Algebraic Structures and Their Applications

Algebraic Structures and Their Applications Vol． 11 No． 1 （2024）pp 25－36．

Research Paper

ON THE GENUS OF ANNIHILATOR INTERSECTION GRAPH OF COMMUTATIVE RINGS

MOHD NAZIM ${ }^{*}$ ，NADEEM UR REHMAN AND K．SELVAKUMAR

Abstract

Let R be a commutative ring with unity and $A(R)$ be the set of annihilating－ ideals of R ．The annihilator intersection graph of R ，represented by $\operatorname{AIG}(R)$ ，is an undirected graph with $A(R)^{*}$ as the vertex set and $\mathfrak{M} \sim \mathfrak{N}$ is an edge of $\operatorname{AIG}(R)$ if and only if $\operatorname{Ann}(\mathfrak{M N}) \neq \operatorname{Ann}(\mathfrak{M}) \cap \operatorname{Ann}(\mathfrak{N})$ ，for distinct vertices \mathfrak{M} and \mathfrak{N} of $\operatorname{AIG}(R)$ ．In this paper， we first defined finite commutative rings whose annihilator intersection graph is isomorphic to various well－known graphs，and then all finite commutative rings with a planar or toroidal annihilator intersection graph were characterized．

1．Introduction

Throughout this paper all rings are commutative with unit element such that $1 \neq 0$ ．For a commutative ring R ，we use $\mathbb{I}(R)$ to denote the set of ideals of R and $\mathbb{I}(R)^{*}=\mathbb{I}(R) \backslash\{0\}$ ． An ideal \mathfrak{M} of R is said to be annihilator ideal if there is a nonzero ideal \mathfrak{N} of R such that DOI：10．22034／as．2023．18830．1573

MSC（2010）：13A15，05C10，05C25．
Keywords：Annihilating－ideal graph，Annihilator intersection graph，Genus of a graph，Planar graph，Zero－divisor graph．
Received： 09 August 2022，Accepted： 03 May 2023.
＊Corresponding author
$\mathfrak{M N}=(0)$. For $\mathfrak{M} \in \mathbb{I}(R)$, we define annihilator of \mathfrak{M} as $\operatorname{Ann}(\mathfrak{M})=\{\mathfrak{N} \in \mathbb{I}(R): \mathfrak{M N}=(0)\}$. We use $A(R)$ to denote the set of annihilator ideals of R and $A(R)^{*}=A(R) \backslash\{0\}$. We denote the set of zero-divisors, nilpotent elements, minimal prime ideals and unit elements of R by $Z(R), \operatorname{Nil}(R), \operatorname{Min}(R)$ and $U(R)$, respectively. For any undefined notation or terminology in ring theory, we refer the reader to [3].

A connected graph G is said to be a tree if it does not contain any cycle. A graph G is said to be unicycle if it contains unique cycle. A graph G is a split graph if the vertex set can be partitioned into a clique and an independent set. A graph G is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends. A subdivision of a graph is a graph obtained from it by replacing edges with pairwise internally-disjoint paths. A remarkably simple characterization of a planar graphs was given by Kuratowski in 1930. Kuratowski's Theorem says that a graph G is planar if and only if it contains no subdivision of K_{5} or $K_{3,3}$. An undirected graph G is said to be outerplanar if it can be embedded in the plane in such a way that all the vertices lies on the unbounded face of the drawing. The genus of a graph G, denoted by $\gamma(G)$, is the minimum integer k such that the graph can be drawn without crossing itself on a sphere with k handles (i.e., an oriented surface of genus k). Thus, a planar graph has genus 0 , because it can be drawn on a sphere without self-crossing. For more details on graph theory, we refer the reader to 11, 12].

Beck [4] established the concept of the zero-divisor graph of a commutative ring in 1988, where he was primarily concerned in colorings. Beck proposed that $\chi(R)=\omega(R)$ for any commutative ring R in [4]. For some types of rings, such as reduced rings and principal ideal rings, he established the supposition. However, this is not the case in general. This was established in 1993, when Anderson and Naseer presented a convincing counter example (see Theorem 2.1 in [2]) that proved Beck's conjecture for general rings to be false. Anderson and Naseer continued their research into the colorings of a commutative ring. They take the vertex set as the ring elements and define an edge between the vertices a and b if and only if $a b=0$. In [1], Anderson and Livingston introduced the zero-divisor graph of R, denoted by $\Gamma(R)$, with vertex set $Z(R)^{*}$ and for distinct $a, b \in Z(R)^{*}$, the vertices a and b are adjacent if and only if $a b=0$.

In 2011, Behboodi and Rakeei [5, 6] described a new graph, called it annihilating-ideal graph $A G(R)$ on R, with the vertex set $A(R)^{*}$ and two distinct vertices \mathfrak{M} and \mathfrak{N} are adjacent if and only if $\mathfrak{M N}=0$ (see $[7,8,9]$ for more details).

In [10], Vafaei et al. introduced and studied the annihilator intersection graph of R denoted by $\operatorname{AIG}(R)$. It is an undirected graph with $A(R)^{*}$ as the vertex set and $\mathfrak{M} \sim \mathfrak{N}$ is an edge of $\operatorname{AIG}(R)$ if and only if $\operatorname{Ann}(\mathfrak{M N}) \neq \operatorname{Ann}(\mathfrak{M}) \cap \operatorname{Ann}(\mathfrak{N})$, for distinct vertices \mathfrak{M} and \mathfrak{N} of $\operatorname{AIG}(R)$. In this paper, we first characterized the finite commutative rings whose annihilator
intersection graph is a tree, a unicycle, a split graph or an outerplanar graph. Further, up to isomorphism, we classify the rings R whose annihilator intersection graph is planar or toroidal graph.

In the following examples, the annihilator intersection ideal graph of some commutative rings are given.

Example 1.1.

If $R=F_{1} \times F_{2}$, where F_{1} and F_{2} are fields, then $A G(R)=A I G(R)=K_{2}$.

Example 1.2.

