - bo) < w (o) V @ (bo)

(i) (V.T}o, bo S ﬁ)

(ii) (VZL‘(), by € 55)
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Definition 3.2. A hybrid sublattice ky of .Z is called

| . | [ R SEO)
(i) a hybrid filter if v < b in .% implies for v,b € Z.
w(v) > w(b)
k(v) 2 k(b)
(ii) a hybrid ideal if v < b in .# implies forv,b € 7.
w(v) < w(b)

Definition 3.3. Let ke in .Z be a hybrid ideal. Then ke is defined as a hybrid prime ideal
v1 -9 k U k(i
if Yoy, iy € F) ( Ko ) € kon) URG) )

@(v1-i1) 2 @w(v) Aw(in)

Definition 3.4. Let %w be a hybrid filter in .%#. Then %w is defined as a hybrid prime filter
k(yo + bo) € k(yo) U k(bo)

@ (yo + bo) > w(yo) A @ (bo)

if (Vyo,bo S y)

Definition 3.5. Let .Z and .Z ' be two lattices. Let Q : .Z — .Z', and let ke and 7x be hybrid
structures in .# and .# , respectively.

(i) The image of ke under , denoted by Q(kx) := (Q(k), Q(w)), is a hybrid structure of
F' defined as follows: For each b € .

U a), if @70) 70, A wla), if Q70) A0,
Q(k)(b) = { a1 (b) . Qw)(b) = { 4 Q1)

0, otherwise, 1, otherwise.

(ii) The preimage of jy under €, represented by Q~1(7)) := (Q71(5), 27 1()\)), is a hybrid
Q1) (q) =5(Q
structure of .% described as U)a) = 3(a) for all ¢ € #.

Q7 (N)(@) = MQ(q))
Theorem 3.6. Let k., € H(.F). Then the conditions mentioned below are equivalent:
k(hy +b1) = k(hy) N k(by)
w(h1 +b1) =w(h1) Vw(b)
(ii) ke is a hybrid ideal.

(i) (Vhi,br € F)

Proof. (i) = (ii) Assume k(h1 + b1) = k(hy) Nk(b1) and w(hy + by) = w(hy) V w(by) for all
hi,by € Z. If hy < by, then k(b1) = k(h1) N k(b)) and @(by) = w(hi) V w(b1) which imply
k(b)) C k(h1) and @(by) > @(h1). As hy-by < hy and hy-by < by, we get k(hy-b1) D k(h1)Nk(b)
and w(hy - b1) < w(hy) V w(bl). Therefore ke is a hybrid ideal.

(i1) = (i) For hy,by € .Z. Clearly, k(h1+b1) 2 k(h1)Nk(b1) and @ (hy+b1) < w(h1) Vo (b).
For hy < hy + by and by < hy + by, we have k(h1) 2 k(hy + by); w(h1) < w(hy + b1) and
k(by) 2 k(hi + b1); @w(b1) < @(hi + b1). Thus k(hy + b)) C k(h1) Nk(by) and w(hy + by) >
w(h1) V @(by), hence k(hy + by) = k(hy) Nk(by) and @(hy + b1) = w(hy) V @(b1). g
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Theorem 3.7. Let ke, € H(F). Then the following criteria are equivalent:
y k(g0 - bo) = K(g0) N k(bo)
(i) (Yqo,b0 € F) ;
@(qo - bo) = @(q0) V @ (bo)
(i7) ke is a hybrid filter.

Proof. This theorem’s proof is similar to that of Theorem B.6.
O

a7

Theorem 3.8. Let Q : . F — .Z  be a homomorphism from a lattice F 7'

onto a lattice .F
Then the below criteria are hold:

(i) If ke is a hybrid sublattice (filter, ideal) of F, then Q(ks) is a hybrid sublattice (filter,
ideal) of F

(i) If jx is a hybrid sublattice (filter, ideal, prime filter, prime ideal) of F , then Q_l(})\)
is a hybrid sublattice (filter, ideal, prime filter, prime ideal) of F

Proof. (i) Let ks be a hybrid sublattice of .# and let ¢, s’ € % . Then Q(k)(¢ + &) =

€
U k) = U k(v) D ( ) ( ) = Q(k)(d) N
vEQ™ veQ~1(s)

veQ~1(c'+s') veQ~1( )+ 1(s)
Qk)(s); A=) + ) = A @) = < A =)V
veQ~1(c/+5') veR~1I(¢ )+Q L(s ) veQ~L()

( A w(”)) = Q@)(d) v w)(s").
veEQL(s!)

