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AN UPPER BOUND ON THE DISTINGUISHING INDEX OF GRAPHS
WITH MINIMUM DEGREE AT LEAST TWO

SAEID ALIKHANI∗ AND SAMANEH SOLTANI

Abstract. The distinguishing index of a simple graph G, denoted by D′(G), is the least

number of labels in an edge labeling of G not preserved by any non-trivial automorphism.

We prove that for a connected graph G with maximum degree ∆, if the minimum degree is at

least two, then D′(G) ≤ ⌈
√
∆⌉+ 1. We also present graphs G for which D′(G) ≤ ⌈

√
∆(G)⌉.

1. Introduction

Let G = (V,E) be a simple connected graph. We use the standard graph notation ([6]).
In particular, Aut(G) denotes the automorphism group of G and is a form of symmetry in
which the graph is mapped onto itself while preserving the edge-vertex connectivity. Formally,
an automorphism of a graph G is a permutation σ of the vertex set V , such that the pair of
vertices (u, v) form an edge if and only if the pair (σ(u), σ(v)) also form an edge. For simple
connected graph G, and v ∈ V , the neighborhood of a vertex v is the set NG(v) = {u ∈ V (G) :
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uv ∈ E(G)}. The degree of a vertex v in a graph G, denoted by degG(v), is the number of
edges of G incident with v. The number of neighbours of v in G is denoted by degG(v). We
denote by δ(G) and ∆(G) the minimum and maximum degrees of the vertices of G. A graph G

is k-regular if degG(v) = k for all v ∈ V . The distance between two vertices u and v is denoted
by d(u, v) and is the number of edges in a shortest path connecting u and v. The diameter
of a graph G is the largest distance between two vertices of G, and denoted by diam(G). A
connected graph G is called 2-connected, if for every vertex x ∈ V (G), G− x is connected.

An edge-colouring of G with colours in C is a map c : E → C. We say that f ∈ Aut(G)

preserves the edge-colouring c if c ◦ f = c. Call a colouring of G distinguishing, if the identity
is the only automorphism which preserves it. In other words, such a colouring c of a graph G

breaks an automorphism f ∈ Aut(G) if f does not preserve colours of c. The distinguishing
index D′(G) of a graph G is the least number d such that G has an edge labeling with
d labels that is preserved only by the identity automorphism of G. The distinguishing edge
labeling was first defined by Kalinowski and Pilśniak [8] for graphs (inspired by the well-known
distinguishing number D(G) which has been defined for general vertex labelings by Albertson
and Collins [1]). The distinguishing index of some examples of graphs was exhibited in [8].
For instance, D′(Pn) = 2 for every n ≥ 3, and D′(Cn) = 3 for n = 3, 4, 5, D′(Cn) = 2 for
n ≥ 6. Also, for complete graphs Kn, we have D′(Kn) = 3 for n = 3, 4, 5, D′(Kn) = 2 for
n ≥ 6. It is known that for every graph G of order at least three, we have D′(G) ≤ D(G) + 1

([8]). Recently Alikhani et.al in [2] characterized finite trees for which this inequality is sharp.
They also showed that if G is a connected unicyclic graph, then D′(G) = D(G). Authors in [8]
showed that if G is a connected graph of order n ≥ 3 and maximum degree ∆, then D′(G) ≤ ∆,
unless G is C3, C4 or C5. It follows for connected graphs that D′(G) > ∆(G) if and only if
D′(G) = ∆(G) + 1 and G is a cycle of length at most five. The equality D′(G) = ∆(G) holds
for all paths, for cycles of length at least 6, for K4, K3,3 and for symmetric or bisymmetric
trees. Also, Pilśniak showed that D′(G) < ∆(G) for all other connected graphs.

Theorem 1.1. [9] Let G be a connected graph that is neither a symmetric nor an asymmetric
tree. If the maximum degree of G is at least 3, then D′(G) ≤ ∆(G)−1 unless G is K4 or K3,3.

Pilśniak put forward the following conjecture.

Conjecture 1.2. [9] If G is a 2-connected graph, then D′(G) ≤ 1 + ⌈
√
∆(G)⌉.

In this paper, we prove the following theorem which proves the conjecture.