If $R=F_{1} \times F_{2} \times F_{3}$, where F_{i} is a field for each $i=1,2,3$. Then $\operatorname{AIG}(R)$ and $A G(R)$ are given in Fig. 1.

Fig. 1.

The following observation proved by Vafaei et al. [10] is used frequently in this article.
Lemma 1.3. 10, Lemma 2.1] Let R be a commutative ring and $\mathfrak{M}, \mathfrak{N} \in A(R)^{*}$. Then the following statements hold:
(1) If $\mathfrak{M} \sim \mathfrak{N}$ is not an edge of $\operatorname{AIG}(R)$, then $\operatorname{Ann}(\mathfrak{M})=\operatorname{Ann}(\mathfrak{N})$.
(2) If $\mathfrak{M} \sim \mathfrak{N}$ is an edge of $A G(R)$, then $\mathfrak{M} \sim \mathfrak{N}$ is an edge of $\operatorname{AIG}(R)$.
(3) If $\mathfrak{M} \sim \mathfrak{N}$ is not an edge of $\operatorname{AIG}(R)$, then there exists a vertex $\mathfrak{N}_{1} \in A(R)^{*}$ such that $\mathfrak{M} \sim \mathfrak{N}_{1} \sim \mathfrak{N}$ is a path in $\operatorname{AIG}(R)$.

Lemma 1.4. 10, Lemma 2.2] Let R be a non-reduced ring. Then every nonzero nilpotent ideal of R is adjacent to all other vertices of $\operatorname{AIG}(R)$. In particular, the induced subgraph by nilpotent ideals is a complete subgraph of $\operatorname{AIG}(R)$.

Theorem 1.5. Let R be a local commutative ring. Then $\operatorname{AIG}(R)$ is a complete graph.

2. Annihilator intersection graph as some special type of graph

In this section, we characterized the finite commutative rings for which the annihilator intersection graph is isomorphic to some well-know graph such as a tree, a unicycle or a split graph.

Theorem 2.1. Let R be a finite commutative ring. Then $\operatorname{AIG}(R)$ is unicycle if and only if R is local with $\left|\mathbb{I}(R)^{*}\right|=3$.

Proof. Suppose $\operatorname{AIG}(R)$ is a unicycle graph. Since R is finite, $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$, where R_{j} is local for each $1 \leq j \leq n$.

Suppose that $n \geq 3$. Then $\mathfrak{M}_{1} \sim \mathfrak{M}_{2} \sim \mathfrak{M}_{3} \sim \mathfrak{M}_{1}$ and $\mathfrak{N}_{1} \sim \mathfrak{N}_{2} \sim \mathfrak{N}_{3} \sim \mathfrak{N}_{1}$, where $\mathfrak{M}_{1}=R_{1} \times(0) \times(0) \times \cdots \times(0), \mathfrak{M}_{2}=(0) \times R_{2} \times(0) \times \cdots \times(0), \mathfrak{M}_{3}=(0) \times(0) \times R_{3} \times$ $(0) \times \cdots \times(0), \mathfrak{N}_{1}=R_{1} \times R_{2} \times(0) \times \cdots \times(0), \mathfrak{N}_{2}=R_{1} \times(0) \times R_{3} \times(0) \times \cdots \times(0)$, $\mathfrak{N}_{3}=(0) \times R_{2} \times R_{3} \times(0) \times \cdots \times(0)$, are two distinct cycles in $\operatorname{AIG}(R)$, a contradiction to our assumption that $\operatorname{AIG}(R)$ is unicycle. Hence $n \leq 2$.
 is not a field for at least one $j=1,2$. Without compromising generality, we can suppose that R_{1} is not a field with a maximum ideal $\operatorname{Im}_{1} \neq(0)$. Consider $\mathfrak{K}_{1}=R_{1} \times(0), \mathfrak{K}_{2}=(0) \times R_{2}$, $\mathfrak{K}_{3}=\operatorname{Im}_{1} \times(0)$ and $\mathfrak{K}_{4}=\operatorname{Im}_{1} \times R_{2}$. It is easy to see that $\mathfrak{K}_{1} \sim \mathfrak{K}_{2} \sim \mathfrak{K}_{3} \sim \mathfrak{K}_{1}$ as well as $\mathfrak{K}_{1} \sim \mathfrak{K}_{3} \sim \mathfrak{K}_{4} \sim \mathfrak{K}_{1}$ are two distinct cycles in $\operatorname{AIG}(R)$, a contradiction to our assumption that $\operatorname{AIG}(R)$ is unicycle. Hence $n=1$, which implies that R is a local ring. Thus, $\operatorname{AIG}(R)$ is a complete graph by Theorem 1.5. Since $\operatorname{AIG}(R)$ is unicycle, $\left|\mathbb{I}(R)^{*}\right|=3$.

Theorem 2.2. Let R be a finite commutative ring. Then $\operatorname{AIG}(R)$ is a tree if and only if either R is local with $\left|\mathbb{I}(R)^{*}\right| \leq 2$ or $R \cong F_{1} \times F_{2}$, where F_{1} and F_{2} are fields.

Proof. Suppose $\operatorname{AIG}(R)$ is a tree. Since R is finite, $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$, where R_{j} is local for each $1 \leq j \leq n$.

Suppose $n \geq 3$. Consider the nonzero proper ideals $\mathfrak{M}_{1}=R_{1} \times(0) \times(0) \times \cdots \times(0)$, $\mathfrak{M}_{2}=(0) \times R_{2} \times(0) \times \cdots \times(0)$ and $\mathfrak{M}_{3}=(0) \times(0) \times R_{3} \times(0) \times \cdots \times(0)$ in R. Since $\operatorname{Ann}\left(\mathfrak{M}_{j} \mathfrak{M}_{\mathfrak{k}}\right) \neq \operatorname{Ann}\left(\mathfrak{M}_{j}\right) \cap \operatorname{Ann}\left(\mathfrak{M}_{k}\right)$ for each j, k. Then $\mathfrak{M}_{1} \sim \mathfrak{M}_{2} \sim \mathfrak{M}_{3} \sim \mathfrak{M}_{1}$ is a cycle in $\operatorname{AIG}(R)$, which contradict the assumption that $\operatorname{AIG}(R)$ is tree. Hence $n \leq 2$.