Also, Qk)(c - §) = U k@) = U k(v) 2 ( U %(v)) N

veQ~1(c-s") veQ~1()- Q- 1(s")

( U %(v)) (k) (N2 () A)(-s) = N @(v)= A w@(v) <

veQ-1(s') veEQL(c! ") veQ~L()-Q~1(s)
A @@ |V A @) ]==)()VAz)(s).
veQL(!) ) veQI(s!)
Therefore (k) is a hybrid sublattice of .%
Assume that ke is a hybrid ideal of .#. Let ¢,s' € .Z and ¢ < s'. Then Q(k)(c') =
U k) = U ko)2 |J ko) =20 2@) () = A () =
veQ1(c) vEQ-1() <O 1(s) veQ1(s") veQH(¢)

wv) < A @) = Qw)(s'). Therefore Q(ks) is a hybrid ideal of %',
veQ ()< (s) veQ1(s)

Similarly, we can prove that, if ke is a hybrid filter of .7, then Q(k ) is a hybrid filter of .% .
b) =
+b) =

(i7) Assume that jy is a hybrid sublattice of .%Z" and let z,b € .%Z. Then Q(j)(x +
J(Qa + b)) = j(Q(z) + Qb)) 2 j(Q(x)) NF(QD)) = 27 () (2) N QT (G)(b); QN (z +
MQ(z + b)) = MQ(z) + (b)) < A(Q(z)) V AQUD)) = 27 A (@) VT N)(0).
Also, 7! () (a-b) = j(Q(x-b)) = j(x)-Q(b)) 2 J(Q(»’C))ﬂj(ﬂ(b)) = Q71 () (@) N2~ () (0);
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Q7 N)(z - b) = A(Q(z - b)) = AMQ() - (b)) < AMQ(2)) V AQUB)) = Q7 (V) (2) vV QT A)(b).
Hence Q71(jy) is a hybrid sublattice of ..
Assume that jy is a hybrid ideal of .Z'. Let z,b € . and # < b. Then Q7 1(j)(z) =
J(Q(x)) 2 () = Q7' (G)(0); Q7 V) (@) = AMQ(x)) < A(Q(D) = Q1 (A)(b)- Hence Q7' (1)
is a hybrid ideal of .%#. In a similar way, we can prove the cases of hybrid filters, hybrid prime

filters, and hybrid prime ideals.

4. RELATION BETWEEN HYBRID IDEALS AND HYBRID CONGRUENCES

In this section, we define a hybrid congruence as well as a hybrid relation induced by hybrid

congruence. We define a hybrid congruence induced by a hybrid structure.

Definition 4.1. A hybrid equivalence relation Ay on .% is a hybrid structure of % x % that
fulfills the below conditions; V gg, vg, by € Z,

Ago,g0) = |J Alvo,bo)

(i) vo,bo€F (hybrid reflexive).
Ago,90) = N\ Avo,bo)
vo,b0€F
A(go,vo) = A(vg,
(ii) (90, vo) (v0, 90) (hybrid symmetric).

A(g0,v0) = A(vo, go)

A(go,v0) 2 A(go,bo) N A(bo,
(iii) (90, v0) 2 Algo, bo) (bo, v0) (hybrid transitive).

A(g0,v0) < A(go,bo) V A(bo, o)
A hybrid equivalence relation Ay on % is a hybrid congruence of .% if V zg, 21, fo, f1 € Z,

A(fo+ f1,20 + 21) 2 A(fo,20) N A(f1,21)

(iv

A fo + fi,20 + 21) < A(fo, 20) V A(f1,21)
) A(fof1,2021) 2 A(fo, 20) N A(f1,21)

A fofi, z021) < A(fo, 20) V A(f1,21)

Example 4.2. Let %, be the set of all non-negative integers. Then (%, V,A) is a lattice,
where a V b = max{a, b} and a A b = min{a, b}.
(i) For sg,jo € HBo; E € P(Q) \ {0} and e € [0,1). Define a hybrid relation Ay on %, as

follows:

1] if so=Jo 1, if so0=1Jo
E, if sy # jo and e, if so# jo and
A(so0, jo) = both sg, jo are even or ; A(s0,j0) = both sg, jo are even or
both sg, jo are odd both sg, jo are odd,
Q, otherwise, 0, otherwise.
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Then A) is a hybrid symmetric, but it is not a hybrid reflexive as A(1,1) # U A(vg, bo)
v0,bo EAo

and A(LLT) # A Ao, bo).
vo,bo € %o

(ii) For sg, jo € HBo; M, W € P(Q)\ {0} and m,w € [0,1) with M C W and m > w. Define

a hybrid relation Ay on % as follows:

Qv Zf S0 = jOv Oa Zf S0 = j07

M, if sgis even, _ m, if sg is even,
A(s0,0) = i A(s0,J0) =

W, if spis odd, w, if s is odd,

@, Zf S0 = 0, 1, lf So = 0.

Then Ay is a hybrid reflexive, but it is not a hybrid symmetric as A(1,2) # A(2,1) and
A(1,2) # A(2,1).
(iii) For sg,jo € %o; E € P(Q)\ {0} and e € [0,1). Define a hybrid relation Ay on % as

follows:

,

Q, if so=Jo, 0, if so=Jo,
E, if sy # jo and e, if so# jo and
A(s0, jo) = both sg, jo are even or A(s0,J0) = both sg, jo are even or
both sq, jo are odd, both sg, jo are odd,
0, otherwise, \ 1, otherwise.

Then A) is a hybrid congruence on %.
(iv) For sq, jo € Bo; M, W € P(Q)\ {0} and m,w € [0,1) with M C W and m > w. Define

a hybrid relation Ay on %, as follows:

.
Q, if so=Jo, 0, if so= Jjo,
) M, if both sg,jo are even, . m, if both sg,jo are even,
A(s0,J0) = i A(s0,J0) =
W, if both sg,jo are odd, w, if both sg,jo are odd,
0, otherwise, 1, otherwise.

Then A} is a hybrid equivalence relation, but it is not a hybrid congruence of %, as A(4,12) 2
A(3,5)NA(1,7) and A(4,12) £ A(3,5) V A(1,7).
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Definition 4.3. Let ke of .Z be a hybrid ideal. A hybrid relation Ay = C(kw) on % is

described as below:

is known as the hybrid relation induced by %w.

Theorem 4.4. If?::w of a distributive lattice F is a hybrid ideal, then C(%w) of F is a hybrid

congruence.

Proof. Consider Ay = C (k).
(i) Let ¢,m,a € #. Then

Mgg)= | ko) = k@®) and XNg,q)= A @(t)= A\ =®).

ié}:t+q; teF i"e"gz:”q; teF
Now, A(m,a) = U k(v) C U k(v) = A(q,q) implies that A(g, q) = U A(m,a)
U—&—;z:v—i-a; vEF m,aEF
ve
and A\(m,a)= A @) > A w(v) = Ag,q) implies that A(q,q) = A A(m,a). So Ay
v+m=v+a; vEF m,a€F
vEF
is a hybrid reflexive.
(i) Let ¢,m € Z. Then A(gm) = |J k)= |J k1) = Am,q); Ag,m) =
t+qg=t+m; t+m=t+gq;
teF teF
N wt)= A w(t)=A(m,q). So A, is a hybrid symmetric.
t+q=t+m; t+m=t+q;
teF teF

(iii) Let ¢,q,a,m,v,g € F. lf t+qg=1t+a, v+ a = v+ m, setting g =t + v, we get
g+q=g—+m,so

AMg,a)NAam)= | k®)n |J k)= |J kt+vc |J k) =Agm)

t+q=t+a vt+a=v+m t+qg=t+a; g+q=g+m
vt+a=v+m
Mg, a)VAa,m)= A @)V A @)= A w=lt+o)z A =) =Agm
t+q=t+a v+a=v+m tiq:ttf; g+q=g+m
v+a=v+m

So Ay is a hybrid transitive.
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(iv) For any q1, g2, m1, mg € %, we have

A(qr,m1) N A(g2, me) = U k(v) N U k(g)

v+q1=v+my; g+q2=g+m2;
vEF gEF

= U k(v +9)
v+q1=v+mzi;
g+g2=g+mz2;
v,gEF

c U k(t) = A(q1 + g2, ma + ma),
t+(g1+g2)=t+(m1+m2);
teF

Aqr,m1) V Mgz, m2) = AN @)V A @(9)

v+q1=v+my; g+q2=g+m2;
vEF geESF

= AN wl+tyg)
v+q1=v+mi;
g+q2=g+ma2;
v,gEF

2 A w(t) = Maq1 + g2, m1 4+ m2).
t+(q1+g2)=t+(m1+m2);
teF

(v) Let v, g, q1,q2,m1,mg € F. fv+q1 = v+my and g+qa = g+ma, then (v+q1)(g+¢2) =
(v+ mq)(g + mg) which implies (vg + q19 + ¢2v) + q1g2 = (vg + Mm1g + Mmav) + mimy.

