Algebraic Structures
and
Their Applications

Algebraic Structures and Their Applications Vol. 11 No. 1 (2024) pp 55-61.

Research Paper

# ON HIGHER ORDER $z$-IDEALS AND $z^{\circ}$-IDEALS IN COMMUTATIVE RINGS 

ROSTAM MOHAMADIAN*


#### Abstract

A ring $R$ is called radically $z$-covered (resp. radically $z^{\circ}$-covered) if every $\sqrt{z}$ ideal (resp. $\sqrt{z^{\circ}}$-ideal) in $R$ is a higher order $z$-ideal (resp. $z^{\circ}$-ideal). In this article we show with a counter-example that a ring may not be radically $z$-covered (resp. radically $z^{\circ}$-covered). Also a ring $R$ is called $z^{\circ}$-terminating if there is a positive integer $n$ such that for every $m \geq n$, each $z^{\circ m}$-ideal is a $z^{\circ n}$-ideal. We show with a counter-example that a ring may not be $z^{\circ}$-terminating. It is well known that whenever a ring homomorphism $\varphi: R \rightarrow S$ is strong (meaning that it is surjective and for every minimal prime ideal $P$ of $R$, there is a minimal prime ideal $Q$ of $S$ such that $\varphi^{-1}[Q]=P$, and if $R$ is a $z^{\circ}$-terminating ring or radically $z^{\circ}$-covered ring then so is $S$. We prove that a surjective ring homomorphism $\varphi: R \rightarrow S$ is strong if and only if $\operatorname{ker}(\varphi) \subseteq \operatorname{rad}(R)$.


[^0]
## 1. Introduction

Throughout this paper $R$ is a commutative ring with $1 \neq 0$. For any $a \in R$, we denote by $\mathcal{M}(a)$ (resp. $\mathcal{P}(a))$ the set of all maximal (resp. minimal prime) ideals of $R$ containing $a$. An ideal $I$ of a ring $R$ is a $z$-ideal (resp. $z^{\circ}$-ideal) if $\mathcal{M}(b)=\mathcal{M}(a)$ (resp. $\left.\mathcal{P}(b)=\mathcal{P}(a)\right)$ and $b \in I$, imply $a \in I$, for any $a, b \in R$. For each $a \in R, M(a)$ (resp. $P(a))$ is the intersection of all maximal (resp. minimal prime) ideals containing $a$. We use $\operatorname{Jac}(R)(\operatorname{resp} . \operatorname{rad}(R))$ instead of $M(0)($ resp. $P(0))$. For a ring $R$ the set of all minimal prime ideals of $R$ is denoted by $\operatorname{Min}(R)$. It is well-known that every maximal (resp. minimal prime) ideal is a $z$-ideal (resp. $z^{\circ}$-ideal).

We consider $X$ to be a completely regular Hausdorff space and we denote by $C(X)$ the ring of all real-valued continuous functions on the space $X$. Concerning topological spaces and $C(X)$ the reader is referred to [8] and [9] respectively.

For more information about algebraic concepts see [2] and [11], $z$-ideals and $z^{\circ}$-ideals in commutative rings see [12] and [4] and about $z$-ideals and $z^{\circ}$-ideals in $C(X)$ see [3] and [5].

Let $n \in \mathbb{N}$. An ideal $I$ of a ring $R$ is a $z^{n}$-ideal (resp. $z^{\circ n}$-ideal) if $\mathcal{M}(a)=\mathcal{M}(b)$ (resp. $\mathcal{P}(a)=\mathcal{P}(b))$ and $a^{n} \in I$, imply $b^{n} \in I$, for any $a, b \in R$. The set of all $z^{n}$-ideals (resp. $z^{\circ n}$-ideals) of $R$ denotes by $\mathcal{Z}^{n}(R)$ (resp. $\mathcal{Z}^{\circ n}(R)$ ). In particular $\mathcal{Z}(R)$ (resp. $\mathcal{Z}^{\circ}(R)$ denotes the set of all $z$-ideals (resp. $z^{0}$-ideals) of $R$. For more information and details about $z^{n}$-ideals and $z^{\circ n}$-ideals, see [7], 14], respectively.