First, suppose that $n=2$. Assume that R_{1} is not a field with maximal ideal $\operatorname{Im}_{1} \neq(0)$. Consider the nonzero proper ideals $\mathfrak{N}_{1}=R_{1} \times(0), \mathfrak{N}_{2}=\operatorname{Im}_{1} \times(0)$ and $\mathfrak{N}_{3}=(0) \times R_{2}$ in R. One can see that $\mathfrak{N}_{1} \sim \mathfrak{N}_{2} \sim \mathfrak{N}_{3} \sim \mathfrak{N}_{1}$ is a cycle in $\operatorname{AIG}(R)$, which contradict the assumption that $\operatorname{AIG}(R)$ is tree. Hence R_{1} is a field. Similarly, one can prove that R_{2} is a field.

Now, suppose $n=1$. Then R is local and thus, $\operatorname{AIG}(R)$ is a complete graph by Theorem 1.5. Since $\operatorname{AIG}(R)$ is tree, $\left|\mathbb{I}(R)^{*}\right| \leq 2$.

Theorem 2.3. 11] Let G be a connected graph. Then G is a split graph if and only if G contains no induced subgraph isomorphic to $2 K_{2}, C_{4}$ or C_{5}.

Theorem 2.4. Let R be a finite commutative ring. Then $\operatorname{AIG}(R)$ is a split graph if and only if either R is local with $\left|\mathbb{I}(R)^{*}\right| \leq 3$ or $R \cong F_{1} \times F_{2}$, where F_{1} and F_{2} are fields.

Proof. Suppose that $\operatorname{AIG}(R)$ is a split graph. Since R is finite, $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$, where R_{j} is local for each $1 \leq j \leq n$.

Suppose $n \geq 3$. Consider the nonzero proper ideals $\mathfrak{M}_{1}=R_{1} \times(0) \times(0) \times \cdots \times(0), \mathfrak{M}_{2}=$ $(0) \times R_{2} \times(0) \times \cdots \times(0), \mathfrak{M}_{3}=(0) \times(0) \times R_{3} \times(0) \times \cdots \times(0)$ and $\mathfrak{M}_{4}=R_{1} \times R_{2} \times(0) \times \cdots \times(0)$. Since $\operatorname{Ann}\left(\mathfrak{M}_{1}\right) \neq \operatorname{Ann}\left(\mathfrak{M}_{2}\right), \operatorname{Ann}\left(\mathfrak{M}_{2}\right) \neq \operatorname{Ann}\left(\mathfrak{M}_{3}\right), \operatorname{Ann}\left(\mathfrak{M}_{3}\right) \neq \operatorname{Ann}\left(\mathfrak{M}_{4}\right)$ and $\operatorname{Ann}\left(\mathfrak{M}_{4}\right) \neq$ $\operatorname{Ann}\left(\mathfrak{M}_{1}\right)$, then $\mathfrak{M}_{1} \sim \mathfrak{M}_{2} \sim \mathfrak{M}_{3} \sim \mathfrak{M}_{4} \sim \mathfrak{M}_{1}$ is C_{4} in $\operatorname{AIG}(R)$, which contradict the assumption that $\operatorname{AIG}(R)$ is a split graph. Hence $n \leq 2$.

First, suppose $n=2$. Assume that R_{2} is not a field with maximal ideal $\operatorname{Im}_{2} \neq(0)$. Then $\mathfrak{N}_{1} \sim \mathfrak{N}_{2} \sim \mathfrak{N}_{3} \sim \mathfrak{N}_{4} \sim \mathfrak{N}_{1}$, where $\mathfrak{N}_{1}=(0) \times R_{2}, \mathfrak{N}_{2}=(0) \times \operatorname{Im}_{2}, \mathfrak{N}_{3}=R_{1} \times(0)$, $\mathfrak{N}_{4}=R_{1} \times \operatorname{Im}_{2}$, is C_{4} in $\operatorname{AIG}(R)$, which contradict the assumption that $\operatorname{AIG}(R)$ is a split graph. Hence R_{2} is a field. Similarly, one can prove that R_{1} is a field.

Now, suppose $n=1$. Then R is a local ring and thus $\operatorname{AIG}(R)$ is complete by Theorem 1.5. Since $\operatorname{AIG}(R)$ is split graph, $\left|\mathbb{I}(R)^{*}\right| \leq 3$.

3. Planarity of annihilator intersection graph

In this section, we classify all the finite commutative rings for which the annihilator intersection graph is a planar graph or an outerplanar graph.

Theorem 3.1. [12] (Kuratowski's Theorem) A graph G is planar if and only if it does not contain subdivision of K_{5} or $K_{3,3}$.

Theorem 3.2. Let R be a finite local commutative ring. Then $\operatorname{AIG}(R)$ is a planar graph if and only if $\left|\mathbb{I}(R)^{*}\right| \leq 4$.

Proof. Since R is local, $\operatorname{AIG}(R)$ is complete by Theorem 1.5. Hence the result follows from Theorem 3.1.

We can now classify finite reduced non-local rings whose annihilator intersection graph is a planar graph.

Theorem 3.3. Let R be a finite reduced ring. Then $\operatorname{AIG}(R)$ is a planar graph if and only if R is the direct product of two fields.

Proof. Suppose $\operatorname{AIG}(R)$ is a planar graph. Since R is finite reduced ring, $R=F_{1} \times \cdots \times F_{n}$, where F_{j} is a field for each j and $n \geq 2$.

