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A CLASS OF ALMOST UNISERIAL RINGS

HAMID REZA DORBIDI∗

Abstract. An R−module M is called almost uniserial if any two non-isomorphic submodules

of M are comparable. A ring R is an almost left uniserial ring if RR is almost uniserial. In

this paper, we introduce a class of artinian almost uniserial rings. Also we give a classification

of almost uniserial modules over principal ideal domains.

1. Introduction

In this paper, all rings have identity elements and all modules are unitary left modules.
We call a left R-module M uniserial if every two submodules of M are comparable. A ring
R is called left uniserial if RR is uniserial. An R-module M is called a serial module if it is
direct sum of uniserial modules. Serial rings and modules are studied in many articles such
as [4],[5],[6] and [8]. Serial rings and modules are used to study direct sum decomposition
of a module and Krull-Schmidt theorem for such decompositions. A commutative uniserial
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rings is called a valuation rings. Valuation rings has many application in Number Theory
and Algebraic Geometry. We say that a left R-module M is almost uniserial if any two
non-isomorphic submodules are comparable. A ring R is called almost left uniserial if any
two non-isomorphic left ideals of R are comparable. Also a direct sum of almost uniserial
modules is called almost serial[2]. The class of almost left uniserial rings is defined in [1].
It generalizes both of left uniserial rings and left principal ideal domains. Trivially each left
uniserial ring is almost left uniserial, but the converse is not true in general. For instance, Z is
an almost left uniserial ring which is not a left uniserial ring. It is clear that a submodule of an
almost uniserial module is almost uniserial. But the quotient of an almost uniserial modules
is not almost uniserial in genral.(Z is almost uniserial but Z6 is not almost uniserial). In [1,
Theorem 3.5] some equivalent conditions are given for a commutative ring R to be an Artinian
almost uniserial ring. Also [1, example 3.6] give an example of a commutative artinian almost
uniserial ring. This example motivated us to give a class of commutative artinian almost
uniserial rings. In [3] some examples of almost uniserial quotient of almost uniserial modules
are given. Also some results of [1] are generalized to the non commutative case. In [3] it is
proved that in a commutative almost left uniserial ring, the ideal Nil(R) is a prime ideal. Also
In = {a ∈ R : an = 0} is an ideal of R and Inn = 0.

The notion of uniserial and almost uniserial can be studied in any category. We here
define three levels of uniseriality in categories which coincide with the usual definition in
the categroy of modules. An object M in a category C is called a uniserial object if for
any two monomorphisms f : N −→ M and g : K −→ M one of them factors through
another. An object M in a category C is called an almost uniserial object if for any two
monomorphisms f : N −→ M and g : K −→ M one of them factors through another or
K ∼= N An object M in a category C is called a weakly almost uniserial object if for any
two monomorphisms f : N −→ M and g : K −→ M there is a monmorphism from N to K

or there is a moomorphism from K to N . Also by replacing the word ”monomorphism” by
”epimorphism” and reversing the arrows we have dual notions.For example, in the category
SET , a set X is uniserial iff |X| ≤ 1 and X is almost uniserial iff |X| ≤ 2. Also one of equivalent
forms of axiom of choice is that for any two sets X,Y we have |X| ≤ |Y | or |Y | ≤ |X| which
implies every set is a weakly almost uniserial set. If C is the category of vector spaces over
a fixed field F then a vector space V is uniserial iff dim(V ) ≤ 1 and V is almost uniserial iff
dim(V ) ≤ 2. Also every vector space is weakly almost uniserial. Since every subgroup of a free
group is a free group by Nielsen-Schreier theorem, we conclude that all free groups are weakly
almost uniserial in the category of groups. Another intersting example is the field F (x) which
is a weakly almost uniserial field in the categroy of field extensions of a fixed field F by Luroth
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theorem. Luroth theorem states that if F ⫋ L ⊆ F (x) then L ∼= F (x). This categorical notion
and its dual may be studied for its own sake

Here we give some notions and definitions. A ring R is called a left principal ideal ring(LPIR)
if every left ideal of R is principal. A principal ideal domain(PID) is an integral domain which
every ideal is principal. A ring with a unique maximal left ideal is called a local ring. A
discrete valuation ring(DVR) is a local PID. We denote the Jacobson radical of a ring R by
J(R). We denote the length of a module M by l(M). For a torsion module M over a PID
R and a prime element p ∈ R define M(p) = {x ∈ M : ∃n ∈ N pnx = 0}. If every finitely
generated submodule of an R−module M is cyclic, we say M is a locally cyclic module.