In Lemma 1 of [6] the $z^{n}$-ideals of a PID are characterized. In the next proposition we identify the $z^{n}$-ideals in $\mathbb{Z}$ by a preliminary method. Recall that maximal ideals of $\mathbb{Z}$ are exactly the principal ideals $(p)$, for $p$ a prime number. Thus if $a, b \in \mathbb{N}$ and $\mathcal{M}(a)=\mathcal{M}(b)$, then $a$ and $b$ are divisible by exactly the same prime numbers.

Proposition 1.1. Let $n \in \mathbb{N}$. The ideal $I=(k)$ in $\mathbb{Z}$ is a $z^{n}$-ideal if and only if $k=p_{1}^{r_{1}} p_{2}^{r_{2}} \ldots p_{t}^{r_{t}}$ where $p_{i}^{\prime}$ s are distinct prime numbers and $1 \leq r_{i} \leq n$ for any $i=1, \cdots, t$.

Proof. $(\Leftarrow)$ Suppose that $\mathcal{M}(a)=\mathcal{M}(b)$ and $a^{n} \in I$. Hence there exists $s \in \mathbb{Z}$ such that $a^{n}=p_{1}^{r_{1}} p_{2}^{r_{2}} \ldots p_{t}^{r_{t}} s$. Since $p_{1} \mid a$ we infer that $p_{1} \mid b$ and so $b=p_{1} s_{1}$ for an $s_{1} \in \mathbb{Z}$. Similarly, $p_{2} \mid a$ and hence $p_{2} \mid b$, therefore $b=p_{2} s_{2}$, for an $s_{2} \in \mathbb{Z}$. Now $p_{2} \mid p_{1} s_{1}$ and $\left(p_{2}, p_{1}\right)=1$ implies that $p_{2} \mid s_{1}$ and hence $s_{1}=p_{2} t_{1}$ for a $t_{1} \in \mathbb{Z}$. This implies that $b=p_{1} p_{2} t_{1}$. Also $p_{3} \mid a$ and so $p_{3} \mid b$, hence there exists $s_{3} \in \mathbb{Z}$ such that $b=p_{3} s_{3}$. Now $p_{3} \mid p_{1} p_{2} t_{1}$ and $\left(p_{3}, p_{1} p_{2}\right)=1$. Therefore $p_{3} \mid t_{1}$ and so $t_{1}=p_{3} t_{2}$ for a $t_{2} \in \mathbb{Z}$. It implies that $b=p_{1} p_{2} p_{3} t_{2}$. By continuing this process there exists $s_{0} \in \mathbb{Z}$ such that $b=p_{1} p_{2} \ldots p_{t} s_{0}$. Therefore $b^{n}=p_{1}^{r_{1}} p_{2}^{r_{2}} \ldots p_{t}^{r_{t}} u$ where $u=p_{1}^{n-r_{1}} p_{2}^{n-r_{2}} \ldots p_{t}^{n-r_{t}} s_{0}^{n}$. This consequence that $b^{n} \in I$ and we are done.
$(\Rightarrow)$ On the contrary and without loss of generality suppose that there exists $1 \leq i \leq t$ such that $r_{i}>n$ and $1 \leq r_{j} \leq n$ for any $j \neq i$. We consider $s \leq r_{i}$ such that $s n \geq r_{i}$.

We put $a=p_{1} \ldots p_{i} \ldots p_{t}$ and $b=p_{1} \ldots p_{i}^{s} \ldots p_{t}$. One can easily show that $\mathcal{M}(a)=\mathcal{M}(b)$ and $b^{n}=p_{1}^{n} \ldots p_{i}^{n s} \ldots p_{t}^{n} \in I$ while $a^{n} \notin I$ and it is a contradicts to assumption.

We deduce the following result immediately. See also Corollary 1 of [6].
Corollary 1.2. The ideal $I=(k)$ is a z-ideal in $\mathbb{Z}$ if and only if $k=p_{1} p_{2} \ldots p_{t}$ where $p_{i}^{\prime} s$ are distinct prime numbers.