Assume that $n \geq 3$. Consider the nonzero proper ideals $\mathfrak{M}_{1}=F_{1} \times(0) \times(0) \times \cdots \times(0), \mathfrak{M}_{2}=$ $(0) \times F_{2} \times(0) \times \cdots \times(0), \mathfrak{M}_{3}=(0) \times(0) \times F_{3} \times(0) \times \cdots \times(0), \mathfrak{N}_{1}=F_{1} \times F_{2} \times(0) \times$ $\cdots \times(0), \mathfrak{N}_{2}=(0) \times F_{2} \times F_{3} \times \cdots \times(0)$ and $\mathfrak{N}_{3}=F_{1} \times(0) \times F_{3} \times \cdots \times(0)$ in R. Since $\operatorname{Ann}\left(\mathfrak{M}_{j} \mathfrak{N}_{k}\right) \neq \operatorname{Ann}\left(\mathfrak{M}_{j}\right) \cap \operatorname{Ann}\left(\mathfrak{N}_{k}\right)$ for each j, k, then $\operatorname{AIG}(R)$ contains a copy of $K_{3,3}$, which contradict our assumption. $R \cong F_{1} \times F_{2}$, where F_{1} and F_{2} are fields.

Conversely, if $R \cong F_{1} \times F_{2}$, where F_{1} and F_{2} are fields, then $\operatorname{AIG}(R) \cong K_{2}$ is planar.

Theorem 3.4. Let $R=R_{1} \times R_{2}$ be a finite commutative ring, where $\left(R_{j}, \operatorname{Im}_{j}\right)$ is local ring with $\operatorname{Im}_{j} \neq(0)$ for each $j=1,2$. Then $\operatorname{AIG}(R)$ is not a planar graph.

Proof. Consider the nonzero proper ideals $\mathfrak{M}_{1}=\operatorname{Im}_{1} \times(0), \mathfrak{M}_{2}=(0) \times \operatorname{Im}_{2}, \mathfrak{M}_{3}=$ $\operatorname{Im}_{1} \times \operatorname{Im}_{2}, \mathfrak{N}_{1}=R_{1} \times(0), \mathfrak{N}_{2}=(0) \times R_{2}$ and $\mathfrak{N}_{3}=R_{1} \times \operatorname{Im}_{2}$ in R. Since $\operatorname{Ann}\left(\mathfrak{M}_{j} \mathfrak{N}_{k}\right) \neq$ $\operatorname{Ann}\left(\mathfrak{M}_{j}\right) \cap \operatorname{Ann}\left(\mathfrak{N}_{k}\right)$, then $\operatorname{AIG}(R)$ contains a copy of $K_{3,3}$. Hence by Theorem 3.1, $\operatorname{AIG}(R)$ is not planar.

Finally, we classify finite non-reduced non-local rings with a planar annihilator intersection graph.

Theorem 3.5. Let $R \cong F_{1} \times F_{2} \times \cdots \times F_{n} \times R_{1} \times R_{2} \times \cdots \times R_{m}$ be a finite commutative ring, where F_{j} is a field for each $j,\left(R_{k}, \operatorname{Im}_{k}\right)$ is a local ring with $\operatorname{Im}_{k} \neq(0)$ for each k and $n, m \geq 1$. Then $\operatorname{AIG}(R)$ is a planar graph if and only if $n=m=1$ and R_{1} has unique nonzero proper ideal.

Proof. Suppose $R \cong F_{1} \times R_{1}$, where F_{1} is a field and R_{1} is a local ring with unique nonzero proper ideal Im_{1}. Then the vertex set of $\operatorname{AIG}(R)$ is given by the set $\left\{F_{1} \times(0), F_{1} \times \operatorname{Im}_{1},(0) \times\right.$ $\left.R_{1},(0) \times \operatorname{Im}_{1}\right\}$ and graph $\operatorname{AIG}(R)$ is illustrated in Fig. 2.

Fig. 2. planar embadding of $\operatorname{AIG}\left(F_{1} \times R_{1}\right)$, where R_{1} has unique nonzero proper ideal.

Conversely, suppose that $\operatorname{AIG}(R)$ is a planar graph. If $m \geq 2$, then by Theorem 3.4, $\operatorname{AIG}(R)$ is non-planar, a contradiction. Hence $m=1$.

Suppose $n \geq 2$. Consider $\mathfrak{M}_{1}=F_{1} \times(0) \times(0) \times \cdots \times(0), \mathfrak{M}_{2}=(0) \times F_{2} \times(0) \times \cdots \times(0), \mathfrak{M}_{3}=$ $(0) \times(0) \times \cdots \times(0) \times R_{1}, \mathfrak{N}_{1}=F_{1} \times(0) \times \cdots \times(0) \times R_{1}, \mathfrak{N}_{2}=(0) \times F_{2} \times \cdots \times(0) \times R_{1}$ and $\mathfrak{N}_{3}=F_{1} \times F_{2} \times(0) \times \cdots \times(0)$. Since $\operatorname{Ann}\left(\mathfrak{M}_{j} \mathfrak{N}_{k}\right) \neq \operatorname{Ann}\left(\mathfrak{M}_{j}\right) \cap \operatorname{Ann}\left(\mathfrak{N}_{k}\right)$ for each j, k. Then the set $\left\{\mathfrak{M}_{1}, \mathfrak{M}_{2}, \mathfrak{M}_{3}, \mathfrak{N}_{1}, \mathfrak{N}_{2}, \mathfrak{N}_{3}\right\}$ induces a subdivision of $K_{3,3}$ in $\operatorname{AIG}(R)$, which contradict our assumption. Hence $n=1$ and so $R \cong F_{1} \times R_{1}$.

Suppose that \mathfrak{m} is a nonzero proper ideal of R_{1} with $\mathfrak{m} \neq \operatorname{Im}_{1}$. One can see that the induced subgraph by the set $\left\{\mathfrak{M}_{1}, \mathfrak{M}_{2}, \mathfrak{M}_{3}, \mathfrak{M}_{3}, \mathfrak{M}_{5}\right\}$, where $\mathfrak{M}_{1}=F_{1} \times(0), \mathfrak{M}_{2}=(0) \times R_{1}, \mathfrak{M}_{3}=$ $(0) \times \operatorname{Im}_{1}, \mathfrak{M}_{4}=(0) \times \mathfrak{m}, \mathfrak{M}_{5}=F_{1} \times \operatorname{Im}_{1}$, contains K_{5} as a subgraph of $\operatorname{AIG}(R)$, which contradict our assumption. Hence R_{1} has exactly one nonzero proper ideal.

