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SEMIHYPERGROUPS THAT EVERY HYPERPRODUCT ONLY
CONTAINS SOME OF THE FACTORS

DARIUSH HEIDARI∗

Abstract. Breakable semihypergroups, defined by a simple property: every non-empty sub-

set of them is a subsemihypergroup. In this paper, we introduce a class of semihypergroups,

in which every hyperproduct of n elements is equal to a subset of the factors, called πn-

semihypergroups. Then, we prove that every semihypergroup of type π2k, (k ≥ 2) is break-

able and every semihypergroup of type π2k+1 is of type π3. Furthermore, we obtain a de-

composition of a semihypergroup of type πn into the cyclic group of order 2 and a breakable

semihypergroup. Finally, we give a characterization of semi-symmetric semihypergroups of

type πn.

1. Introduction

A natural extension of well-known group theory is introduced by Marty [21] which leads to
begin the theory of algebraic hyperstructures. Furthermore, algebraic hyperstructure theory
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has various applications in other area of science such as probability theory, graphs, fuzzy
sets, automata, cryptography, codes, chemistry, and artificial intelligence (See for example
[8, 16, 17, 22, 23, 24, 27] ). Some outline of applications can be found in the two important
books: the first is “Applications of Hyperstructure Theory” by Corsini and Leoreanu [4] and
the other is “Hyperring Theory and Application” by Davvaz and Leoreanu [6].

There has been numerous studies to investigate the concept of semihypergroup as a gener-
alization of semigroup. Basic definitions and results about the semihypergroups are found in
[7, 9, 10, 12, 15, 29].

This paper is in continuation with our earlier paper [13] where we extended the classical
concepts of breakable semigroups to algebraic hypercompositional structures. Recall that a
semigroup is called breakable if every subset is a subsemigroup. Rédei [26] has proved that
they are semigroups with empty Frattini-substructure. One can see that a semigroup S is
breakable if and only if xy ∈ {x, y} for any x, y ∈ S.

Using the associated power semigroup, other researchers presented another characteriza-
tion of above-mentioned semigroups [28], that is, a semigroup is breakable if and only if its
power semigroup is idempotent. However, Rédei provided a complete description of breakable
semigroups [26], stated in Theorem 2.1.

In the theory of algebraic hyperstructures, the notion of hyperoperation on the set S is
defined as a mapping from S ×S to P∗(S), where P∗(S) is the set of non-empty subsets of S.
If the set S is equipped with a binary associative operation, i.e. (S, ·) is a semigroup, then this
operation can be extended also to P∗(S), in the most natural way: A⋆B = {a·b | a ∈ A, b ∈ B}.
In this way, (P∗(S), ⋆) becomes a semigroup, called the power semigroup of S. In particular,
if (G, ·) is a group, then a non-empty subset G of P∗(G) is called an HX-group [18] on G.
An overview on the links between HX-groups and hypergroups has been recently proposed by
Cristea et al. [5].

Similarly, if (S, ◦) is a semihypergroup, then we can again define an associative operation
as follows:

A ⋆ B =
⋃

a∈A,b∈B
a ◦ b,

for all A,B ∈ P∗(S) so (P∗(S), ⋆) is a semigroup.
In [3] Corsini introduced the notion of Chinese hyperoperation associated with HX-groups

defined by a◦̂b = {a · b | a ∈ A, b ∈ B}, where G is a group, a, b ∈ G and A,B ∈ P∗(G).
HX-groups and HX-hypergroups have an important role in applications to modeling, chaotic
(hyperchaotic) systems and differential equations [31].

In [13, 14] we have presented and discussed on an extended version of Rédei’s theorem
for semi-symmetric breakable semihypergroups. In this paper, we continue our study and
generalize the property (An), that is considered by Pelicán [25] on semigroups, in order to
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investigate and characterize semihypergroups that every hyperproduct only contains some of
the factors.