Since (v+¢q1)g = (v+mq)g and (g+g2)v = (g+ma)v, we have vg+q1g+g2v = vg+m1g+mav.
As kg is a hybrid ideal of .Z, we get E(vg + 19+ qv) = E(vg) N %(qlg) N %(qgv) B) %(U) N
%(g) and w(vg + q19 + q2v) = w(vg) V w(q1g9) V w(qv) < w(v) V w(g).Now,

A(g1,m1) N A(gz, m2) = U k(v) N U k(g)

v+q1=v+m1; g+q2=g+ma;
vEF geEF
= U Hkonky)
v+q1=v+mi;
gt+qe2=g-+ma;
v,g€EF
c U kwg+ag+ae
v+q1=v+mi;
g+g2=g+ma;
v,gE€EF
- U k(vg + q1g + qov)
(vg+q19+q2v)+q1g2=(vg+m1g+mav)+mima;
v,g€EF
- U k(t) = Aq192, mima),

t+q1g2=t+mimy;
tes
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Mg, m1) V Mgz, ma2) = A w(v)V A w(g)

v+q1=v+mz; gt+ga=g+ma;
vEF geF

= N wl) Vo)
v+q1=v+mi;
g+q2=g+ma;
v,g€F

> A w(vg+qg+q)
v+q1=v+mi;
g+q2=g+ma;
v,gEF

2 A w(vg + q19 + q2v)
(vg+q19+q2v)+q192=(vg+m1 g+mav)+mima;
v,geEF

> A @(t) = Aq1g2, mima).
t+q1q2=t+mimsa;
teF

So Ay = C(ks) of .7 is a hybrid congruence.

Definition 4.5. For a hybrid equivalence relation Ay on .%, the hybrid structure ke = T (Ay)
of % is defined as below:

E(Zl) = m A(zldl,zl)
(V21 € F) hex :

w(z1) = \/ A(z1d, 21)

d1 cF

is known as the hybrid structure induced by A.

Theorem 4.6. If Ay of a distributive lattice .F is a hybrid congruence, then Z(Ay) of F is a
hybrid ideal.

Proof. Put ke = Z(Ay), and let z,m € #. Then

(i) k(m+z) = (] A(m+2)d,m+z) = (] Amd+zd,m+z) 2 () (A(md, m)NA(zd, ) =
de.F de.F de.F

{ m A(md,m)} N { ﬂ A(zd,z)} = k(m) Nk(2); @w(m + 2) = \/ A((m + z)d,m + z)

deF deF deF
\/ A(md + zd,m + z) < \/ (A(md, m) V \(zd, z)) = { \/ )\(md,m)} \Y% { \/ A(zd, z)} =
deF deF deF deF

w(m) V w(z).
(i) If m < z, then k(m) = ﬂ A(md,m) = ﬂ A(mzd,mz) 2 m (Alm,m)NA(zd, 2)) =

B de.F deF deF
ﬂ A(zd, z) = k(z); w(m) = \/ A(md,m) = \/ A(mzd,mz) < \/ (A(m,m) V \(zd, 2)) =
deF deF deF deF

\/ Azd, z) = w(2).

deF
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(iii) By (ii), we have h(mz) 2 k(m) and K(mz) 2 k(= . So
w(mz) < w(m) w(mz) < w(z)

/\
\_/

% k(m) Nk ~
(mz) 2 k(m) N k(z) . Therefore k = Z(A)) of . is a hybrid ideal.
w(mz) < w(m)Vw(z)

Theorem 4.7. If%w of a distributive lattice F with smallest element 0 is a hybrid ideal, then
ke = Z(C(kw)).