2. Preliminaries

In this section we give the theorems which we need to prove main results.

Proposition 2.1. [1, Proposition 2.1.] Let M be an almost uniserial module. Then either M is
an indecomposable module or M is a direct sum of two isomorphic simple modules. Moreover,
every finitely generated submodule of M is at most two-generated and the set of all non-cyclic
submodules of M is a chain.

Theorem 2.2. [3, Theorem 3.7] Let (R,m) be a local left Artinian ring. Assume that the set
of two-generated non-cyclic ideals of R is S = {mi : 1 ≤ i < k}, where k is the nilpotency
index of m. Then R is an almost left uniserial ring.

The following theorem is well known, but we give here a proof for the sake of completeness.

Theorem 2.3. Let M be a torsion module over a principal ideal domain R. Let P be a set of
prime elements of R such that for each prime element q ∈ R there is an element p ∈ P such
that Rq = Rp. Then M =

⊕
p∈P M(p)

Proof. Let 0 ̸= m ∈ M . Then ann(m) = Ra where a ̸= 0 is not a unit in R. So a =

upn1
1 · · · pnk

k where pi ∈ P and u is a unit. If ai =
a

p
ni
i

then R = ⟨a1, · · · , ak⟩. Hence there
exist r1, · · · , rn ∈ R such that 1 = r1a1 + · · · + rnan. Then m = r1a1m + · · · + rnanm. If
mi = raim then pni

i mi = ri(p
ni
i ai)m = riam = 0. Hence mi ∈ M(pi). So M =

∑
p∈P M(p).

Assume m1+ · · ·+mn = 0 where mi ∈ M(pi). Hence there exists ni ∈ N such that pni
i mi = 0.

Set a = pn1
1 · · · pnk

k and ai = a
p
ni
i

. Then aimj = 0 for any i ̸= j. Hence aimi = 0. Since
R = ⟨pni

i , ai⟩, so mi = 0. Thus M =
⊕

p∈P M(p)

Theorem 2.4. Let R be a PID with K as a field of fractions and M be an R−module. Then
M is a locally cyclic module if and only if M is isomorphic to a submodule of K or K/R. In
particular, every quotient of K/R is isomorphic to a submodule of K/R.
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Proof. Since R is a PID, every submodule of a cyclic module is cyclic. If mi =
ai
bi

∈ K then
Rm1 + · · · + Rmn ⊆ Rm where m = 1

b1···bn . Hence it is a cyclic module. So K is a locally
cyclic module. Also its quotient K/R is locally cyclic. Conversely, assume M is a locally cyclic
module. Then M is a torsion module or it is torsion free.

(1) M is torsion free: In this case the map M → M
⊗

R K,m −→ m⊗ 1 is injective. Also
M

⊗
R K is also a a locally cyclic R−module, since K is a locally cyclic R−module.

But M
⊗

R K is a nonzero vector space over K. Hence dimKM
⊗

R K = 1. Thus
M

⊗
R K ∼= K and M is isomorphic to a submodule of K.

(2) M is a torsion R−module: Let E = K/R. It suffices to prove that N = M(p) is
isomorphic to a submodule E(p) by Theorem 2.3. Set Nn = {x ∈ N : pnx = 0}.
Then Nn ⊆ Nn+1 and N =

∪
Nn. Note that R/pnR is an artinian ring and Nn is

an R/pnR−module. It is clear that for any cyclic R/pnR−module Q we have l(Q) ≤
l(R/pnR) = n. Let x ∈ Nn be such that l(Rx) = k be maximum. Then for any
y ∈ Nn, Rx + Ry is a cyclic module. So k = l(Rx) ≤ l(Rx + Ry) ≤ k. Hence
Rx + Ry = Rx which implies y ∈ Rx. Thus Nn = Rx. Also if x ∈ Nn − Nn−1 then
ann(x) = pnR and l(Rx) = l(R/ann(x)) = l(R/pnR) = n. So Rx = Nn. Now we
complete the proof in two cases.
(a) There is an n ∈ N such that Nn = Nn+1: Let t = min{n ∈ N : Nn = Nn+1}.