Theorem 1.3. Let G be a connected graph of maximum degree ∆. If the minimum degree is
at least two, then D′(G) ≤ ⌈

√
∆⌉+ 1.

For our purposes, we consider graphs with specific construction that are from dutch-windmill
graphs. Because of this, in Section 2, we compute the distinguishing index of the dutch
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Figure 1. Examples of the dutch windmill graphs.

windmill graphs. In Section 3, we use those results to prove the main result. In the last
section we present graphs G for which D′(G) ≤ ⌈

√
∆(G)⌉.

2. Distinguishing index of dutch windmill graphs

To obtain the upper bound for the distinguishing index of connected graphs with minimum
degree at least two, we characterize such graphs with minimum number of edges. For this
characterization we need the concept of dutch windmill graphs. The dutch windmill graph
Dk

n is the graph obtained by taking n, (n ≥ 2) copies of a cycle Ck, (k ≥ 3) with a vertex
in common (see Figure 1). If k = 3, then we call D3

n, a friendship graph. In the following
theorem we compute the distinguishing number of the dutch windmill graphs.

Theorem 2.1. For every n ≥ 2 and k ≥ 3, D(Dk
n) = min{r :

rk−1 − r
⌈
k − 1

2
⌉

2
≥ n}.

Proof. We consider two cases:
Case 1) k is odd. There is a natural number m such that k = 2m + 1. We

can consider a blade of Dk
n as in Figure 2. Let (x

(i)
1 , x

′(i)
1 , . . . , x

(i)
m , x

′(i)
m ) be the label

of vertices (v1, v
′
1, . . . , vm, v′m) of the ith blade where 1 ≤ i ≤ n. Suppose that L =

{(x(i)1 , x
′(i)
1 , . . . , x

(i)
m , x

′(i)
m )| 1 ≤ i ≤ n;x

(i)
j , x

′(i)
j ∈ N, 1 ≤ j ≤ m} is a labeling of the vertices of

Dk
n except its central vertex. In an r-distinguishing labeling we must have:

(i) There exists j ∈ {1, . . . ,m} such that x
(i)
j ̸= x

′(i)
j for all i ∈ {1, . . . , n}.

(ii) For i1 ̸= i2 we must have (x
(i1)
1 , x

′(i1)
1 , . . . , x

(i1)
m , x

′(i1)
m ) ̸= (x

(i2)
1 , x

′(i2)
1 , . . . , x

(i2)
m , x

′(i2)
m )

and (x
(i1)
1 , x

′(i1)
1 , . . . , x

(i1)
m , x

′(i1)
m ) ̸= (x

′(i2)
1 , x

(i2)
1 , . . . , x

′(i2)
m , x

(i2)
m ).

The number of (2m)-arrays of labels which using r labels that satisfying the condition (i) is
r2m − rm

2
. According to the condition (ii) and since there are n blades, we conclude that

D(Dk
n) = min{r :

r2m − rm

2
≥ n}.



54 Alg. Struc. Appl. Vol. 7 No. 2 (2020) 51-62.

Figure 2. The considered polygon (or a cycle of size k) in the proof of Theorem 2.

Case 2) k is even. There is a natural number m such that k = 2m. We can con-
sider a blade of Dk

n as in Figure 2. Let (x
(i)
0 x

(i)
1 , x

′(i)
1 , . . . , x

(i)
m−1, x

′(i)
m−1) be the label of

vertices (v0, v1, v
′
1, . . . , vm−1, v

′
m−1) of ith blade where 1 ≤ i ≤ n. Suppose that L =

{(x(i)0 , x
(i)
1 , x

′(i)
1 , . . . , x

(i)
m−1, x

′(i)
m−1)| 1 ≤ i ≤ n;x

(i)
0 , x

(i)
j , x

′(i)
j ∈ N, 1 ≤ j ≤ m − 1} is a label-

ing of the vertices of Dk
n except its central vertex. In an r-distinguishing labeling we must

have:

(i) There exists j ∈ {1, . . . ,m− 1} such that x
(i)
j ̸= x

′(i)
j for all i ∈ {1, . . . , n}.