Proof. Take Ay = C(%w) and a, = Z(Ay). Then Vv € .Z, we get a(v) = ﬂ A(vp,v) and

pEF
= \/ A(vp,v). Since v+ vp = v + v, we get A(vp,v) = U k(z) D k(v); Mop, v) =
pPEF z+vp=z+v;
_ z€F
w(z) < w(v). So, a(v m k(v) = k(v) and p(v) < \/ w(v) = w(v). Thus
izg’:””; peF peF
ko < ay.
Also, a(v) = () Alwp,v) CA@O,v) = | k()= |J k()= | k(z) Ck(v);
pEF z4+v0=z+v; z=z4v; Z>0;
2€F z2EF 2€F
=\ Aep,v) ZAw0,0) = A @)= A @(z)= A @(2) > o).
pEF z+v0=z+v; Z2=2z+; 2>,
z€F 2€F 2E€EF

Thus a, < ks and hence ke = ap = I(C(%w)). 0

Theorem 4.8. Let Ew be a hybrid ideal of a generalized Boolean algebra F and Ay = C(Ew).
Then %w(po @ by) = Ax(po,bo) for all py,by € F.

Proof. By Lemma @, Po + (Po @ bo) = po ® (o ® bo) ® po(po ® bo) = bo ® po ® pobo = po + bo.
By symmetry, by + (po ® bg) = po + bo and so pg + (po & bo) = bo + (po ® bp). Therefore

Apobo) = |J  k(20) 2 k(po@bo) and A(po,bo) = A @(20) < @(po & bo).

20+po=z20+bo; zOJer%):ZO +bo;
20EF 0%

Thus A(po, bo) 2 k(po & bo) and A(po, bo) < @ (po & bo).

Conversely, if zg € .7 satisfies zo+po = 20+ bo, then pg—bo = (po —bo)z0+ (po —bo) = (po—
bo)zo+(po—bo)po = (Po—bo)(20+po) = (po—bo)(20+bo) = (po—"bo)20+(po—bo)bo = (po—bo)z0
shows that pg — by < 29 and by symmetry by — py < zp.

Thus po@®bo = (po—bo) + (bo —po) < zp and thus k(zo) k:(pg@bo) and w@(29) > @ (po®bo).

So, Alpo,bo) = |J  kGo)S  |J  Fpo®bo) = k(po® bo);
20+po=20-+bo; 20+po=z20+bo;
20€EF 20E€EF
A(po, bo) = A w(20) > A @(po®bo) =w@(po D bo)-
20+po=20-+bo; 20+po=20-+bo;

20€EF 20€F
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Thus A(po, bo) € k(po @ bo) and A(po, bo) > w(po @ bo) and hence k(po @ bo) = A(po, bo);
@(po ® bo) = A(po; bo)- 0

Theorem 4.9. If ©y of F with smallest element 0 is a hybrid congruence, then Z(Oy)(d1) =
©y(d1,0) holds for all dy € F.

Proof. Let ks = I(8y). Then k(d) = () ©(dij1,d1) € O(d10,d1) = ©(0,dy) =

@(dl,O); w(dl) = \/ ﬂ(dljl,dl) Z z9(d10,d1) = 19(0,d1) = ’l9(d1,0).
J1EF
Since O(d1j1,d1) = O(dij1 + 0,dij1 + di) 2 O(dij1,dij1) N O(0,d1) = O(dy,0) and

Hdiji,d1) = Hdijn + 0,diji + di) < V(diji,diji) V 9(0,d1) = 9(d1,0), we get,

m @(dljl,dl ﬂ @ dl, = (d1,0 and \/ ﬂ(dljl,dl \/ 19 dl, dl,O)

J1EF J1EF J1EF JIEF

Thus k(dy) 2 O(dy,0) and w(di) < 9(dy,0) and hence k(dy) = O(dy,0) and w(dy) =
ﬂ(dbo) O

Lemma 4.10. Let ko and U, be two hybrid ideals of %, and Ay and As be two hybrid
congruences of % . Then the following conditions are hold:

(i) If key < Ty, then C(ks) < C(T,).

(ii) If Ay < Ag, then T(Ay) < Z(Ay).

Proof. The proofs are trivial.

Theorem 4.11. If Ay is a hybrid congruence on a generalized Boolean algebra %, then

C(Z(Ax)) = Ax.