Theorem 3.6. [12] A graph G is outerplanar if and only if it does not contains a subdivision of K_{4} or $K_{2,3}$.

Theorem 3.7. Let R be a finite commutative ring. Then $\operatorname{AIG}(R)$ is an outerplanar graph if and only if either R is local with $\left|\mathbb{I}(R)^{*}\right| \leq 3$ or $R \cong F_{1} \times F_{2}$, where F_{1} and F_{2} are fields.

Proof. Suppose $\operatorname{AIG}(R)$ is outerplanar. Since R is finite, $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$, where ($R_{j}, \operatorname{Im}_{j}$) is local for each $1 \leq j \leq n$ and $n \geq 1$.

Suppose that $n \geq 3$. Consider the nonzero proper ideals $\mathfrak{M}_{1}=R_{1} \times(0) \times(0) \times \cdots \times(0), \mathfrak{M}_{2}=$ $(0) \times R_{2} \times(0) \times \cdots \times(0), \mathfrak{M}_{3}=(0) \times(0) \times R_{3} \times(0) \times \cdots \times(0)$ and $\mathfrak{M}_{4}=R_{1} \times R_{2} \times(0) \times \cdots \times(0)$ in R. Since $\operatorname{Ann}\left(\mathfrak{M}_{j} \mathfrak{M}_{k}\right) \neq \operatorname{Ann}\left(\mathfrak{M}_{j}\right) \cap \operatorname{Ann}\left(\mathfrak{M}_{k}\right)$ for each j, k. Then the subgraph induced by the set $\left\{\mathfrak{M}_{1}, \mathfrak{M}_{2}, \mathfrak{M}_{3}, \mathfrak{M}_{4}\right\}$ is K_{4}, which is a contradiction by Theorem 3.6. Hence $n \leq 2$.

First, suppose that $n=2$. If $\operatorname{Im}_{1} \neq(0)$, then the set $\left\{\mathfrak{M}_{1}, \mathfrak{M}_{2}, \mathfrak{M}_{3}, \mathfrak{M}_{4}\right\}$, where $\mathfrak{M}_{1}=R_{1} \times(0), \mathfrak{M}_{2}=(0) \times R_{2}, \mathfrak{M}_{3}=\operatorname{Im}_{1} \times(0), \mathfrak{M}_{4}=\operatorname{Im}_{1} \times R_{2}$, induces a subdivision of K_{4}, which is a contradiction by Theorem 3.6. Hence $\operatorname{Im}_{j}=(0)$ for all $j=1,2$ and so each R_{j} is a field.

Now, suppose that $n=1$. Then R is a local ring. Thus, $\operatorname{AIG}(R)$ is complete by Theorem 1.5. Since $\operatorname{AIG}(R)$ is outerplanar, $\left|\mathbb{I}(R)^{*}\right| \leq 3$.

4. Annihilator intersection graph with genus one

In this section, we classify all finite commutative rings for which annihilator intersection graph is a toroidal graph.

The following results deal with genus features of complete graph and complete bipartite graphs, which help us to characterize the rings with genus one annihilator intersection graph.

Theorem 4.1. 12] If $m \geq 3$, then

$$
\gamma\left(K_{m}\right)=\left\lceil\frac{(m-3)(m-4)}{12}\right\rceil .
$$

Theorem 4.2. 12 If $m, n \geq 2$, then

$$
\gamma\left(K_{m, n}\right)=\left\lceil\frac{(m-2)(n-2)}{4}\right\rceil .
$$

Let us begin by classifying the finite commutative local rings whose annihilator intersection graph is a toroidal graph.

Theorem 4.3. Let R be a finite local commutative ring. Then $\gamma(\operatorname{AIG}(R))=1$ if and only if $5 \leq\left|\mathbb{I}(R)^{*}\right| \leq 7$.

Proof. Since R is local, $\operatorname{AIG}(R)$ is complete by Theorem 1.5. Hence the result follows from Theorem 4.1.

We can now characterize the finite commutative reduced non-local ring whose annihilator intersection graph is toroidal graph.

Theorem 4.4. Let R be a finite commutative reduced non-local ring. Then $\gamma(\operatorname{AIG}(R))=1$ if and only if R is the direct product of three fields.

Proof. Suppose $\gamma(\operatorname{AIG}(R))=1$. Since R is a finite reduced ring, $R=F_{1} \times F_{2} \times \cdots \times F_{n}$, where F_{j} is a field for each j and $n \geq 2$. Assume that $n \geq 4$. Consider the nonzero proper ideals $\mathfrak{N}_{1}=F_{1} \times(0) \times(0) \times \cdots \times(0), \mathfrak{N}_{2}=(0) \times F_{2} \times(0) \times \cdots \times(0), \mathfrak{N}_{3}=$ $(0) \times(0) \times F_{3} \times(0) \times \cdots \times(0), \mathfrak{N}_{4}=(0) \times(0) \times(0) \times F_{4} \times \cdots \times(0), \mathfrak{K}_{1}=F_{1} \times F_{2} \times(0) \times \cdots \times(0), \mathfrak{K}_{2}=$ $F_{1} \times(0) \times F_{3} \times(0) \times \cdots \times(0), \mathfrak{K}_{3}=F_{1} \times(0) \times(0) \times F_{4} \times(0) \times \cdots \times(0), \mathfrak{K}_{4}=(0) \times F_{2} \times F_{3} \times(0) \cdots \times$ (0), $\mathfrak{K}_{5}=(0) \times F_{2} \times(0) \times F_{4} \times(0) \times \cdots \times(0)$ in R. Since $\operatorname{Ann}\left(\mathfrak{N}_{j} \mathfrak{K}_{l}\right) \neq \operatorname{Ann}\left(\mathfrak{N}_{j}\right) \cap \operatorname{Ann}\left(\mathfrak{K}_{l}\right)$ for each j, l, then $\operatorname{AIG}(R)$ contains $K_{4,5}$ as a induced subgraph, a contradiction. Hence $n=2$ or 3. If $n=2$, then by Theorem 3.3, $A I G(R)$ is planar and so $\gamma(A I G(R))=0$, again a contradiction. Hence $n=3$.