The rest of the paper is structured as follows. In Section 2, we recall some definitions and
properties of semigroups and semihypergroups. Since the paper aims to be self-contained,
some of the previous results of breakable semihypergroups are also included.

In Section 3, we define the concept of semihypergroups of type πn, give some examples and
prove some properties. In particular, we show that every semihypergroup of type π2k, (k ≥ 2)
is breakable and every semihypergroup of type π2k+1 is of type π3.

The main part of the paper is covered by Section 4, where we present a characterization of
semihypergroups of type πn using the power set and the generalization of Rédei’s theorem for
semi-symmetric semihypergroups, that permits to decompose πn-semihypergroups in a certain
way.

2. Preliminaries

Let us begin with some basic definitions and notations that will be needed in this paper.
The reader is referred to [25, 26, 28] for additional details of classical algebraic structures and
to [2, 4, 30] for further discussions about algebraic hyperstructures.

Let (S, ·) be a semigroup. Then S is called a left (right) zero semigroup (l-semigroup (r-
semigroup) for short), if each element is a left (right) zero element, i.e. for any x ∈ S, we have
x · y = x(x · y = y) for all y ∈ S.

A semigroup S is breakable if every non-empty subset of S is a subsemigroup. Breakable
semigroups are considered by Rédei [26] as a subclass of the semigroups having an empty
Frattini-substructure. One can see that a semigroup (S, ·) is breakable if and only if x · y ∈
{x, y} for any x, y ∈ S.

In [26] a complete description of the structure of a breakable semigroup is given by following
Theorem.

Theorem 2.1. [26] A semigroup S is breakable if and only if, it can be partitioned into classes
and the set of classes can be ordered in such a way that every class constitutes an l-semigroup
or an r-semigroup, and for any two elements x ∈ C and y ∈ C ′ of two different classes C,C ′,
with C < C ′, we have x · y = y · x = y.

Pelicán in [25] generalized Redei’s theorem in another direction and determined all semi-
groups with the following property:

(An) for any a1, a2, . . . , an ∈ S, a1a2 · · · an = ai,
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for some 1 ≤ i ≤ n. One can see that semigroups with the property (A2) are exactly the
breakable ones and every breakable semigroup satisfies (An, )(n ≥ 2). On the other hand, Z2

(the cyclic group oi order 2) satisfies (A3) but not (A2).
Tamura and Shafer characterized a breakable semigroup using properties of its power semi-

group [28].
The fundamental relations defined on hyperstructures in order to obtain an equivalent clas-

sical structure from a given hyperstructure. More exactly, let (S, ◦) be a semihypergroup
and define the relation β and its transitive closure β∗. Then the quotient S/β∗ is a semi-
group with a suitable operation, called the fundamental semigroup related to S. Here below
we recall the construction, introduced by Koskas [20] and studied mainly by Freni [11], who
proved that β = β∗ on hypergroups. For all natural numbers n > 1, define the relation βn

on a semihypergroup (S, ◦), as follows: aβnb if and only if there exist x1, . . . , xn ∈ S such
that {a, b} ⊆

∏n
i=1 xi. Take β =

⋃
n≥1 βn, where β1 = {(x, x) | x ∈ S} is the diagonal re-

lation on S. Denote by β∗ the transitive closure of β. The relation β∗ is a strongly regular
relation. On the quotient S/β∗ define a binary operation as follows: β∗(a) � β∗(b) = β∗(c)

for all c ∈ β∗(a) ◦ β∗(b). Moreover, the relation β∗ is the smallest equivalence relation on a
semihypergroup S, such that the quotient S/β∗ is a semigroup. The quotient S/β∗ is called
the fundamental semigroup.

Definition 2.2. [13] A semihypergroup (S, ·) is called semi-symmetric if |x ◦ y| = |y ◦ x| for
every x, y ∈ S.

It is clear that any commutative semihypergroup is also semi-symmetric.

Definition 2.3. [13] A semihypergroup S is called breakable if every non-empty subset of S
is a subsemihypergroup.