## 2. RADICALLY $z$-COVERED AND RADICALLY $z^{\circ}$-COVERED

An ideal $I$ of a ring $R$ is said to be $\sqrt{z}$-ideal (resp. $\sqrt{z^{0}}$-ideal) if $\sqrt{I}$ is a $z$-ideal (resp. $z^{\circ}$-ideal), see [5]. The set of all $\sqrt{z}$-ideals (resp. $\sqrt{z^{\circ}}$-ideals) of $R$ is denoted by $\mathcal{Z}^{\text {rad }}(R)$ (resp. $\mathcal{Z}^{\text {orad }}(R)$ ). Also an ideal $I$ of a ring $R$ is called higher order $z$-ideal (resp. $z^{\circ}$-ideal) if there exist $n \in \mathbb{N}$ such that $I \in \mathcal{Z}^{n}(R)$ (resp. $I \in \mathcal{Z}^{\circ n}(R)$ ). A ring $R$ is called radically $z$-covered (resp. radically $z^{\circ}$-covered) if every $\sqrt{z}$-ideal (resp. $\sqrt{z^{\circ}}$-ideal) in $R$ is a higher order $z$-ideal (resp. $z^{\circ}$-ideal), see [7] and [14] for details.

It seems that an example of a non radically $z$-covered ring is essential which is not given in [7]. As a matter of fact we must show that there is an ideal $I$ of a ring $R$ such that $\sqrt{I}$ is a $z$-ideal but $I$ is not a $z^{n}$-ideal for every $n \in \mathbb{N}$. See the following example for this purpose.

Example 2.1. Let $F$ be a field and put $R=F\left[x_{1}, x_{2}, x_{3}, \cdots\right]$. Suppose that $I=$ $\left(x_{1}, x_{2}^{2}, x_{3}^{4}, x_{4}^{6}, \cdots, x_{n+1}^{2 n}, \cdots\right)$. It is clear that $\sqrt{I}=\left(x_{1}, x_{2}, x_{3}, \cdots\right)$ is a maximal ideal of $R$ and hence it is a $z$-ideal of $R$, that is, $I \in \mathcal{Z}^{\mathrm{rad}}(R)$. One can easily see that $\mathcal{M}\left(x_{n+1}\right)=\mathcal{M}\left(x_{n+1}^{2}\right)$, for $n=1,2, \cdots$ and $\left(x_{n+1}^{2}\right)^{n} \in I$ while $\left(x_{n+1}\right)^{n} \notin I$. This shows that $I$ is not a $z^{n}$-ideal for any $n \in \mathbb{N}$ and consequently $R$ is not radically $z$-covered.

Every $z^{n}$-ideal is a $z^{n+1}$-ideal, for any $n \in \mathbb{N}$, but the converse is not true, see Example 5 of [7].

Proposition 2.2. $\operatorname{rad}(R)=\operatorname{Jac}(R)$ if and only if every $z^{\circ n}$-ideal is a $z^{n}$-ideal, for an $n \in \mathbb{N}$.
Proof. $(\Leftarrow)$ Similar to Proposition 1.3 in [13].
$(\Rightarrow)$ Suppose that $\mathcal{M}(a)=\mathcal{M}(b)$ and $a^{n} \in I$. We claim that $\mathcal{P}(a)=\mathcal{P}(b)$. To see this, let $P \in \mathcal{P}(a)$. Hence $a \in P$ and there is $c \notin P$ such that $a c \in \operatorname{rad}(R)=\operatorname{Jac}(R)$. Therefore $M(a) \cap M(c)=M(a c) \subseteq \operatorname{Jac}(R)=\operatorname{rad}(R) \subseteq P$. This implies that $M(a) \subseteq P$. Since $\mathcal{M}(a)=\mathcal{M}(b)$ we infer that $M(a)=M(b)$. Hence $M(b) \subseteq P$ and so $b \in P$. Thus $P \in \mathcal{P}(b)$, that is $\mathcal{P}(a) \subseteq \mathcal{P}(b)$. Similarly, $\mathcal{P}(b) \subseteq \mathcal{P}(a)$ and hence $\mathcal{P}(a)=\mathcal{P}(b)$. Since $I$ is a $z^{\circ n^{n} \text {-ideal we }}$ conclude that $b^{n} \in I$ and we are done.