Then N = Nt
∼= R/ptR which is isomorphic to the submodule generated by

1
pt +R ∈ E(p).

(b) For any n ∈ N, Nn ⫋ Nn+1: We prove that there exists xn ∈ Nn such that
Nn = Rxn and pxn+1 = xn. Let yn+1 ∈ Nn+1\Nn then Nn+1 = Ryn+1. Let x1 =

y1 and assume we have chosen xn. So xn = ryn+1. Since pnxn = 0 we conclude
pn+1|pnr or equivalently p|r. If r = pa set xn+1 = ayn+1. Then pxn+1 = payn+1 =

ryn+1 = xn. Now define f : N =
∪
Nn −→ E(p) such that f(rxn) =

r
pn +R. We

prove f is a well defined injective homomorphism. If rxn = sxm where m ≥ n

then rpm−nxm = sxm. Hence pm|rpm−n − s which implies r
pn − s

pm ∈ R Hence
f(rxn) = r

pn + R = s
pm + R = f(sxm). So f is well defined.If f(rxn) = 0 then

r
pn ∈ R. Hence pn|r. So rxn = 0. Thus f is injective. Hence N is isomorphic to a
submodule of E(p).

3. Main results

Theorem 3.1. Let F be a field and n ≥ 3 be an integer. Set R = F [X,Y ]
⟨Xn,Xn−1Y,X2−Y 2⟩ . Let x, y

be the images of X,Y in R and m = ⟨x, y⟩. Then the following holds:
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(1) (R,m) is an artinian local ring.
(2) {1, xi, xi−1y : 1 ≤ i < n} is a basis of FR.
(3) For each 1 ≤ k < n the ideal mk is not principal and mk = ⟨xk, xk−1y⟩.
(4) For any x ∈ mk\mk+1 we have ann(x) = mn−k.

Proof. First note that x2 = y2 implies xkyi−k ∈ ⟨xi, xi−1y⟩. So {1, xi, xi−1y : 1 ≤ i < n} is
generating set for FR.

(1) Since dimFR is finite, so R is an artinian ring. Also R/m ∼= F implies that m is a
maximal ideal. Since m is a nil ideal, it is the unique maximal ideal of R.

(2) Assume that

(1) a0 +

n−1∑
i=1

(aix
i + bix

i−1y) = 0,

where ai, bi ∈ F . Since
∑n−1

i=1 (aix
i+bix

i−1y) ∈ Nil(R), so a0 = 0. First we prove xn−1

and xn−2y are independent. If axn−1 + bxn−2y = 0 then

aXn−1 + bXn−2Y = g(X,Y )Xn + h(X,Y )Xn−1Y + k(X,Y )(X2 − Y 2),

for some g(X,Y ), h(X,Y ), k(X,Y ) ∈ F [X,Y ] which implies k(X,Y ) = Xn−2k1(X,Y ).
Hence

aX + bY = g(X,Y )X2 + h(X,Y )XY + k1(X,Y )(X2 − Y 2).

If we substitute X = 0 we get Y 2|bY which implies b = 0. Also substitution Y = 0

implies X2|aX. Hence a = 0. If we multiply both sides of equation (1) by xn−2 we get
a1x

n−1+b1x
n−2y = 0. So a1 = b1 = 0. Assume i < n−1 and for all j ≤ i, aj = bj = 0.

Then multiply both sides of equation (1) by xn−2−i. Hence ai+1x
n−1 + bi+1x

n−2y = 0

which implies ai+1 = bi+1 = 0. So the set {1, xi, xi−1y : 1 ≤ i < n} is a basis for FR.
(3) Note that {xi, xi−1y : k ≤ i < n} is basis of Fm

k. So mk/mk+1 is generated by
xk +mk+1 and xk−1y +mk+1. Hence mk = ⟨xk, xk−1y⟩ by Nakayama’s lemma. If mk

is cyclic, then it is generated by xk(xk−1y) by Nakayama’s lemma. Hence xk−1y =

axk for some a = a0 +
∑n−1

i=1 (aix
i + bix

i−1y) ∈ R where ai, bi ∈ F . Since the set
{1, xi, xi−1y : 1 ≤ i < n} is a basis for FR, we get a contradiction. So mk is not cyclic.