For example, l-semigroups and r-semigroups are breakable semihypergroups. If the property
x, y ∈ x ◦ y holds for all elements x, y ∈ S, then the hyperoperation “◦” is called extensive or
closed [1, 22].

Example 2.4. Consider S = ({1, 2, 3, 4, 5}, ◦) defined by the following Cayley table

◦ 1 2 3 4 5

1 1 2 3 4 5

2 2 2 {2, 3} 2 {2, 5}

3 3 {2, 3} 3 3 {3, 5}

4 4 2 3 4 5

5 5 {2, 5} {3, 5} 5 5

Then S is a breakable semihypergroup.
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The most simple hyperoperation of this type was defined by the first time by Konguetsof
[19] around 70’s as x ◦ y = {x, y} for all x, y ∈ S and re-considered by Massouros [23, 24] in
the framework of automata theory, proving the following result.

Theorem 2.5. [24] Let H be a non-empty set. For every x, y ∈ H define x ⋆B y = {x, y}.
Then (H, ⋆B) is a join hypergroup.

G. Massouros called this hyperstructure a B-hypergroup, after the binary result that the
hyperoperation gives.

Proposition 2.6. [13] The fundamental semigroup of a breakable semihypergroup is breakable,
too.

Theorem 2.7. [13] A semi-symmetric semihypergroup (S, ◦) is breakable if and only if it can
be partitioned into classes, i.e. S =

⋃
γ∈Γ Sγ, where Γ is a chain and all Sγ are pairwise

disjoint l-semigroups, r-semigroups or B-hypergroups. Moreover, for every x ∈ Sα and y ∈ Sβ,
with α < β, we have x ◦ y = y ◦ x = y.

3. Semihypergroups of type πn

In this section we continue to study the notion of breakable semihypergroups based on new
point of view that is called πn-semihypergroups or semihypergroups of type πn.

Let n be a positive integer greater than 1. In this section, we study semihypergroups in
which every hyperproduct of n elements of it is equal to a subset of factors. First, we adapt
the property An for semihypergroups as follows:

Definition 3.1. Let (S, ◦) be a semihypergroup and n ≥ 2. Then, we define the property πn

as follows:

(πn) for any a1, a2, . . . , an ∈ S, a1 ◦ a2 ◦ · · · ◦ an ⊆ {a1, a2, . . . , an}.

Moreover, S is called a πn-semihypergroup or a semihypergroup ot type πn, whenever satisfies
the property (πn).

Every semigroup with the property (An) satisfies the property (πn) this means that (πn) is
a suitable generalization of (An).

Remark 3.2. Semihypergroups of type π2 are exactly the breakable ones and every breakable
semihypergroup satisfies πn for every n ≥ 2. On the other hand, in addition to the group Z2,
there exist semihypergroups of type π3 but not π2 (see Example 3.3). It will turn out that in a
certain sense this is the only essentially new type of semihypergroups (that are not semigroups)
with the property (πn).
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Example 3.3. (a) Consider the set S1 = {e, a, b, c, d, f} and define on it the hyperproduct
given by Table 3.3. Then, (S1, ◦1) is a non-breakable π3-semihypergroup.

◦1 e a b c d f

e e a b c d f

a e e b c d f

b b b b b d f

c c c c c d f

d d d d d d f

f f f f f {d,f} f
Table 1. A non-breakable π3-semihypergroup on 6 elements

(b) Consider the set S2 = {e, a, b, c, d} and define on it the hyperproduct given by Table
3.3. Then, (S2, ◦2) is a non-breakable π3-semihypergroup.

◦2 e a b c d

e e a b c d

a e e b c d

b b b b b {b,d}

c c c {b,c} c {c,d}

d d d {b,d} d d
Table 2. A non-breakable π3-semihypergroup on 5 elements

In the following theorem we prove that a πn-semihypergroup is breakable if and only if n is
an even integer.