In $C(X)$ if $\sqrt{I}$ is a $z^{\circ}$-ideal then so is $I$, see Proposition 3.4 in [5], therefore $C(X)$ is radically $z^{\circ}$-covered.

It seems that an example of a non radically $z^{\circ}$-covered ring is essential which is not given in 14. The following example shows that a ring may not be radically $z^{\circ}$-covered.

Example 2.3. Let $F$ be a field and put $S=F\left[x_{1}, x_{2}, x_{3}, \cdots\right]$. Suppose that $I=$ $\left(x_{1}^{2}, x_{2}^{4}, x_{3}^{6}, \cdots, x_{n}^{2 n}, \cdots\right)$ and $J=\left(x_{1}, x_{2}^{2}, x_{3}^{3}, \cdots, x_{n}^{n}, \cdots\right)$. Now assume that $R=\frac{S}{I}$ and $K=\frac{J}{I}$. It is clear that $\sqrt{K}=\frac{\left(x_{1}, x_{2}, x_{3}, \cdots\right)}{I}$ is a minimal prime ideal of $R$ and hence it is a $z^{\circ}$-ideal of $R$, that is, $K \in \mathcal{Z}^{\circ \mathrm{rad}}(R)$. We claim that $K$ is not a $z^{\circ n}$-ideal for any $n \in \mathbb{N}$. To see this we observe that $\mathcal{P}\left(x_{n+1}+I\right)=\mathcal{P}\left(x_{n+1}^{2}+I\right)$, for $n=1,2, \cdots$ and $\left(x_{n+1}^{2}+I\right)^{n} \in K$ while $\left(x_{n+1}+I\right)^{n} \notin K$. This shows that $K$ is not a $z^{\circ n}$-ideal for any $n \in \mathbb{N}$ and consequently $R$ is not radically $z^{\circ}$-covered.

## 3. $z^{\circ}$-TERMINATING

Every $z^{\circ n}$-ideal is a $z^{\circ n+1}$-ideal, for any $n \in \mathbb{N}$. Hence we have the ascending chain $\mathcal{Z}^{\circ}(R) \subseteq$ $\mathcal{Z}^{\circ 2}(R) \subseteq \mathcal{Z}^{\circ 3}(R) \subseteq \cdots$ of collections of ideals of $R$. We call it $z^{\circ}$-tower of $R$. If there is a positive integer $k$ such that $\mathcal{Z}^{\circ k}(R)=\mathcal{Z}^{\circ k+1}(R)=\cdots$ we say the $z^{\circ}$-tower terminates.

Definition 3.1. ([14], Definition 4.2.8) A ring $R$ is $z^{\circ}$-terminating in case its $z^{\circ}$-tower terminates.

In $C(X)$ we have $\mathcal{Z}^{\circ}(C(X))=\mathcal{Z}^{\circ 2}(C(X))=\cdots$, hence $C(X)$ is a $z^{\circ}$-terminating ring. In $\mathbb{Z}$ for any $n \in \mathbb{N}$ we have $\mathcal{Z}^{\circ n}(\mathbb{Z})=\{(0)\}$, so $\mathbb{Z}$ is $z^{\circ}$-terminating.

The ring of integers is not $z$-terminating, see Example 5 of [7]. It seems that an example of a non $z^{\circ}$-terminating ring is essential which is not given in [14]. The following example shows that a $z^{\circ n+1}$-ideal may not be a $z^{\circ n \text {-ideal and consequence that a ring may not be }}$ $z^{\circ}$-terminating.