Proof. Let ks = Z(A,). By Theorem @, we have k(pg) = A(po,0) and @(py) = A(po,0).
Suppose pg + vg = po + wo. Then

A(po + vo,v0) = A(po + v0, 04 vo) 2 A(po, 0) N A(vo, vo) = A(po, 0);
A(po + vo,v0) = A(po + v0,0 + v9) < A(po,0) V A(vg,v0) = A(po, 0).
By symmetry, A(po + wo,wo) 2 A(po, 0) and A(po + wo, wo) < A(po, 0). Now,
A(vo, wo) 2 Avo, po + vo) N A(po + vo, wo)
= A(vo, po + vo) N A(po + wo, wo) 2 A(po,0) = k(po);
A(vo, wo) < A(vo,po + vo) V A(po + vo, wo)

= Ao, po + o) V A(po + wo, wo) < A(po,0) = @w(po).
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We have,
Ck)wo,wo) = |J ko) S |J  Alvo,wo) = Avo,wp);
Po+vo=po+wo; P0+Uo—po+w0,
PoEF poEF
C(@)(vo, wo) = A @(po) > A Alvo,wo) = Ao, wo).
Po+vo=po+wo; Po+v0=pPo+wo;
PoEF poEF

Thus C(E ) < Ay

Conversely, by Theorem @ and Theorem @ C )(fo,co0) = k:( fo@co) = A(fo ® c0,0) =

A((fo—co) +(co— fo),0) 2 A(fo —co,0) N A(co — fo,0) = A(fo(fo—co), co(fo—co)) N A(co(co —
fo), folco = fo)) 2 A(fo, co); C(@)(fo.co) = @w(fo© co) = A(fo & co,0) = AM((fo — co) + (co —
f0),0) < A(fo —co,0) V Alco — fo,0) = A(fo(fo — o), co(fo — co)) V Aco(co — fo)s folco — fo)) <
A(fo, co)-

Thus Ay < C(kg). Therefore Ay = C(kw) = C(Z(A))). O

5. PRODUCTS OF HYBRID IDEALS

This section illustrates the idea of product of hybrid ideals and also define the projections

of hybrid structure. Throughout this section, .#; and %5 represent lattices.

Definition 5.1. Let ke, € H(.%1) and 5, € H(F2). Then the product %w®§¢ = (kx 3, wxp)
of ke and S, is the element of H(.#; x %#3) is defined by setting
(k x 5)(b,u) = k(b) N 5(w)
(% ¢)(b,u) = @(b) V ()

Definition 5.2. For a hybrid sublattice %w of F1 x Fo,

(V(b,u) € Ty x Fo)

pri®) () = J kGio) pra(k)(e) = | k(o)
(Vj € ) c€F2 , and (Ve € ) ie? ,
prri(@)(j) = /\/ﬂ(j, c) pra(w)(c) = N\ w(j,¢)
cEFo JjEF1

are called the hybrid projections of ke on F and o, respectively.

Proposition 5.3. If (ks ); are hybrid sublattices (ideals) of F; (i = 1,2), then (ke)1 ® (ke)2
is a hybrid sublattice (ideal) of F1 x F. If%w is a hybrid sublattice of F#1 x F4, then pri(Ew)
(1 =1,2) are hybrid sublattices of F; (i = 1,2), respectively.

Proof. The first assertion is simple to prove. Next, let ke bea hybrid sublattice of .%7 X .%5. For
allctegzl,wegetprl )(c+1t) U kc+ta U kc+t a + az) U {kcal

a€Fo qiel 752, QLEI /;2,
k(t,a2)} U (e, ay) U k(t,as) = pri(k)(c) Npri(k)(t); pri(@)(c+1t) = A @(c+

G,
a1 €T a2€.F a2
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t,a)= N w(c+t,ar+ag) N\ {w(c,a1)Vw(t,a)} = N wl(c,a1) Vv N w(t,a2) =
az€1=/22, {h‘%é‘b; a1€EF2 a2€F2
i= i=1,

pri(@)(c) V pri(@)(t).
Also, pri(k)(ct) = U k(ct,a) = | klctaras) 2 | {k(car) N k(t,a2)} =

IN

€S2 (1746(;072; a; =/27
i=1,2 i=1,2

U k(c,a1) U E(t,as) = pri(k)(e) N pri(k)(®t); pri(@)(ct) = A w(ct,a) =
a1€% a2€F a€Fs

N w(ct,ara2) < A {w(c,a1) Vw(t,a2)} = A w(c,a1)V w(t,as) = pri(w)(c) V
04'6?2; a¢€<?2; alefg a2€<92
i=1,2 i=1,2
pri(@)(t).