Theorem 3.4. If (S, ◦) is a semihypergroup of type πn for some n = 2k (k ≥ 2), then it is
breakable.

Proof. Let k ≥ 2 and S be a semihypergroup of type π2k. Suppose that a ∈ S and b ∈ a2.
Then, b ◦ a2k−2 ⊆ a2k = a so we have

(1) b ◦ a2k−2 = a.

Also, the property (π2k) implies

(2) b2 ◦ a2k−2 ⊆ {a, b}.
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Since b ∈ a2 we have

(3) b2 ◦ a2k−2 ⊆ a2k+2 = a3.

From the equations (2) and (3) we can conclude that a ∈ a3 or b ∈ a3. In the former case, we
have a2 ⊆ a4 ⊆ · · · ⊆ a2k = a thus,

(4) a2 = a.

Now, we consider the case b ∈ a3. Then, the equation (1) concludes that

a = b ◦ a2k−2 ⊆ a3 ◦ a2k−2 = a2

hence, by the property (π2k)

(5) ak ⊆ a2k = a.

Hence, the equations (4) and (5) imply that

(6) ak = a.

Now, let x, y ∈ S and z ∈ x ◦ y. Then, from the equation (6) and the property (π2k) we can
conclude that

(7) z = zk ∈ (x ◦ y)k ⊆ {x, y},

therefore, x ◦ y ⊆ {x, y} and the proof is complete.

In what follows, we focus on non-breakable semihypergroups of type πn where n is an odd
integer greater than 1.

Lemma 3.5. Let (S, ◦) be a non-breakable semihypergroup of type π2k+1. Then, there exist
e, u ∈ S such that u2 = e 6= u. Furthermore, e is an identity element.

Proof. Let (S, ◦) be a non-breakable semihypergroup of type π2k+1, where k ≥ 1. Let us first
point out that if x ∈ x2 for every x ∈ S, then

x ∈ x2 ⊆ x3 ⊆ · · · ⊆ x2k+1 ⊆ {x},

thus x = xn for every n ≥ 1 hence, x ◦ y = x2k ◦ y ⊆ {x, y} so S is breakable that is a
contradiction. It follows that there exists u ∈ S such that u /∈ u2. Now, take c ∈ u2 and
e ∈ c2k. Then, ck ◦ u ⊆ u2k ◦ u = u hence ck ◦ u = u. Similarly u ◦ ck = u. Furthermore,

c2k ◦ u = ck ◦ (ck ◦ u) = ck ◦ u = u.

and similarly we have u ◦ c2k = u. Also, since e 6= u and

e ∈ c2k = c2k−1 ◦ c ⊆ c2k−1 ◦ a2 ⊆ {c, u}.
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We conclude that e = c. Therefore, e2 ⊆ c ◦ c2k = c = e hence e2 = e. Now, we show that
e ◦ x = x = x ◦ e for every x ∈ S \ {e, u}. It is sufficient to prove that e /∈ e ◦ x. If e ∈ e ◦ x,
then

e = ek ⊆ ek−1 ◦ (e ◦ x) = ek ◦ x ⊆ u2k ◦ x ⊆ {u, x},

a contradiction. On the other hand, e ◦ x = e2k ◦ x ⊆ {e, x}. Thus, e ◦ x = x, and similarly we
get x ◦ e = x.

Consequently e is an identity element of S. Hence, uniqueness of the identity element implies
u2 = e.

Theorem 3.6. If (S, ◦) is a semihypergroup of type π2k+1, (k ≥ 2), then (S, ◦) is also of type
π3.

Proof. Let (S, ◦) be a semihypergroup of type (π2k+1), (k ≥ 2). If S is breakable, then the
conclusion follows from Remark 3.2. Now, suppose that S is non-breakable and x, y, z ∈ S.
Then, Lemma 3.5 implies S has the identity element e and we can consider the following two
cases.