(4) Assume x =
∑n−1

i=k (cix
i + dix

i−1y). So ck ̸= 0 or dk ̸= 0. Without loss of generality
assume ck ̸= 0. If a =

∑n−1
i=1 (aix

i+bix
i−1y) ∈ ann(x) then the coefficient of x1+k in ax

equals a1ck which implies a1 = 0. Also the coefficient of xky in ax equals b1ck which
implies b1 = 0. By a similar argument it is proved that if i < n − k then ai = bi = 0.
Hence a ∈ mn−k. So ann(x) = mn−k.
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Theorem 3.2. The ring R in Theorem 3.1 is an almost uniserial ring.

Proof. Since mi is generated by two elements, so l(mi/mi+1) = 2. Hence l(mi) = 2n− 2i and
l(R) = 2n − 1. Let I be an ideal of R other than mi’s. Let k be the greatest integer such
that I ⊆ mk and x ∈ I\mk+1. Hence by theorem 3.1, ann(x) = mn−k.Also Rx ∼= R/ann(x)

implies l(Rx) = 2n− 2k− 1. Since 2n− 2k− 1 = l(Rx) ≤ l(I) < l(mk) = 2n− 2k we conclude
that l(I) = l(Rx) which implies I = Rx. Hence {mi : 1 ≤ i < n} is the set of all two generated
non-cyclic ideals. So R is an almost uniserial ring by Theorem 2.2.

Lemma 3.3. Let R be a commutative ring and M be an artinian module. Then Rm is a
Noetherian module for each m ∈ M .

Proof. The isomorphism Rm ∼= R/ann(m) implies that R/ann(m) is an artinian ring. So
R/ann(m) is a Noetherian ring. Hence Rm is a Noetherian module.

Theorem 3.4. Let R be a commutative ring and M be an artinian almost uniserial module.
Then every proper submodule of M is a Noetherian module. In particular, every proper
submodule of M has finite length.

Proof. Let m ∈ M\N . Then N ⊆ Rm or N ∼= Rm. Since Rm is noetherian by 3.3, N is a
noetherian module. Since N is artinian too, N has finite length.

Theorem 3.5. Let M be an almost uniserial module and N be a maximal submodule of M .
Then M or N is a cyclic module.

Proof. Let m ∈ M\N . Then N ⊆ Rm or N ∼= Rm. If N ∼= Rm then N is a cyclic module.
Otherwise Rm = M and M is a cyclic module.

Corollary 3.6. Let M be an almost uniserial module. Then M is finitely generated if and
only if M has a maximal submodule.

Proof. Assume M has a maximal submodule N . Then M or N is cyclic. Also M/N is cyclic.
Hence M is finitely generated. The converse is clear.

Remark 3.7. Let M be an almost uniserial R−module. If N and K are two non-comparable
submodules of M then N ∼= K. If n ∈ N\K, then K ⊈ Rn and Rn ⊈ K. So N ∼= K ∼= Rn.
Hence every non-cyclic submodule of M is comparable to any other submodule of M . In
particular, the set of non-cyclic submodules of M is a chain.
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Theorem 3.8. Let M be an almost uniserial R−module and LTn(M) = {N ≤ M : l(M/N) =

n}. Then |LTn(M)| ≤ 1 or each element in LTn(M) is a cyclic module.

Proof. Assume |LTn(M)| > 1. Since each two elements of LTn(M) are non comparable, so
each element in LTn(M) is a cyclic module by Remark 3.7.

Theorem 3.9. Let R be an almost uniserial ring and J(R) = 0. Then R is a Left principal
ideal ring.

Proof. If R is a local ring, then R is a division ring and the proof is complete Assume R is not
a local ring. So |LT1(R)| ≥ 2. Hence every maximal left ideal is cyclic by Lemma 3.8. Let I

be a non trivial left ideal. So I ⫅̸ J(R). Hence there is a maximal left ideal such that I ⫅̸ m.
So I ∼= m is a principal ideal.

Theorem 3.10. Let R be a PID and M be a finitely generated almost uniserial R−module.
Then M ∼= R or there is a prime element in R such that M ∼= R/pnR or M ∼= R/pR

⊕
R/pR.

