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SOME RESULTS ON THE STRONGLY ANNIHILATING SUBMODULE
GRAPH OF A MODULE

REZA BEYRANVAND∗ AND PARVIN KARIMI BEIRANVAND

Abstract. Let M be a module over a commutative ring R. We continue our study of strongly

annihilating submodule graph SAG(M) introduced in [11]. In addition to providing the more

properties of this graph, we introduce the subgraph SAG∗(M) of SAG(M) and compare the

properties of SAG∗(M) with SAG(M) and AG(M) (the annihilating submodule graph of M

introduced in [4]).

1. Introduction

Throughout this paper, R is a commutative ring with nonzero identity element and M is a
unitary right R-module. By N ≤ M we means that N is a submodule of M . For any N ≤ M ,
the ideal {r ∈ R | Mr ⊆ N} is denoted by (N :R M) (briefly (N : M)). We denote ((0) : M)

by annR(M) or simply ann(M). If ann(M) = 0, then M is said to be faithful.
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There are many papers on assigning graphs to rings, modules and groups (see for example
[1, 2, 3, 5, 9]). The annihilating ideal graph AG(R) was introduced in [6]. AG(R) is a graph
whose vertices are ideals of R with nonzero annihilators and in which two distinct vertices
I and J are adjacent if and only if IJ = 0. In [4], the authors generalized the above idea
to submodules of M and defined the graph AG(M), called the annihilating submodule graph,
with vertices {0 ̸= N ≤ M | M(N : M)(K : M) = 0, for some 0 ̸= K ≤ M}, and two
distinct vertices N and K are adjacent if and only if M(N : M)(K : M) = 0. In [8], the
strongly annihilating submodule graph, denoted by SAG(M), introduced and studied. In fact
SAG(M) is an undirected (simple) graph in which a nonzero submodule N of M is a vertex
if N(K : M) = 0 or K(N : M) = 0, for some 0 ̸= K ≤ M and two distinct vertices N and K

are adjacent if and only if N(K : M) = 0 or K(N : M) = 0. Clearly SAG(M) is a subgraph
of AG(M) and SAG(R) = AG(R). The notations of graph theory used in the sequel can be
found in [10].

In this paper, we define the subgraph of SAG(M), denoted by SAG∗(M), with vertices
{0 ̸= N ≤ M | (N : M) ̸= 0 and N(K : M) = 0 or K(N : M) = 0, for some 0 ̸= K ≤
M with (K : M) ̸= 0}, and two distinct vertices N and K are adjacent if and only if N −K

is an edge in SAG(M). Among other results, in addition to comparing properties of SAG(M)

with SAG∗(M) in Section 2, we prove that if annR(M) is a nil ideal of R, then there exists
a vertex in AG(M) that is joined to all other vertices if and only if there exists a vertex in
SAG(M) that is joined to all other vertices (Theorem 2.5). Also for any faithful module M

over a reduced ring R, it is shown that SAG∗(M) is a star graph if and only if M = M1⊕M2,
where M1 is simple and M2 is a prime submodule of M (Corollary 2.9). We show that if R
is an Artinian ring and M is a finitely generated faithful R-module, then any nonzero proper
submodule of M is a vertex in SAG∗(M) (Proposition 2.17). Also the necessary and sufficient
conditions for M , when SAG(M) has only one vertex, two vertices or three vertices are given
(Theorem 2.18). In Section 3, the coloring of graph SAG∗(M) is considered. We compare
the clique number and the chromatic number of SAG∗(M) with AG∗(M) (later defined),
see Proposition 3.3 and Theorem 3.5. Also we show that for a semiprime module M , the
clique number of SAG∗(M) is finite if and only if the chromatic number of SAG∗(M) is finite
(Theorem 3.10).

2. SAG(M) and SAG∗(M)

Let M be an R-module. In [3], the authors defined the subgraph of AG(M) that vertices are
proper submodules like N with M(N :R M) ̸= 0 such that there exists a proper submodule K

with M(K :R M) ̸= 0 and M(N :R M)(K :R M) = 0. Also two vertices N and K are joined
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whenever M(N :R M)(K :R M) = 0. This subgraph is denoted by AG∗(M). Inspired by this
definition and the definition of SAG(M) in [11], we define the graph SAG∗(M) as follows.

Definition 2.1. For an R-module M , SAG∗(M) is a simple graph with vertices
V (SAG∗(M)) = {0 ̸= N ≤ M | (N :R M) ̸= 0 and there exists a nonzero submodule
K ≤ M with (K :R M) ̸= 0 such that N(K :R M) = 0 or K(N :R M) = 0}. In this graph,
two distinct vertices N,K are adjacent if and only if N(K :R M) = 0 or K(N :R M) = 0.

Example 2.2. (a) Consider Z-module M = Z2 ⊕ Z4. A simple calculation shows that
SAG∗(M) = SAG(M).

(b) Let S1 be a faithful simple R-module and S2 be an unfaithful R-module. Setting
M = S1 ⊕ S1 ⊕ S2, the submodule N = (0) ⊕ (0) ⊕ S2 is not a vertex in SAG∗(M),
since (N :R M) = annR(S1) = 0. But for the nonzero submodule K = (0) ⊕ S1 ⊕ (0)

we have N ∩K = 0 and hence N and K are adjacent in SAG(M).
(c) The submodule N = Q⊕ (0) of the Q-module M = Q⊕R is simple and faithful. Since

(N :R M) = 0, N is not a vertex in SAG∗(M), however it is a vertex in SAG(M),
because its intersection with (0)⊕ R is zero.