Case 1. Let e ∈ {x, y, z}. Then, take x = e we may write

x ◦ y ◦ z = e2k−1 ◦ y ◦ z ⊆ {e, y, z},

as required.
Case 2. Let e /∈ {x, y, z}. Then, suppose by contradiction that x ◦ y ◦ z ⊈ {x, y, z}. Since

x ◦ y ◦ z = x ◦ y ◦ z ◦ e2k−2 ⊆ {x, y, z, e}.

We obtain e ∈ x ◦ y ◦ z and claim that

(8) e /∈ (x ◦ y) ∩ (y ◦ z).

If e ∈ x ◦ y, then e ∈ (x ◦ y)k−1 ◦ (x ◦ y ◦ z) ⊆ {x, y, z} a contradiction. Similarly, we can see
that e /∈ y ◦ z.

On the other hand, x ◦ y = x ◦ y ◦ e2k−1 ⊆ {x, y, e} implies x ◦ y ⊆ {x, y} thus we have

e ∈ x ◦ y ◦ z = (x ◦ z) ∪ (y ◦ z),

hence, Equation 8 concludes that e ∈ x ◦ z. Then, we obtain

e ∈ (x ◦ y ◦ z) ◦ (x ◦ z)k−1 ⊆ {x, y, z}.

Thus, this contraction completes the proof.

Lemma 3.7. Let (S, ◦) be a non-breakable semihypergroup of type π3 and x, y ∈ S. Then, the
following assertions hold:
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(i) |x2| = 1;
(ii) If x 6= y, then x ◦ y ⊆ {x, y};
(iii) If x 6= x2 = y2 6= y, then x = y.

Proof. Let (S, ◦) be a non-breakable semihypergroup of type π3.
(i) For every x ∈ S, we can consider two cases:
Case 1. Let x ∈ x2. Then, x2 ⊆ x3 = x so x2 = x.
Case 2. Let x /∈ x2. Then, there exists a ∈ x2 such that a 6= x. Thus, ax ⊆ x3 = x hence

the property (π3) implies x2 = ax2 ⊆ {a, x} thus x2 = a. Therefore, in any cases we have
|x2| = 1.

(ii) Suppose by contradiction that x ◦ y ⊈ {x, y} for two distinct elements x, y ∈ S. Then,
there exists z ∈ S \ {x, y} such that z ∈ x ◦ y. Hence, part (i) and the property (π3) imply

x ◦ z ◦ y ⊆ x2 ◦ y2 ⊆ {x2, y} ∩ {x, y2}.

So, if x ∈ x ◦ z ◦ y, then x2 = x thus z ∈ x ◦ y = x2 ◦ y ⊆ {x, y}, contradiction. Similarly, if
y ∈ x ◦ z ◦ y we have z ∈ {x, y} is a contradiction. It follows that z = x ◦ z ◦ y = x2 = y2 thus
x2 = z ∈ x◦y and hence x = x3 ∈ x2 ◦y = y3 = y is a contradiction. Therefore, x◦y ⊆ {x, y}.

(iii) Let x, y ∈ S such that x 6= x2 = y2 6= y. Then, by Lemma 3.5 and part (i) we conclude
that e = x2 = y2, where e is the identity element of S. Suppose x 6= y and z ∈ x ◦ y, then
z ◦ y ⊆ x ◦ y2 = x so part (ii) implies x = z hence,

y2 = e = x ◦ x = x ◦ (x ◦ y) = x2 ◦ y = y.

This contradiction completes the proof.

The following theorem shows that the minimum order of non-breakable semihypergroups of
type π3 which are not semigroups is 4.

Proposition 3.8. Every non-breakable π3-semihypergroup having cardinality less than 4 is a
semigroup. Moreover, there exists a non-breakable π3-semihypergroup having cardinality 4.