Example 3.2. Let $S$ be a reduced ring with subring $\mathbb{Z}$ and $P \neq(0)$ be a minimal prime ideal in $S$ with $P \cap \mathbb{Z}=(0)$. By Lemma 3.6 in $[5], Q=x P[x] \subseteq S[x]$ is a minimal prime ideal in $R=\mathbb{Z}+x S[x]$ and hence it is a $z^{\circ}$-ideal. Now we consider $Q_{n}=x^{n} P[x]$ with $1 \neq n \in \mathbb{N}$. Clearly, $\sqrt{Q_{n}}=Q$. We claim that $Q_{n+1} \in \mathcal{Z}^{\circ n+1}(R)$ but $Q_{n+1} \notin \mathcal{Z}^{\circ n}(R)$. For the former, suppose that $\mathcal{P}(f)=\mathcal{P}(g)$ and $f^{n+1} \in Q_{n+1}$. Hence $f \in \sqrt{Q_{n+1}}=Q$. Therefore $Q \in \mathcal{P}(f)=\mathcal{P}(g)$ implies that $g \in Q$. So there exists $h(x) \in P[x]$ such that $g(x)=x h(x)$. It implies that $g_{0}=0$, where $g_{0}$ is constant coefficient of $g$. Consequently, $(g(x))^{n+1}=x^{n+1} l(x)$ for an $l(x) \in P[x]$, that is, $g^{n+1} \in Q_{n+1}$. Next suppose that $0 \neq a \in P$. Put $f(x)=a x^{2}$ and $g(x)=a x$. Clearly, $\mathcal{P}(f)=\mathcal{P}(g)$. Now $(f(x))^{n}=x^{n+1} a^{n} x^{n-1} \in x^{n+1} P[x]=Q_{n+1}$ but $(g(x))^{n}=x^{n} a^{n} \notin x^{n+1} P[x]=Q_{n+1}$. This show that $Q_{n+1}$ is not a $z^{\circ n \text {-ideal. }}$

Proposition 3.3. (14, Theorem 4.2.11) Noetherian rings are radically $z^{\circ}$-covered.

If $X$ is an infinite set then $C(X)$ is radically $z^{\circ}$-covered ring which is not Noetherian. In Example 3.2 if $S$ is a finitely generated $\mathbb{Z}$-module, then $R$ is a Noetherian ring, see Proposition 2.1 in [10], so by the above proposition it is a radically $z^{\circ}$-covered ring while is not $z^{\circ}$-terminating.

It is well known that if $\varphi: R \rightarrow S$ is a surjective ring homomorphism then $\varphi(\operatorname{rad}(R)) \subseteq$ $\operatorname{rad}(S)$. A ring homomorphism $\varphi: R \rightarrow S$ is strong if it is surjective and for every minimal prime ideal $P$ of $R$, there is a minimal prime ideal $Q$ of $S$ such that $\varphi^{-1}[Q]=P$, see Definition 4.4.1 of 14].

Proposition 3.4. Let $\varphi: R \rightarrow S$ is a strong homomorphism. Then
(1) $\varphi(\operatorname{rad}(R))=\operatorname{rad}(S)$.
(2) if $P \in \operatorname{Min}(R)$, then $\varphi[P] \in \operatorname{Min}(S)$.
(3) if $Q \in \operatorname{Min}(S)$, then $\varphi^{-1}[Q] \in \operatorname{Min}(R)$.

Proof. (1) It is clear.
(2) It is clear that $\varphi[P]$ is a proper prime ideal of $S$. We are to show that $\varphi[P] \in \operatorname{Min}(S)$. Let $y \in \varphi[P]$, hence there exists $x \in P$ such that $y=\varphi(x)$. Therefore there is $b \notin P$ such that $b x \in \operatorname{rad}(R)$. Now $\varphi(b x)=\varphi(b) \varphi(x)=\varphi(b) y \in \varphi(\operatorname{rad}(R))=\operatorname{rad}(S)$. On the other hand $\varphi(b) \notin \varphi[P]$. Otherwise $\varphi(b)=\varphi(t)$ for a $t \in P$. Hence $b-t \in \operatorname{ker}(\varphi) \subseteq P$ implies that $b \in P$ which is not true. It implies that $\varphi[P]$ is a minimal prime ideal of $S$.
(3) Let $Q \in \operatorname{Min}(S)$ and $a \in \varphi^{-1}[Q]$. Hence $\varphi(a) \in Q$ and so there exists $y \notin Q$ such that $y \varphi(a) \in \operatorname{rad}(S)$. On the other hand, there is $x \in R$ such that $\varphi(x)=y$. Therefore $\varphi(a x) \in \operatorname{rad}(S)=\varphi(\operatorname{rad}(R))$. Thus $\varphi(a x)=\varphi(t)$ for a $t \in \operatorname{rad}(R)$. So $a x-t \in \operatorname{ker}(\varphi) \subseteq \operatorname{rad}(R)$ implies that $a x \in \operatorname{rad}(R)$. Furthermore since $\varphi(x) \notin Q$ we infer that $x \notin \varphi^{-1}[Q]$. It implies that $\varphi^{-1}[Q]$ is a minimal prime ideal of $R$.