(ii) For i1 ̸= i2 we must have

(x
(i1)
0 , x

(i1)
1 , x

′(i1)
1 , . . . , x

(i1)
m−1, x

′(i1)
m−1) ̸= (x

(i2)
0 , x

(i2)
1 , x

′(i2)
1 , . . . , x

(i2)
m−1, x

′(i2)
m−1),

(x
(i1)
0 , x

(i1)
1 , x

′(i1)
1 , . . . , x

(i1)
m−1, x

′(i1)
m−1) ̸= (x

(i2)
0 , x

′(i2)
1 , x

(i2)
1 , . . . , x

′(i2)
m−1, x

(i2)
m−1).

There are r2m−1 − rm

2
possible (2m− 1)-arrays of labels using r labels satisfying condition (i)

(r choices for x0 and r2(m−1) − rm−1

2
choices for x(i1)1 , x

′(i1)
1 , . . . , x

(i1)
m−1, x

′(i1)
m−1). According to the

condition (ii) and since there are n blades, we conclude that D(Dk
n) = min{r :

r2m−1 − rm

2
≥

n}.

The following theorem gives the distinguishing index of Dk
n.

Theorem 2.2. For any n ≥ 2 and k ≥ 3, D′(Dk
n) = min{r :

rk − r
⌈
k

2
⌉

2
≥ n}.

Proof. There is a natural bijection between the edges of Dk
n and the non-central vertices of

Dk+1
n , so if we consider the non-central vertices of Dk+1

n as the edges of Dk
n, then we have

D′(Dk
n) = D(Dk+1

n ). Therefore the result follows from Theorem 2.
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3. Proof of conjecture

In this section, we shall prove Conjecture 1. To do this, first we state some preliminaries. By
the result obtained by Fisher and Isaak [5] and independently by Imrich, Jerebic and Klavžar
[7] the distinguishing index of complete bipartite graphs is as follows:

Theorem 3.1. [5, 7] Let p, q, d be integers such that d ≥ 2 and (d− 1)p < q ≤ dp . Then

D′(Kp,q) =

 d if q ≤ dp − ⌈logdp⌉ − 1,

d+ 1 if q ≥ dp − ⌈logdp⌉+ 1.

If q = dp − ⌈logdp⌉ then the distinguishing index D′(Kp,q) is either d or d + 1 and can be
computed recursively in O(log(q)) time.

Corollary 3.2. [9] If p ≤ q, then D′(Kp,q) ≤ ⌈ p
√
q⌉+ 1.

Let G be a connected graph of order n > 3 and let c : E(G) → {1, 2, . . . , k} be a colouring
of the edges of G for some positive integer k (where adjacent edges may be coloured the
same). The colour code of a vertex v of G (with respect to c) is the ordered k-tuple c(v) =

(a1, a2, . . . , ak) (or simply, c(v) = a1a2 . . . ak), where ai is the number of edges incident with v

that are coloured i for 1 ≤ i ≤ k, see [4].

Lemma 3.3. [4] Let c be a k-colouring of the edges of a graph G. The maximum number of
different color codes of the vertices of degree r in G is

(
r+k−1

r

)
Now, we are ready to prove the main theorem of this paper.

Proof of Theorem 1. If ∆ ≤ 5, then the result follows from Theorem 1. So, we suppose
that ∆ ≥ 6. Let v be a vertex of G with the maximum degree ∆. If G does not contain a
dutch windmill graph or a triangle attached to G at the vertex v (a proper subgraph H of G is
called attached if it has only one vertex adjacent to vertices outside H), then we define G′ to be
G. Otherwise, we delete the attached dutch windmill graph or attached triangle attached to
G at the vertex v, until we obtain a subgraph G′. We first label the attached dutch windmill
graph or attached triangle, and then we construct an edge labeling with 1 + ⌈

√
∆⌉ labels

stabilizing all vertices of G′ by every automorphism preserving the labeling. By Theorem 2,
we can label the edges of a dutch windmill graph attached to G at the vertex v for which v

is the central point of the dutch windmill graph, with at most 1 + ⌈
√
∆⌉ labels from label set

{0, 1, . . . , ⌈
√
∆⌉}, distinguishingly, such that the label 0 is used for at least one edge. If there

exists a triangle attached to G at v, then we label the two incident edges to v with 0 and 1,
and the other edge of the triangle with label 2.