Proof. Let (S, ◦) be a non-breakable π3-semihypergroup. Then, by Lemma 3.7 there exist
e, u ∈ S such that e is the identity element of S and e = u2 6= e. So, if |S| = 2, then S is
isomorphic to the cyclic groups of order 2. Let S = {e, u, a}. Then, Lemma 3.7(ii) implies
a2 6= e. Also, if a2 6= u, then e = a2 ◦ u ⊆ a, u is impossible. Thus, a2 = a. Moreover, a ◦ u,
since u ∈ a ◦ u implies e ∈ u ◦ a ◦ u contradiction. Similarly, u ◦ a = a. So, S is a semigroup.

An example having order 4. Consider the set S = {e, u, a, b} and define on it the hyper-
product given by Table 3. Then, (S, ◦) is a non-breakable π3-semihypergroup.
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◦ e u a b

e e u a b

u u e a b

a a a a {a,b}

b b b {a,b} b
Table 3. A non-breakable π3-semihypergroup on 4 elements

4. Characterization of πn-semihypergroups

In what follows, we define a hyperoperation on the disjoint union of two distinct hyper-
groupoids in order to construct a new hypergroupoid containing each of them.

Definition 4.1. Let (A, ◦) and (B, ∗) be two hypergroupoids such that A∩B = ∅. Then, we
define the hyperoperation ⊛ on the set S = A ∪B as follows: let x, y ∈ S

x⊛ y =



x ◦ y; if x, y ∈ A,

y; if x ∈ A, y ∈ B,

x; if x ∈ B, y ∈ A,

x ∗ y; if x, y ∈ B.

The hypergroupoiud (S,⊛) is called the disjoint extension of A by B and denoted by S = A]B.

The following elementary properties can be checked directly using the structure of A ] B

considered in Definition 4.1.

Lemma 4.2. The following assertions hold:

(i) If (A, ◦) and (B, ∗) are two semihypergroups, then A ]B is a semihypergroup, too.
(ii) If (A, ◦) and (B, ∗) are two semihypergroups, then

A ]B

β∗
∼=

A

β∗ ] B

β∗ ,

where β∗ is the fundamental relation.

Proof. (i) Let x, y, z ∈ A ∪ B. If x ∈ A and y, z ∈ B, then by Definition 4.1, we have
x⊛ (y ⊛ z) = y ∗ z = (x⊛ y)⊛ z. The proofs of other cases are similar.

(ii) It is concluded by considering the isomorphism β∗(x) 7→ β∗
A(x) (β∗(x) 7→ β∗

B(x)) for
every x ∈ A(x ∈ B).

The next theorem shows that every semihypergroup of type πn is breakable or disjoint
extension of the cyclic group of order 2, Z2, by a breakable semihypergroup.
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Theorem 4.3. Let (S, ◦) be a non-breakable π3-semihypergroup. Then, there exists a breakable
semihypergroup (B, ∗) such that

S ∼= Z2 ]B.

Proof. Let (S, ◦) be a non-breakable π3-semihypergroup. Then, by Lemma 3.5, there exist
e, u ∈ S such that e = u2 6= u and e is the identity element of S. Hence, {e, u} is a subgroup of
S isomorphic to Z2. Also, we see that in the subset B = S \ {e, u}, the property (π2) holds so
B is a breakable sub-semihypergroup of S moreover, for every x ∈ B we have x ◦ e = x = x ◦x
and x ◦ u = x = u ◦ x. Consequently, we have S ∼= Z2 ]B.

Proposition 4.4. The fundamental semigroup of a πn-semihypergroup satisfies the property
An.

Proof. The result holds for the case that S is a breakable semihypergroup, by Theorem 2.7.
Now, let S be a non-breakable semihypergroup of type πn, then Theorem 4.3 and Lemma 4.2
concludes that

S

β∗
∼=

Z2 ]B

β∗
∼=

Z2

β∗ ] B

β∗
∼= Z2 ]

B

β∗ ,

where B is a breakable semihypergroup and Proposition 2.6 implies B
β∗ is a breakable semi-

group.