Conversely, suppose $n=3$. The vertex set of $\operatorname{AIG}(R)$ is given by $\left\{\mathfrak{M}_{1}=F_{1} \times(0) \times(0), \mathfrak{M}_{2}=\right.$ $\left.(0) \times F_{2} \times(0), \mathfrak{M}_{3}=(0) \times(0) \times F_{3}, \mathfrak{M}_{4}=F_{1} \times F_{2} \times(0), \mathfrak{M}_{5}=F_{1} \times(0) \times F_{3}, \mathfrak{M}_{6}=(0) \times F_{2} \times F_{3}\right\}$ and the graph $\operatorname{AIG}(R)$ is illustrated in the following Fig. 3.

Fig. 3. toroidal embadding of $A I G\left(F_{1} \times F_{2} \times F_{3}\right)$.
Now, we classify finite commutative non-reduced non-local rings for which annihilator intersection graph is a toroidal graph.

Theorem 4.5. Let $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$ be a finite commutative ring, where $\left(R_{i}, \operatorname{Im}_{i}\right)$ is local ring with $\operatorname{Im}_{i} \neq(0)$ for each $1 \leq i \leq n$ and $n \geq 2$. Then $\gamma(\operatorname{AIG}(R))=1$ if and only if $n=2$ and R_{i} has unique nonzero proper ideal for each $i=1,2$.

Proof. Suppose that $\gamma(\operatorname{AIG}(R))=1$. Suppose $n \geq 3$. Consider the nonzero proper ideals $\mathfrak{M}_{1}=\operatorname{Im}_{1} \times(0) \times(0) \times(0) \times \cdots \times(0), \mathfrak{M}_{2}=(0) \times \operatorname{Im}_{2} \times(0) \times \cdots \times(0), \mathfrak{M}_{3}=(0) \times(0) \times$ $\operatorname{Im}_{3} \times(0) \times \cdots \times(0), \mathfrak{M}_{4}=\operatorname{Im}_{1} \times \operatorname{Im}_{2} \times(0) \times \cdots \times(0), \mathfrak{N}_{1}=R_{1} \times(0) \times(0) \times \cdots \times(0), \mathfrak{N}_{2}=$ $(0) \times R_{2} \times(0) \times \cdots \times(0), \mathfrak{N}_{3}=(0) \times(0) \times R_{3} \times(0) \times \cdots \times(0), \mathfrak{N}_{4}=R_{1} \times R_{2} \times(0) \times \cdots \times(0), \mathfrak{N}_{5}=$ $R_{1} \times(0) \times R_{3} \times(0) \cdots \times(0)$ in R. Since $\operatorname{Ann}\left(\mathfrak{M}_{j} \mathfrak{N}_{k}\right) \neq \operatorname{Ann}\left(\mathfrak{M}_{j}\right) \cap \operatorname{Ann}\left(\mathfrak{N}_{k}\right)$ for each j, k, then $\operatorname{AIG}(R)$ contains $K_{4,5}$ as a induced subgraph, a contradiction. Hence $n=2$.

Let n_{j} be the nipotency index of R_{j} for $j=1,2$. Suppose that $n_{1} \geq 3$ and $n_{2} \geq 3$. Consider the nonzero proper ideals $\mathfrak{K}_{1}=\operatorname{Im}_{1} \times(0)$, $\mathfrak{K}_{2}=(0) \times \operatorname{Im}_{2}$, $\mathfrak{K}_{3}=\operatorname{Im}_{1} \times \operatorname{Im}_{2}, \mathfrak{K}_{4}=\operatorname{Im}_{1}^{n_{1}-1}$, $\mathfrak{L}_{1}=R_{1} \times(0), \mathfrak{L}_{2}=(0) \times R_{2}, \mathfrak{L}_{3}=\operatorname{Im}_{1} \times R_{2}, \mathfrak{L}_{4}=R_{1} \times \operatorname{Im}_{2}, \mathfrak{L}_{5}=\operatorname{Im}_{1}^{n_{1}-1} \times R_{2}$ in R. Since $\operatorname{Ann}\left(\mathfrak{K}_{j} \mathfrak{L}_{\mathfrak{k}}\right) \neq \operatorname{Ann}\left(\mathfrak{K}_{j}\right) \cap \operatorname{Ann}\left(\mathfrak{L}_{k}\right)$ for each j, k, then $K_{4,5}$ is a induced subgraph of $\operatorname{AIG}(R)$, a contradiction. Hence $n_{1}=2$ or $n_{2}=2$. Assume, without sacrificing generality, that $n_{2}=2$.

Suppose $n_{1} \geq 3$. Consider the nonzero proper ideals $\mathfrak{P}_{1}=\operatorname{Im}_{1} \times(0), \mathfrak{P}_{2}=(0) \times \operatorname{Im}_{1}$, $\mathfrak{P}_{3}=\operatorname{Im}_{1} \times \operatorname{Im}_{2}, \mathfrak{P}_{4}=\operatorname{Im}_{1}^{n_{1}-1} \times(0), \mathfrak{S}_{1}=R_{1} \times(0), \mathfrak{S}_{2}=(0) \times R_{2}, \mathfrak{S}_{3}=\operatorname{Im}_{1} \times R_{2}$, $\mathfrak{S}_{4}=R_{1} \times \operatorname{Im}_{2}, \mathfrak{S}_{5}=\operatorname{Im}_{1}^{n_{1}-1} \times R_{2}$ in R. Since $\operatorname{Ann}\left(\mathfrak{P}_{j} \mathfrak{S}_{k}\right) \neq \operatorname{Ann}\left(\mathfrak{P}_{j}\right) \cap \operatorname{Ann}\left(\mathfrak{S}_{k}\right)$ for each $j, k, K_{4,5}$ is a induced subgraph of $\operatorname{AIG}(R)$, a contradiction. Hence $n_{1}=2$.