Proof. According to structure theorem for finitely generated modules over a principal ideal
domain, M ∼=

⊕k
i=1Rmi where each Rmi is an indecomposable module. If ann(mi) = 0 then

Rmi
∼= R. If ann(mi) = ⟨a⟩ then indecomposability and chinese remainder theorem implies

ann(m) = pnR for a prime element p in R. Hence if k = 1 then M ∼= R or M ∼= R/pnR.
. If k ≥ 2 then k = 2 by Proposition 2.1and Rm1

∼= Rm2 is a simple module. Hence
ann(m1) = ann(m2) is a maximal ideal. So there is a prime element p ∈ R such that
ann(m1) = pR. Hence M ∼= R/pR

⊕
R/pR.

Theorem 3.11. Let R be a PID and K be the field of fractions of R and E = K/R. If M
is a torsion almost uniserial R−module then there exists a prime element p ∈ R such that
M ∼= R/pR

⊕
R/pR or M is isomorphic to a submodule of E(p).

Proof. Assume M ≇ R/pR
⊕

R/pR for any prime element p ∈ R. We prove M is a localy
cylic module. Assume N is a finitely generated submodule of M which is not cyclic. So
N ∼= R/pR

⊕
R/pR by Theorem 3.10. So N ̸= M . Let a ∈ M\N . Then Ra ⊈ N . Since R is

a PID, every submodule of a cyclic module is cyclic. If N ⊆ Ra or N ∼= Ra then N is a cyclic
module which is a contradiction. So N is cyclic. Hence M is a locally cyclic module. Thus
M is isomorphic to a submodule of E = K/R by Theorem 2.4. Also M is an indecomposable
R−module by Theorem 2.1. Hence there is a prime element p ∈ R such that M = M(p) which
is isomorphic to a submodule of E(p).
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Theorem 3.12. Let R be a discrete valuation ring(DVR) and K be the field of fractions of
R. Then K is a uniserial module. Also If M is a torsion free almost uniserial R−module then
M is isomorphic to a submodule of K. In particular M is a uniserial module.

Proof. Let m = pR be the unique maximal ideal of R. Then every ideal of R equals pnR

for some n ∈ N. Also every 0 ⊂ · · · ⊂ p2R ⊂ pR ⊂ R ⊂ p−1R ⊂ p−2R ⊂ · · · ⊂ K. Also
every element of K equals upn for some u ∈ U(R) and n ∈ Z. Let N be a proper non zero
submodule of K. Note that if upn ∈ N then for any a ∈ R we have pna = (u−1a)pnu ∈ N .
Hence pnR ⊆ N . If upn ∈ K\N then Rpn ⊈ N . So {n ∈ Z : pnR ⊆ N} is bounded from
below. So it has a minimum say t. If pnu ∈ N then pnR ⊆ N . Hence t ≤ n. So pnu ∈ ptR.
Thus N ⊆ ptR. Also ptR ⊆ N which implies N = ptR. Hence K is uniserial. Let M be a
torsion free almost uniserial R−module. So M is a locally cyclic module by Theorem 3.10.
Hence M is isomorphic to a submodule of K by Theorem 2.4.

Lemma 3.13. Let M be an artinian R−module. Then M is not isomorphic to any of its
proper submodules.

Proof. Let N be a proper submodule of M which is isomorphic to M and is minimal with this
property. Assume f : M → N is an isomorphism. Then f|N : N → f(N) is an isomorphism.
Hence M ∼= N ∼= f(N) < N which is a contradiction by minimality of N .

Theorem 3.14. Let M be an almost uniserial artinian R−module. Also N and K are two
non comparable submodules of M . Then {T : T < N} = {T : T < K} and {T : N < T} =

{T : K < T}. Also N ∩K is the unique maximal submodule of N and K and N +K is the
unique module which contains N and is minimal with this property.

Proof. Let T < N be a proper submodule of N . If T ≮ K, then T ∼= K ∼= N . This contrdicts
Lemma 3.13. So T < K. If N < T and K ≮ T , then T ∼= K ∼= N which is a contradiction by
Lemma 3.13. If T < N , then T < K. Hence T ≤ N ∩K. So N ∩K is the unique maximal
submodule of N . If N < T , then K < T . Hence N +K ≤ T . So N +K is the unique module
which contains N and is minimal with this property.

Corollary 3.15. Let M be an almost uniserial artinian R−module. For any submodule N of
M set L(N) = {T : T < N}. Then {L(N) : N ≤ M} is a chain.

Proof. If N ≤ K then L(N) ≤ L(K). If N ∼= K, then L(N) = L(K) by Theorem 3.14.
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