Theorem 4.5. Let (S, ◦) be a semi-symmetric semihypergroup satisfying π3. Then, either
S is breakable or S can be partitioned into classes, i.e. S =

⋃
γ∈Γ Sγ, where Γ is a chain

with minimal ε ∈ Γ and all Sγ, γ 6= ε, are pairwise disjoint l-semigroups, r-semigroups or
B-hypergroups and Sε is isomorphic to Z2. Moreover, for every x ∈ Sα and y ∈ Sβ, with
α < β, we have x ◦ y = y ◦ x = y.

Proof. Let (S, ◦) be a semi-symmetric non-breakable π3-semihypergroup. Then, by Theorem
4.3, there exists a breakable semihypergroup B such that S ∼= Z2 ] B. Let e, u ∈ s such that
Sε = {e, u} ∼= Z2. Therefore, Proposition 2.6 completes the proof.

Theorem 4.6. A πn-semihypergroup (H, ◦) is a hypergroup if and only if (H, ◦) is a B-
hypergroup or isomorphic to Z2.

Proof. First, suppose that (H, ◦) is a breakable hypergroup. Then, for any two distinct ele-
ments x and y of H, by left reproducibility, there exists z ∈ H such that y ∈ x ◦ z. Since H

is breakable, it follows that {x, z} is a subsemihypergroup, so x ◦ z ⊆ {x, z}. It follows that
y ∈ {x, z} and thus y = z hence y ∈ x◦y. Similarly, using the right reproducibility, one proves
that x ∈ x ◦ y. So, we obtain x ◦ y = {x, y}, i.e. (H, ◦) is a B-hypergroup.
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Now, let (H, ◦) be a non-breakable hypergroup of type π2k+1. Then, by Lemma 3.5 there
exist e, u ∈ H such that Hε = {e, u} is a subgroup of H. Suppose x ∈ H \Hε then by using the
right reproducibility, there exists y ∈ H such that e ∈ x ◦ y. So, if x 6= y, then by the property
π2k+1, e = y hence e = x is a contradiction. Thus, e ∈ x2 = x is impossible. Therefore,
H = Hε

∼= Z2.
The converse implication is obvious.

5. Conclusions

We have addressed the problem of breakable semihypergroups, based on the classical concept
of breakable semigroups. We have introduced and characterized semihypergroups, in which
every product of n elements is equal to a subset of factors, called πn-semihypergroups or
semihypergroups of type πn. Then, it was proved that every semihypergroup of type π2k,
(k ≥ 2) is breakable and every semihypergroup of type π2k+1 is of type π3. Also, we have
characterized semi-symmetric semihypergroups of type πn.

6. Acknowledgments

The authors wish to sincerely thank the referees for several useful comments.

References

[1] J. Chvalina and S. Hoskova-Mayerova, Discrete transformation hypergroups and transformation hypergroups

with phase tolerance space, Discrete Math., 308 No. 18 (2008) 4133-4143.

[2] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, Tricesimo, 1993.

[3] P. Corsini, On Chinese hyperstructures, J. Discrete Math. Sci. Cryptogr., 6 No. 2-3 (2003) 133-137.

[4] P. Corsini and V. Leoreanu, Applications of Hyperstructure Theory, Kluwer Academical Publications,

Dordrecht, 2003.

[5] I. Cristea, M. Novak and B. O. Onasanya, Links between HX-groups and hypergroups, Algebra Colloq., 28

No. 03 (2021) 441-452.

[6] B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and Applications, International Academic Press, Palm

Harbor, USA, 2007.

[7] B. Davvaz, Semihypergroup Theory, Elsevier/Academic Press, London, 2016.

[8] B. Davvaz, A. Dehghan-Nezhad and M. Mazloum-Ardakani, Chemical hyperalgebra: Redox reactions,

MATCH Commun. Math. Comput. Chem., 71 No. 2 (2014) 323-331.