Let \mathfrak{m} be a nonzero proper ideal of R_{1} such that $\mathfrak{m} \neq \operatorname{Im}_{1}$. Consider the nonzero proper ideals $\mathfrak{B}_{1}=\operatorname{Im}_{1} \times(0), \mathfrak{B}_{2}=(0) \times \operatorname{Im}_{2}, \mathfrak{B}_{3}=\mathfrak{m} \times(0), \mathfrak{B}_{4}=\operatorname{Im}_{1} \times \operatorname{Im}_{2}, \mathfrak{D}_{1}=R_{1} \times(0), \mathfrak{D}_{2}=(0) \times R_{2}$, $\mathfrak{D}_{3}=\operatorname{Im}_{1} \times R_{2}, \mathfrak{D}_{4}=R_{1} \times \operatorname{Im}_{2}, \mathfrak{D}_{5}=\mathfrak{m} \times R_{2}$ in R. Since $\operatorname{Ann}\left(\mathfrak{B}_{j} \mathfrak{D}_{k}\right) \neq \operatorname{Ann}\left(\mathfrak{B}_{j}\right) \cap \operatorname{Ann}\left(\mathfrak{B}_{k}\right)$
for each j, k, then $K_{4,5}$ is a induced subgraph of $\operatorname{AIG}(R)$, a contradiction. Hence R_{1} has unique nonzero proper ideals which is Im_{1}.
Similarly, we can show that R_{2} has unique nonzero proper ideals which is Im_{2}.
Conversely, suppose $R \cong R_{1} \times R_{2}$, where Im_{1} and Im_{2} are the only nonzero proper ideals of R_{1} and R_{2} respectively. Then the vertex set of $\operatorname{AIG}(R)$ is $\left\{R_{1} \times(0),(0) \times R_{2}, \operatorname{Im}_{1} \times(0),(0) \times\right.$ $\left.\operatorname{Im}_{2}, \operatorname{Im}_{1} \times \operatorname{Im}_{2}, R_{1} \times \operatorname{Im}_{2}, \operatorname{Im}_{1} \times R_{2}\right\}$ and the graph $\operatorname{AIG}(R)$ is illustrated in the following Fig. 4. - \square

Fig. 4. toroidal embadding of $\operatorname{AIG}\left(R_{1} \times R_{2}\right)$.

Theorem 4.6. Let $R \cong F_{1} \times F_{2} \times \cdots \times F_{n} \times R_{1} \times R_{2} \times \cdots \times R_{m}$ be a finite commutative ring, where each F_{i} is a field, $\left(R_{j}, \operatorname{Im}_{j}\right)$ is a local ring with $\operatorname{Im}_{j} \neq 0$ for each j and $n, m \geq 1$. Then $\gamma(A I G(R))=1$ if and only if $n=m=1$ and $\operatorname{Im}_{1}, \operatorname{Im}_{1}^{2}$ are only ideals of R_{1} and nilpotency index of Im_{1} is 3 .

Proof. Assume that $\gamma(A I G(R))=1$. Suppose $n \geq 2$. Consider the nonzero proper ideals $\mathfrak{M}_{1}=F_{1} \times(0) \times(0) \times \cdots \times(0), \mathfrak{M}_{2}=(0) \times F_{2} \times(0) \times \cdots \times(0), \mathfrak{M}_{3}=F_{1} \times F_{2} \times(0) \times \cdots \times(0)$, $\mathfrak{M}_{4}=(0) \times(0) \times \cdots \times(0) \times \operatorname{Im}_{1} \times(0) \times \cdots \times(0), \mathfrak{N}_{1}=(0) \times(0) \times \cdots \times(0) \times R_{1} \times(0) \times \cdots \times(0)$, $\mathfrak{N}_{2}=F_{1} \times(0) \times \cdots \times(0) \times \operatorname{Im}_{1} \times(0) \times \cdots \times(0), \mathfrak{N}_{3}=(0) \times F_{2} \times(0) \times \cdots \times(0) \times \operatorname{Im}_{1} \times(0) \times \cdots \times(0)$, $\mathfrak{N}_{4}=F_{1} \times(0) \times \cdots \times(0) \times R_{1} \times(0) \times \cdots \times(0), \mathfrak{N}_{5}=(0) \times F_{2} \times(0) \times \cdots \times(0) \times R_{1} \times(0) \times \cdots \times(0)$ in R. Since $\operatorname{Ann}\left(\mathfrak{M}_{j} \mathfrak{N}_{k}\right) \neq \operatorname{Ann}\left(\mathfrak{M}_{j}\right) \cap \operatorname{Ann}\left(\mathfrak{N}_{k}\right)$ for each j, k, then $\operatorname{AIG}(R)$ contains $K_{4,5}$ as a induced subgraph, a contradiction. Hence $n=1$.

Suppose $m \geq 3$. Consider the nonzero proper ideals $\mathfrak{K}_{1}=(0) \times \operatorname{Im}_{1} \times(0) \times \cdots \times(0)$, $\mathfrak{K}_{2}=(0) \times(0) \times \operatorname{Im}_{2} \times(0) \times \cdots \times(0), \mathfrak{K}_{3}=(0) \times \operatorname{Im}_{1} \times \operatorname{Im}_{2} \times(0) \times \cdots \times(0), \mathfrak{K}_{4}=F_{1} \times(0) \times \cdots \times(0)$, $\mathfrak{L}_{1}=(0) \times R_{1} \times(0) \times \cdots \times(0), \mathfrak{L}_{2}=(0) \times(0) \times R_{2} \times(0) \times \cdots \times(0), \mathfrak{L}_{3}=(0) \times R_{1} \times R_{2} \times(0) \cdots \times(0)$, $\mathfrak{L}_{4}=(0) \times \operatorname{Im}_{1} \times R_{2} \times(0) \times \cdots \times(0), \mathfrak{L}_{5}=(0) \times R_{1} \times \operatorname{Im}_{2} \times(0) \times \cdots \times(0)$ in R. Since
$\operatorname{Ann}\left(\mathfrak{K}_{j} \mathfrak{L}_{k}\right) \neq \operatorname{Ann}\left(\mathfrak{K}_{j}\right) \cap \operatorname{Ann}\left(\mathfrak{L}_{k}\right)$ for each j, k, then $\operatorname{AIG}(R)$ contains $K_{4,5}$ as a induced subgraph, a contradiction. Hence $m=1$.