Let N (1)(v) = {v1, . . . , v|N(1)(v)|} be the vertices of G′ at distance one from v, and continue
the labeling by the following steps:
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Step 1) In this step, we want to find a labeling of the edges of G′[N (1)(v)] such that each
vertex of N (1)(v) is fixed by every automorphism preserving this labeling. Since |N (1)(v)| ≤ ∆,
for 0 ≤ i ≤ ⌈

√
∆⌉ − 1 and 1 ≤ j ≤ ⌈

√
∆⌉, we label the edges vvi⌈

√
∆⌉+j with label i, and

we do not use the label 0 any more. With respect to the number of incident edges to v

with label 0, we conclude that the vertex v is fixed under each automorphism preserving the
labeling. Also, since the dutch windmill or the triangle graph attached to G at v has been
labeled distinguishingly, so the vertices of attached graph are fixed under each automorphism
preserving the labeling. Hence, every automorphism preserving the labeling must map the set
of vertices of G′ at distance i from v to itself setwise, for any 1 ≤ i ≤ diam(G′). We denote
the set of vertices of G′ at distance i from v by N (i)(v) for 2 ≤ i ≤ diam(G′).

If N (2)(v) = ∅, then let Ek,j be the set of unlabeled edges of G′ incident to the vertex
vj⌈

√
∆⌉+k. For every 0 ≤ j ≤ ⌈

√
∆⌉ − 1, we can label the elements of each Ek,j with labels

{1, . . . , ⌈
√
∆⌉} such that for every pair of (Ek,j , Ek′,j), where k ̸= k′, there exists a label l,

1 ≤ l ≤ ⌈
√
∆⌉, such that the number of label l used for labeling of elements of Ek,j and Ek′,j

are distinct (this is possible, by Lemma 3). Therefore, all elements of N (1)(v) is fixed under
each automorphism preserving the labeling.

Thus we suppose that N (i)(v) ̸= ∅, for some i ≥ 2. Now, we partition the vertices of N (1)(v)

into two sets M
(1)
1 and M

(1)
2 as follows:

M
(1)
1 = {x ∈ N (1)(v) : N(x) \ {v} ⊆ N(v)},

M
(1)
2 = {x ∈ N (1)(v) : N(x) \ {v} ⊈ N(v)}.

The sets M
(1)
1 and M

(1)
2 are mapped to M

(1)
1 and M

(1)
2 , respectively, setwise, under each

automorphism preserving the labeling. For 0 ≤ i ≤ ⌈
√
∆⌉ − 1, we set Li = {vi⌈√∆⌉+j : 1 ≤

j ≤ ⌈
√
∆⌉}. By this notation, we get that for 0 ≤ i ≤ ⌈

√
∆⌉ − 1, the set Li is mapped to

Li setwise, under each automorphism preserving the labeling. Let the sets M
(1)
1i and M

(1)
2i for

0 ≤ i ≤ ⌈
√
∆⌉ − 1 be as follows:

M
(1)
1i = M

(1)
1 ∩ Li, M

(1)
2i = M

(1)
2 ∩ Li.

It is clear that the sets M
(1)
1i and M

(1)
2i are mapped to M

(1)
1i and M

(1)
2i , respectively, setwise,

under each automorphism preserving the labeling. Since for any 0 ≤ i ≤ ⌈
√
∆⌉ − 1, we

have |M (1)
1i | ≤ ⌈

√
∆⌉, we can label all incident edges to each element of M

(1)
1i with labels

{1, 2, . . . , ⌈
√
∆⌉}, such that for any two vertices of M (1)

1i , say x and y, there exists a label k,
1 ≤ k ≤ ⌈

√
∆⌉, such that the number of label k for the incident edges to vertex x is different

from the number of label k for the incident edges to vertex y (this is possible by Lemma
3). Hence, it can be deduced that each vertex of M

(1)
1i is fixed under each automorphism

preserving the labeling, where 0 ≤ i ≤ ⌈
√
∆⌉ − 1. Thus every vertex of M (1)

1 is fixed under
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each automorphism preserving the labeling. In sequel, we want to label the edges incident
to vertices of M (1)

2 such that M
(1)
2 is fixed under each automorphism preserving the labeling,

pointwise. For this purpose, we partition the vertices of M (1)
2i into the sets M (1)

2ip
, (1 ≤ p ≤ ∆−1)

as follows:
M

(1)
2ip

= {x ∈ M
(1)
2i : |N(x) ∩N (2)(v)| = p}.