Thus prq (%w) is a hybrid sublattice of .%#. Similarly, pro (Ew) is a hybrid sublattice of %#5.
It is similar to prove that if k is a hybrid ideal (filter) of %1 x %y, then pri(ke) (i = 1,2)
are hybrid ideals (filters) of .%; (i = 1,2), respectively.

Definition 5.4. Let % € H(F1 x ) and d € F1, j € F2. The marginal hybrid structures
of ke (with respect to j and d) are (kw) G) ¢ H(F1) and (k )( ) € H(F2) defined as below:

k(] v 1 =k d,w
(ve F,we F) (v) = h(v.J) and ?d)(w) (d,w) .
V() = w(v, ) @, (w) = w(d, w)
Lemma 5.5. If ke is a hybrid sublattice (ideal, filter) of F1 x Fa, then for all j € Fo and

d € F1, the hybrid structures (Ew)gj) and (Ew)éd) are hybrid sublattices (ideals, filters) of %1
and F,.

Proof. The proof is obvious.

Theorem 5.6. If ke is a hybrid ideal of F#1 x Fa, then for all j € Fo and d € T,
B s B (0, w) € (v, w) € pro(k) x pra(k) (v,
(V(v,w) € F1 x Fo) ( ) d)>(v w) & kv, w) € prak) x pra(k) v, w) .
(ng X wé )(v,w) > w(v,w) > pri(w) X pra(w)(v,w)
a . 7.0)  7.(d) _ 7.9 7.(d) — 2 AL _

Proof. Let v € Z1 and w € Fo. Then (ky'/ xky ' )(v,w) = ky”’ (v)Nky ' (w) = k(v, j)Nk(d, w) =
E(v+d,j+w) = k(v,w) Nk(d,j) C k(v,w). Thus (5 x kg N (v, w w

Also (@) x @{")(v,w) = = () v @y (w) = @(v,§) V @(dw) = @(v+dj+w) =

@(v,w) V w(d, ) > w(v,w). Thus (@) x @) (v, w) > @ (v, w).

Next, k(v,w) U k(v,a) = pri(k)(v) and @(v,w) > é\yw(v,a) = pri(w)(v). By

symanetry, %(v,w)Ng prg(%)gw) and @ (v, w) > pro(@)(w), and thus k(v,w) C pri(k)(v) N
pra(k)(w) = pri(k) x pra(k)(v,w) and w@(v,w) > pri(@)(v) V pra(@)(w) = pri(@) x
pro(w) (v, w).
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Hence (Egj) X %gd))(v,w) C k(v,w) C pri(k) x pro(k)(v,w) and (ng) X wéd))(v,w) >

w(v,w) > pri(w) X pre(w)(v,w). g

Theorem 5.7. Let % and S5 be two lattices with smallest element 0 and Ew a hybrid ideal
of F1 x Fo. Then the criteria listed below are equivalent:

(i) ke is the product of a hybrid ideal of F1 and of a hybrid ideal of Fs,

iy E(O) X E(O) =pri (E) x PTz(%)
@\ o, _o
wy X wy = pri(w) X pra(w)

Proof. (i) = (i) The proof follows from Theorem @

(ii) = (i) Let ke = (kw)} ® (kw)h, where (k) is a hybrid ideal of .%; (i = 1,2). Clearly
ki(r) € K4(0) and @{(r) > @j(0) (i = 1,2). Then | J Kj(r) = &}(0) and A w@j(r) = w=}(0)

re.Z; reZ;
(i = 1,2) and so k") (r) = k(r,0) = K;(r) N k4(0) = ki(r) N | Kb (t) U B (r) nTh(t) =
U k(r,t) = pri(k)(r), @{" (r) = @(r,0) = @} (r) Vwh(0) ZWS(T)VtG/} @ (t) ZtG/} @ (r)V
S0 = A 1) = ().
teFo

Thus '];50) = pri(k) and wgo) = pri(w). Similarly, %;0) = pro(k) and wéo) = pra(w). Hence
ao) X %0) = pri(k) x pra(k) and w§ ) x wg ) = pry (w) x pra(w). 0

6. CONCLUSION

In a distributive lattice .#, we examined the relations between hybrid congruences and
hybrid ideals. The product of hybrid ideals was also introduced. In addition, we obtained
the necessary and sufficient condition for a hybrid ideal on the direct sum of lattices to be
representable as a direct sum of hybrid ideals on each lattice. In the future, we propose to
investigate the numerous kinds of concepts in hybrid structures over hybrid prime ideals in a

distributive lattice.
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