Proposition 3.5. Let $\varphi: R \rightarrow S$ is a surjective ring homomorphism. Then the following statements are equivalent.
(1) $\varphi$ is strong.
(2) $\operatorname{ker}(\varphi) \subseteq \operatorname{rad}(R)$.
(3) For any $a_{1}, a_{2} \in R, \mathcal{P}\left(\varphi\left(a_{2}\right)\right) \subseteq \mathcal{P}\left(\varphi\left(a_{1}\right)\right)$ implies that $\mathcal{P}\left(a_{2}\right) \subseteq \mathcal{P}\left(a_{1}\right)$.

Proof. $(1 \Rightarrow 2)$ Let $P \in \operatorname{Min}(R)$, by hypothesis, there exists $Q \in \operatorname{Min}(S)$ such that $\varphi^{-1}[Q]=P$. Then $\operatorname{ker}(\varphi) \subseteq \varphi^{-1}[Q]=P$, and hence $\operatorname{ker}(\varphi) \subseteq \operatorname{rad}(R)$.
$(2 \Rightarrow 1)$ Let $P \in \operatorname{Min}(R)$. We will show that $P=\varphi^{-1}[\varphi[P]]$ and we conclude by Proposition 3.4. Let $a \in \varphi^{-1}[\varphi[P]]$, then $\varphi(a) \in \varphi[P]$, and so $\varphi(a)=\varphi(x)$ for some $x \in P$. It follows that $x-a \in \operatorname{ker}(\varphi) \subseteq P$, by hypothesis. Thus $a \in P$. The direct inclusion is clear.
$(2 \Rightarrow 3)$ Let $P \in \mathcal{P}\left(a_{2}\right)$, hence $a_{2} \in P$. Therefore $\varphi\left(a_{2}\right) \in \varphi[P]$. By Proposition 3.4 we have $\varphi[P] \in \mathcal{P}\left(\varphi\left(a_{2}\right)\right)$ and by hypothesis $\varphi[P] \in \mathcal{P}\left(\varphi\left(a_{1}\right)\right)$, that is $\varphi\left(a_{1}\right) \in \varphi[P]$. Hence $\varphi\left(a_{1}\right)=\varphi(t)$ for a $t \in P$. This consequence $a_{1}-t \in \operatorname{ker}(\varphi) \subseteq \operatorname{rad}(R) \subseteq P$ and so $a_{1} \in P$, i.e., $P \in \mathcal{P}\left(a_{1}\right)$.
$(3 \Rightarrow 2)$ Suppose that $x \in \operatorname{ker}(\varphi)$, hence $\varphi(x)=0$. Since $\mathcal{P}(\varphi(0)) \subseteq \mathcal{P}(\varphi(x))$ by hypothesis $\mathcal{P}(0) \subseteq \mathcal{P}(x)$. Therefore $P(x) \subseteq P(0)=\operatorname{rad}(R)$. It implies that $x \in \operatorname{rad}(R)$.

Corollary 3.6. (14], Lemma 4.4.6) Let $\varphi: R \rightarrow S$ be a strong homomorphism. If $J$ is a $z^{\circ n}$-ideal of $S$, then $\varphi^{-1}[J]$ is a $z^{\circ n}$-ideal of $R$.

Proposition 3.7. (14), Proposition 4.4.7) Let $\varphi: R \rightarrow S$ is a strong homomorphism. If $R$ is $z^{\circ}$-terminating or radically $z^{\circ}$-covered, then so is $S$.