Since the set N (i)(v), for any i, is mapped to itself, it can be concluded that M
(1)
2ip

is
mapped to itself, setwise, under each automorphism preserving the labeling, for any i and p.
Let M

(1)
2ip

= {xip1 , . . . , xipsp}. It is clear that |M (1)
2ip

| ≤ |M (1)
2i | ≤ ⌈

√
∆⌉. Let xipk ∈ M

(1)
2ip

, and
N(xipk) ∩N (2)(v) = {x′ipk1 , x

′
ipk2

, . . . , x′ipkp}. We assign to the p-tuple (xipkx
′
ipk1

, . . . , xipkx
′
ipkp

)

of edges, a p-tuple of labels such that for every xipk and xipk′ , 1 ≤ k, k′ ≤ sp, there exists a label
l in their corresponding p-tuples of labels for which the number of label l in the corresponding
p-tuples of xipk and xipk′ is distinct. For constructing |M (1)

2ip
| numbers of such p-tuples we need,

min{r :
(
p+r−1
r−1

)
≥ |M (1)

2ip
|} distinct labels. Since for any 1 ≤ p ≤ ∆− 1, we have

min

{
r :

(
p+ r − 1

r − 1

)
≥ |M (1)

2ip
|
}

≤ min

{
r :

(
p+ r − 1

r − 1

)
≥ ⌈

√
∆⌉

}
≤ ⌈

√
∆⌉,

so we need at most ⌈
√
∆⌉ distinct labels from label set {1, 2, . . . , ⌈

√
∆⌉} for constructing such

j-tuples. For instance, let p = 1, and M
(1)
2i1

= {xi11 , . . . , xi1s1}. By our method, we label the
edge xi11x

′
i1k1

with label k for 1 ≤ k ≤ s1 where s1 ≤ ⌈
√
∆⌉. Hence, the vertices of M (1)

2ip
, for

any 1 ≤ p ≤ ∆ − 1, are fixed under each automorphism preserving the labeling. Therefore,
the vertices of M

(1)
2i for any 0 ≤ i ≤ ⌈

√
∆⌉ − 1, and so the vertices of M

(1)
2 are fixed under

each automorphism preserving the labeling. Now, we can get that all vertices of N (1)(v) are
fixed. If there exist unlabeled edges of G′ with the two endpoints in N (1)(v), then we assign
them an arbitrary label, say 1.

Step 2) Here we consider N (2)(v). We partition this set such that the vertices of N (2)(v)

with the same neighbours in M
(1)
2 , lie in a set. In other words, we can write N (2)(v) =

∪
iAi,

such that Ai contains that elements of N (2)(v) having the same neighbours in M
(1)
2 , for any

i. Since all vertices in M
(1)
2 are fixed, so the set Ai is mapped to Ai setwise, under each

automorphism of G′ preserving the labeling. Let Ai = {wi1, . . . , witi}, and we have

N(wi1) ∩M
(1)
2 = · · · = N(witi) ∩M

(1)
2 = {vi1, . . . , vipi}.

We consider the following two cases:
Case 1) If for every wij and wij′ in Ai, where 1 ≤ j, j′ ≤ ti, there exists a k, 1 ≤ k ≤ pi,

for which the label of edge wijvik is different from label of edge wij′vik, then all vertices of
G′ in Ai are fixed under each automorphism preserving the labeling. Now, we can label the
unlabeled edges of G′ which are incident to the vertices in Ai and another their endpoint is
N (3)(v), arbitrarily.
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Case 2) If there exist wij and wij′ in Ai, where 1 ≤ j, j′ ≤ ti, such that for every k,
1 ≤ k ≤ pi, the label of edge wijvik and wij′vik are the same, then we can make a labeling
such that the vertices in Ai have the same property as Case 1, and so are fixed under each
automorphism preserving the labeling, by using at least one of the following actions:

• By permuting the coordinates of j-tuple of labels assigned to the incident edges to vik

with an end point in N (2)(v).
• By using a new j-tuple of labels, with labels {1, 2, . . . , ⌈

√
∆⌉}, for incident edges to

vik with an end point in N (2)(v), such that (by notations in Step 1) for every xi′
jk′

and
xi′

jk′′
, 1 ≤ k′, k′′ ≤ sj , there exists a label l in their corresponding j-tuples of labels

with different number of label l in their coordinates, where 1 ≤ i′ ≤ ⌈
√
∆⌉.