[9] M. De Salvo, D. Freni and G. Lo Faro, Fully simple semihypergroups, J. Algebra, 399 (2014) 358-377.

[10] M. Farooq, A. Khan and B. Davvaz, Characterizations of ordered semihypergroups by the properties of their

intersectional-soft generalized bi-hyperideals, Soft Comput., 22 (2018) 3001-3010.

[11] D. Freni, A note on the core of a hypergroup and the transitive closure β∗ of β, Riv. Mat. Pura Appl., 8

(1991) 153-156.

[12] M. Gutan, Boolean matrices and semihypergroups, Rend. Circ. Mat. Palermo (1952-), 64 (2015) 157-165.



Alg. Struc. Appl. Vol. 11 No. 1 (2024) 151-163. 163

[13] D. Heidari and I. Cristea, Breakable semihypergroups, Symmetry, 11 No. 1 (2019) 100.

[14] D. Heidari and I. Cristea, On factorizable semihypergroups, Mathematics, 8 No. 7 (2020) 1064.

[15] D. Heidari and D. Freni, On further properties of minimal size in hypergroups of type U on the right,

Commun. Algebra, 48 No. 10 (2020) 4132-4141.

[16] D. Heidari, D. Mazaheri and B. Davvaz, Chemical salt reactions as algebraic hyperstructures, Iran. J. Math.

Chem., 10 No. 2 (2019) 93-102.

[17] D. Heidari, M. Amooshahi and B. Davvaz, Generalized Cayley graphs over polygroups, Commun. Algebra,

47 (2019) 2209-2219.

[18] L. Hongxing, HX-group, Busefal, 33 (1987) 31-37.

[19] L. Konguetsof, Sur les hypermonoides, Bull. Soc. Math. Belgique, t. XXV (1973).

[20] M. Koskas, Groupoides, demi-hypergroupes et hypergroupes, J. Math. Pure Appl., 49 (1970) 155-192.

[21] F. Marty, Sur une generalization de la notion de groupe, In 8iem congres Math. Scandinaves, Stockholm,

(1934) 45-49.

[22] C. G. Massouros, On connections between vector spaces and hypercompositional structures, It. J. Pure Appl.

Math., 34 (2015) 133-150.

[23] C. G. Massouros, Hypercompositional structures from the computer theory, Ratio Math., 13 (1999) 37-42.

[24] C. G. Massouros and J. Mittas, Languages- Automata and hypercompositional structures, Proc. 4th Int.

Cong. Algebraic Hyperstructures and Applications, Xanthi, (1990), 137-147, World Scientific.

[25] J. Pelikán, On semigroups, in which products are equal to one of the factors, Periodica Math. Hungarica,

4 (1973) 103-106.

[26] L. Rédei, Algebra I, Pergamon Press, Oxford, 1967.

[27] M. Stefănescu and I. Cristea, On the fuzzy grade of the hypergroups, Fuzzy Sets Syst, 159 No. 9 (2008)

1097-1106.

[28] T. Tamura and J. Shafer, Power semigroups, Math. Japon., 12 (1967) 25-32.

[29] J. Tang and B. Davvaz, Study on Green’s relations in ordered semihypergroups, Soft Comput., 24 (2020)

11189-11197.

[30] T. Vougiouklis, Hyperstructures and Their Representations, Hadronic Press Inc., Palm Harbor, USA, 1994.

[31] B. Zhang, H. Li and Z. Li, HX-type Chaotic (hyperchaotic) System Based on Fuzzy Inference Modeling,

Italian J. Pure Appl. Math., 39 (2018) 73-88.

Dariush Heidari

Faculty of Science,

Mahallat Institute of Higher Education,

Mahallat, Iran.

dheidari82@gmail.com, dheidari@mahallat.ac.ir


	1. Introduction
	2. Preliminaries
	3. Semihypergroups of type n
	4. Characterization of n-semihypergroups 
	5. Conclusions
	6. Acknowledgments
	References