Remark 3.8. a) Let $\varphi: R \rightarrow S$ be a surjective ring homomorphism. If $\mathcal{Z}^{\mathrm{rad}}(R)=\mathcal{Z}(R)$ then $\mathcal{Z}^{\mathrm{rad}}(S)=\mathcal{Z}(S)$. Hence $\frac{C(X)}{I}$ is a radically $z$-covered ring, for every ideal $I$ of $C(X)$.
b) Let $\varphi: R \rightarrow S$ is a strong homomorphism. If $\mathcal{Z}^{\text {orad }}(R)=\mathcal{Z}^{\circ}(R)$ then $\mathcal{Z}^{\text {orad }}(S)=\mathcal{Z}^{\circ}(S)$.
c) Let $I$ be an ideal of $R$ such that $I \subseteq \operatorname{rad}(R)$ and $\varphi: R \rightarrow \frac{R}{I}$ be a natural ring homomorphism.

If $R$ is $z^{\circ}$-terminating (resp. radically $z^{\circ}$-covered), then $\frac{R}{I}$ is $z^{\circ}$-terminating (resp. radically $z^{\circ}$-covered).
d) If $\operatorname{rad}(R)$ is contained in every higher order $z^{\circ}$-ideal of $R$, then $R$ is $z^{\circ}$-terminating (resp. radically $z^{\circ}$-covered) if and only if $\frac{R}{\operatorname{rad}(R)}$ has the same property.

## 4. Acknowledgments

The author would like to thank the referee for reading the article carefully and giving useful comments. Also I am grateful to the Research Council of Shahid Chamran University of Ahvaz financial support (GN:SCU.MM401.648).

## References

[1] D. D. Anderson and J. Kintzinger, Ideals in direct products of commutative rings, Bull. Austr. Math. Soc., 77 (2008) 477-483.
[2] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesely, Reading Mass, 1969.
[3] F. Azarpanah, O. A. S. Karamzadeh and A. Rezaei Aliabad, On $z^{\circ}$-ideal in $C(X)$, Fund. Math., 160 (1999) 15-25.
[4] F. Azarpanah, O. A. S. Karamzadeh and A. Rezaei Aliabad, On ideals consisting entirely of zero divisors, Comm. Algebra, 28 (2000) 1061-1073.
[5] F. Azarpanah and R. Mohamadian, $\sqrt{z}$-ideals and $\sqrt{z^{\circ}}$-ideals in $C(X)$, Acta. Math. Sinica. English Series, 23 (2007) 989-996.
[6] A. Benhissi and A. Maatallah, A question about Higher order z-ideals in commutative rings, Quaest. Math., 43 (2020) 1155-1157.

Alg. Struc. Appl. Vol. 11 No. 1 (2024) 55-61.
[7] T. Dube and O. Ighedo, Higher order $z$-ideals in commutative rings, Miskolc Math. Notes, 17 No. 1 (2016) 171-185.
[8] R. Engelking, General Topology, PWN-polish Science Publication, Warsaw, Poland, 1977.
[9] L. Gillman and M. Jerison, Rings of Continuous Functions, Springer-Verlag, Berlin, Germany, 1976.
[10] S. Hizem, Chain conditions in rings of the form $A+x B[x]$ and $A+x I[x]$, J. Commut. Algebra, (2009) 259-274.
[11] I. Kaplansky, Commutative Rings, Allyn and Bacon, Boston, MA, USA, 1970.
[12] G. Mason, z-ideals and prime ideals, J. Algebra, 26 (1973) 280-297.
[13] A. Rezaei Aliabad and R. Mohamadian, On z-Ideals and $z^{\circ}$-Ideals of Power Series Rings, J. Math. Ext., 7 (2013) 93-108.
[14] Tlharesakgosi, B. Topics on z-ideals of Commutative Rings, University of South Africa, Pretoria, 2017.

## Rostam Mohamadian

Department of Mathematics,
Faculty of Mathematical Sciences and Computer,
Shahid Chamran University of Ahvaz, Ahvaz, Iran.
mohamadian_r@scu.ac.ir


[^0]:    DOI: 10.22034/as.2023.18637.1553
    MSC(2010): Primary: 13A15, 13B30; Secondary: 13F10.
    Keywords: Radically $z$-covered, Radically $z^{\circ}$-covered, $z^{n}$-ideal, $z^{\circ n}$-ideal, $z^{\circ}$-terminating.
    Received: 22 June 2022, Accepted: 22 May 2023
    *Corresponding author