• By labeling the unlabeled edges of G′ with the two end points in N (2)(v) which are
incident to the vertices in Ai.

• By labeling the unlabeled edges of G′ which are incident to the vertices in Ai, and
another their endpoint is N (3)(v).

• By labeling the unlabeled edges of G′ with the two end points in N (3)(v) for which the
end points in N (3)(v) are adjacent to some of vertices in Ai.

Using at least one of above actions, it can be seen that every two vertices wij and wij′ in
Ai have the property as Case 1. Thus we conclude that all vertices in Ai, for any i, and so
all vertices in N (2)(v), are fixed under each automorphism preserving the labeling. Now, we
can label the unlabeled edges of G′ which are incident to the vertices in Ai and another their
endpoint is N (3)(v), arbitrarily. If there exist unlabeled edges of G with the two endpoints in
N (2)(v), then we assign them an arbitrary label, say 1.

By continuing this method, in the next step we partition N (3)(v) exactly by the same method
as partition of N (2)(v) to the sets Ai’s in Step 2, and so we can make a labeling such that the
elements of N (i)(v) are fixed pointwise, under each automorphism preserving the labeling, for
any 3 ≤ i ≤ diam(G′).

For a 2-connected planar graph G, the distinguishing index may attain 1 + ⌈
√

∆(G)⌉. For
example, consider the complete bipartite graph K2,q with q = r2, where r is a positive integer
r. By Theorem 3, D′(K2,q) = r + 1.

4. Graphs with D′(G) ≤ ⌈
√
∆⌉

In this section, we present graphs G with specific construction such that D′(G) ≤ ⌈
√
∆⌉.

To do this we state the following definition.
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Figure 3. Examples of Wind(v).

Definition 4.1. Let G be a connected graph with δ(G) ≥ 2. The graph G is called a δ-
minimally graph, if the minimum degree of each spanning subgraph of G, except G, is less
than δ(G).

It can be concluded from Definition 4 that if e is an edge of a connected δ-minimally graph
with end points u and w, then without loss of generality we can assume that degGu = δ and
degGw ≥ δ. In fact the distance between the two vertices of degree greater than δ is at least
two.

The simplest connected 2-minimally graphs are cycles Cn and complete bipartite graphs
K2,n. Now, we explain more on the structure of a 2-minimally graph. Let call a path of length
at least two in the graph a simple path, if all its internal vertices have degree two. Let G be a
connected 2-minimally graph.

• If the degree of all vertices of G is two, then G is a cycle graph.
• If there exists a vertex v of G with degree at least three. We consider the two following

cases:
Case 1) If v is the only vertex of G with degree greater than two, then G is a graph which

is made by identifying the central points of some dutch windmill graphs Dpi
ni where

pi ≥ 3, and hence ∆(G) = 2
∑

i∈I ni where I is a set of indices. In this case we
denote G by Wind(v) (for instance, see Figure 3).

Case 2) If G has other vertex w of degree greater than two, then either there exists at
least a simple path between v and w, or there exists a vertex of degree at least
three on each path between v and w. In the latter case, we can obtain a vertex
u of G with degree greater than two such that there exists at least a simple path
between v and u (see Figure 4).

Now we present graphs with D′(G) ≤ ⌈
√
∆⌉.

Theorem 4.2. Let G be a connected 2-minimally graph with maximum degree ∆. If G is not
a cycle C3, C4, C5 or a complete bipartite graph K2,r2 for some integer r, then D′(G) ≤ ⌈

√
∆⌉.