Let n_{1} be the nilpotency index of m_{1}. Suppose $n_{1} \geq 4$. Consider the nonzero proper ideals $\mathfrak{P}_{1}=F_{1} \times(0), \mathfrak{P}_{2}=(0) \times \operatorname{Im}_{1}, \mathfrak{P}_{3}=(0) \times \operatorname{Im}_{1}^{n_{1}-1}, \mathfrak{P}_{4}=(0) \times \operatorname{Im}_{1}^{n_{1}-2}, \mathfrak{P}_{5}=(0) \times R_{1}, \mathfrak{P}_{6}=$ $F_{1} \times \operatorname{Im}_{1}, \mathfrak{P}_{7}=F_{1} \times \operatorname{Im}_{1}^{n_{1}-1}, \mathfrak{P}_{8}=F_{1} \times \operatorname{Im}_{1}^{n_{1}-2}$ in R. Since $\operatorname{Ann}\left(\mathfrak{P}_{j} \mathfrak{P}_{k}\right) \neq \operatorname{Ann}\left(\mathfrak{P}_{j}\right) \cap \operatorname{Ann}\left(\mathfrak{P}_{k}\right)$ for each j, k, then $K_{4,5}$ is a induced subgraph of $\operatorname{AIG}(R)$, a contradiction. Hence $n_{1}=3$.

Let \mathfrak{m} be a nonzero proper ideal of R_{1} such that $\mathfrak{m} \neq \operatorname{Im}_{1}, \operatorname{Im}_{1}^{2}$. Consider the nonzero proper ideals $\mathfrak{S}_{1}=F_{1} \times(0), \mathfrak{S}_{2}=(0) \times R_{2}, \mathfrak{S}_{3}=(0) \times \operatorname{Im}_{1}, \mathfrak{S}_{4}=(0) \times \operatorname{Im}_{1}^{2}, \mathfrak{S}_{5}=(0) \times \mathfrak{m}$, $\mathfrak{S}_{6}=F_{1} \times \operatorname{Im}_{1}, \mathfrak{S}_{7}=F_{1} \times \operatorname{Im}_{1}^{2}, \mathfrak{S}_{8}=F_{1} \times \mathfrak{m}$ in R. Since $\operatorname{Ann}\left(\mathfrak{S}_{j} \mathfrak{S}_{k}\right) \neq \operatorname{Ann}\left(\mathfrak{S}_{j}\right) \cap \operatorname{Ann}\left(\mathfrak{S}_{k}\right)$ for each j, k, then $K_{4,5}$ is a induced subgraph of $A I G(R)$, a contradiction. Hence Im_{1} and $\operatorname{Im}_{1}^{2}$ are the only nonzero proper ideals of R_{1}.

Conversely, suppose $R \cong F_{1} \times R_{1}$ and the only nonzero proper ideals of R_{1} are Im_{1} and $\operatorname{Im}_{1}^{2}$. Then the vertex set of $\operatorname{AIG}(R)$ is given by the set $\left\{F_{1} \times(0),(0) \times \operatorname{Im}_{1},(0) \times R_{1},(0) \times\right.$ $\left.\operatorname{Im}_{1}^{2}, F_{1} \times \operatorname{Im}_{1}, F_{1} \times \operatorname{Im}_{1}^{2}\right\}$ and the graph $\operatorname{AIG}(R)$ is illustrated in the following Fig. 5.

Fig. 5. toroidal embadding of $\operatorname{AIG}\left(F_{1} \times R_{1}\right)$.

5. Acknowledgments

We would like to thank the referees for their valuable comments and the careful reading of our manuscript.

References

[1] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999) 434-447.
[2] D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra, 159 No. 2 (1993) 500-514.
[3] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Company, 1969.
[4] I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988) 208-226.
[5] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative ring I, J. Algebra Appl., 10 (2011) 727-739.
[6] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative ring II, J. Algebra Appl., 10 (2011) 741-753.
[7] M. Nazim and N. Rehman, On the essential annihilating-ideal graph of commutative rings, Ars Math. Contemp., 22 No. 3 (2022) P3-05.
[8] M. Nazim, N. Rehman and S. A. Mir, Some properties of the essential annihilating-ideal graph of commutative rings, Commu. Comb. Opt., (2022) 1-10. DOI: 10.22049/CCO.2022.27827.1365
[9] N. Rehman, M. Nazim and K. Selvakumar, On the planarity, genus and crosscap of new extension of zero-divisor graph of commutative rings, AKCE Int. J. Graphs Comb., 19 No. 1 (2022) 61-68.
[10] M. Vafaei, A. Tehranian and R. Nikandish, On the annihilator intersection graph of a commutative ring, Italian J. Pure App. Mtah., 38 (2017) 531-541.
[11] D. B. West, Introduction to Graph Theory, Second edition, Prentice-Hall of India, New Delhi, 2002.
[12] A. T. White, Graphs, Groups and Surfaces, North-Holland, Amsterdam, 1973.

Mohd Nazim

Department of Mathematics, Aligarh Muslim University,
Aligarh-202002, India.
mnazim1882@gmail.com

Nadeem ur Rehman

Department of Mathematics, Aligarh Muslim University,
Aligarh-202002, India.
nu.rehman.mm@amu.ac.in

K. Selvakumar

Department of Mathematics, Manonmaniam Sundaranar University,
Tirunelveli-627012, India.
selva_158@yahoo.co.in