Proof. If ∆ = 2, then G is a cycle. It is known that the distinguishing index of cycle graph of
order at least 6 is two. Hence, we suppose that G is not a cycle, so ∆ ≥ 3. Let v be a vertex
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Figure 4. The state of vertices of degree greater than two in a connected

2-minimally graph.

of G of maximum degree ∆. Suppose that V ′ = {v1, v2, . . . , vk} are all vertices of G which are
of degree at least three such that there exists at least a simple path between v and vi, for any
1 ≤ i ≤ k (it is possible that V ′ = ∅). Let there exist nij disjoint simple paths of length j

between v and vi, for any 1 ≤ i ≤ k and 2 ≤ j ≤ diam(G) where nij is a non-negative integer
and

∑diam(G)
j=2 nij > 0. We can label these nij simple paths of length j with at most ⌈

√
∆⌉

labels, by using nij numbers of j-tuples such that the coordinates of each j-tuple are in the set
{1, 2, . . . , ⌈

√
∆⌉}, for any 1 ≤ i ≤ k and 2 ≤ j ≤ diam(G), and for every two paths of length

j, say P1 and P2 with labels (a1, . . . , aj) and (b1, . . . , bj) respectively, there exists l, 1 ≤ l ≤ j,
such that al ̸= bl. Let P be a simple path between v and vi for some 1 ≤ i ≤ k, such that
the label of edge of P which is incident to v, is different from the label of edge of P which is
incident to vi. We do not use labeling of the simple path P , for any other simple path (with the
same length) between any two vertices of degree greater than two. Since G is not a complete
bipartite graph K2,r2 for some integer r, we can label these paths distinguishingly with at
most ⌈

√
∆⌉ labels. Now, we label the induced subgraph Wind(x), for any vertex x of degree

greater than two, if there exists, with at most ⌈
√
∆⌉ labels distinguishingly by Theorem 2, such

that the distinguishing labeling of Wind(v) is nonisomorphic to the remaining distinguishing
labeling of Wind(x), where x ∈ V (G) − {v}. Thus any automorphism of G preserving this
labeling should fix v, v1, . . . , vk and all vertices of degree two on the simple paths between v

and vi for any 1 ≤ i ≤ k. Since for any 1 ≤ i, j ≤ k where i ̸= j, the vertices vi and vj

are fixed, so all the simple paths between vi and vj , if there exist, are mapped to each other
under each automorphism of G preserving this labeling. Hence we can label all edges of these
simple paths with at most

√
∆ labels, by assigning distinct ordered tuples of labels of length

of the simple paths between vi and vj such that all vertices of these paths are fixed under each
automorphism of G preserving this labeling.

For any 1 ≤ i ≤ k, we consider vi, and suppose that vi1, . . . , viki are all vertices of V (G) \
{v1, . . . , vk} with degree at least three such that there exists at least a simple path between vi
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and vij for any 1 ≤ j ≤ ki. Now we do the same method as labeling of simple paths between v

and {v1, . . . , vk}, for all simple paths between vi and {vi1, . . . , viki} with at most ⌈
√
∆⌉ labels.

Also, we do the same method as labeling of simple paths between vi and vj , for all simple
paths between vip and viq with at most ⌈

√
∆⌉ labels, where 1 ≤ p, q ≤ ki. Note that we do not

use labeling of P for any simple path with the same length as P between vi and {vi1, . . . , viki}.
Thus the vertices {vi, vi1, . . . , viki} and all vertices of the simple paths between them are fixed
under each automorphism of G preserving this labeling. After the finite number of steps we
can obtain a distinguishing edge labeling of G with at most ⌈

√
∆⌉ labels.

5. Conclusion

We gave an upper bound for the distinguishing index of graphs G with minimum degree at
least two. This result proves a conjecture by Pilśniak (2017). We also studied graphs G with
D′(G) ≤ ⌈

√
∆⌉. We think that the following conjecture is true, but until now all attempts to

prove this failed. So, we end this paper by proposing the following conjecture.

Conjecture 5.1. Let G be a connected graph with maximum and minimum degree ∆ and δ,
respectively.

(i) If G is a connected δ-minimally graph with δ(G) ≥ 3 such that G is not a complete
bipartite or δ-regular graph, then D′(G) ≤ ⌈ δ(G)

√
∆(G)⌉.

(ii) If G is a connected graph with δ(G) ≥ 3, then D′(G) ≤ 1 + ⌈ δ(G)
√

∆(G)⌉.
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