(d) Consider M = Z2 ⊕Z3 ⊕Z as a Z-module. Then Z2 ⊕Z3 is a submodule of M that is
a vertex in SAG(M), while it is not a vertex in SAG∗(M).

(e) An R-module M is called multiplication if every submodule of it can be written in the
form MI, where I is an ideal of R. It is easy to check that M is a multiplication module
if and only if every submodule N of M can be written in the form N = M(N :R M).
Clearly, if M is a multiplication module, then SAG(M) = SAG∗(M). Also if M is an
unfaithful R-module, then SAG(M) = SAG∗(M), because for any N ≤ M we have
0 ̸= annR(M) ⊆ (N :R M).

Proposition 2.3. If SAG∗(M) ̸= ∅, then any minimal submodule N of M with (N :R M) ̸= 0

is a vertex in SAG∗(M).

Proof. Since SAG∗(M) ̸= ∅, there are nonzero submodules K and K ′ in M with (K :R M) ̸= 0,
(K ′ :R M) ̸= 0 such that K(K ′ :R M) = 0 or K ′(K :R M) = 0. Since N is a minimal
submodule, we have N ∩K = 0 or N ∩K = N . If K ∩N = 0, then K(N :R M) ⊆ N ∩K = 0

and so N is a vertex in SAG∗(M). If N ∩K = N , then N ⊆ K and we have N(K ′ :R M) = 0

or K ′(N :R M) = 0. Therefore in any case N is a vertex in SAG∗(M).

Lemma 2.4. Let M be an R-module such that annR(M) is a nil ideal of R. For any minimal
submodule N of M , N(N :R M) = 0 or N = Me, for some idempotent e in R.
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Proof. By [3, Lemma 2.4], we have M(N :R M)(N :R M) = 0 or N = Me, for some idempotent
e in R. Now since N is minimal, M(N :R M)(N :R M) = 0, implies that N(N :R M) = 0 and
so we are done.

An R-module M is called prime if the annihilatior of M is equal to the annihilator of any
its nonzero submodule. A proper submodule N of M is called prime submodule if M/N is a
prime module. One can easily check that a proper submodule N of M is prime if and only
if for any r ∈ R and any submodule K of M , the relation Kr ⊆ N implies that K ⊆ N or
Mr ⊆ N . Also the set of all zero divisors of M is denoted by Z(M) = {r ∈ R | xr = 0, for
some 0 ̸= x ∈ M}.

Theorem 2.5. Let M be an R-module such that annR(M) is a nil ideal of R. Then there
exists a vertex in AG(M) that is joined to all other vertices if and only if there exists a vertex
in SAG(M) that is joined to all other vertices.

Proof. By [11, Lemma 2.2], V (AG(M)) = V (SAG(M)) and since SAG(M) is a subgraph of
AG(M), the “ if ” part is clear. For the “ only if ” part, assume that there exists a vertex in
AG(M) such that it is joined to all other vertices. By [3, Theorem 2.5], one of the following
cases holds:

(1) There is e2 = e ∈ R such that M = Me ⊕ M(1 − e), where Me is a simple module
and M(1 − e) is a prime module. Suppose that N is a vertex in AG(M) that is
adjacent to every other vertex. If N ∈ {Me,M(1− e)}, then clearly N is adjacent to
every other vertex in SAG(M). Thus assume that N /∈ {Me,M(1 − e)}. Then since
Me(N :R M) = M(Me :R M)(N :R M) = 0 and M(1− e)(N :R M) = M(M(1− e) :R

M)(N :R M) = 0, we conclude that M(N :R M) = 0. Therefore N is adjacent to
every other vertex in SAG(M).

(2) There is a nonzero submodule N of M such that Z(M) = annR(M(N :R M)). In this
case if M(N :R M) = 0, then K(N :R M) = 0, for any N ̸= K ≤ M . This means
that N is adjacent to any submodule K of M . Now we suppose that M(N :R M) ̸= 0,
and K is an arbitrary nonzero vertex in SAG(M). Then since SAG(M) is connected,
there exists 0 ̸= L ≤ M such that K(L :R M) = 0 or L(K :R M) = 0. In any
case we have M(L :R M)(K :R M) = 0. If M(L :R M) = 0, then L is joined to
all other vertices in SAG(M). Otherwise (K :R M) ⊆ Z(M) and by the hypothesis,
M(N :R M)(K :R M) = 0 and so K and M(N :R M) are adjacent. Therefore
M(N :R M) is adjacent to every other vertex in SAG(M).
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(3) M is a vertex in AG(M). Then there is a nonzero submodule K of M such that
M(M :R M)(K :R M) = 0. Therefore M(K :R M) = 0 and so K is joined to any
vertex of SAG(M).

Example 2.6. Consider M = Z2 ⊕ Z3 as a Z12-module. Then annZ12(M) is a nilpotent ideal
and SAG(M) is a star graph with two vertices Z2 ⊕ (0) and (0)⊕ Z3.

Theorem 2.7. Let M be a faithful module. Then there exists a vertex in SAG∗(M) that is
joined to all other vertices if and only if M can be written as M = M1 ⊕M2, where M1 is a
simple submodule and M2 is a prime submodule of M , or Z(R) is a nil ideal of R.

Proof. Suppose that N is a vertex in SAG∗(M) that is joined to all other vertices. Since M

is faithful, V (AG∗(M)) = V (SAG∗(M)). Thus N is joined to all other vertices in AG∗(M)

too. Therefore by [3, Theorem 2.7], we have M = M1 ⊕M2, where M1 is a simple submodule
and M2 is a prime submodule of M or Z(R) is a nil ideal of R. Conversely, assume that
M = M1⊕M2, where M1 is a simple submodule and M2 is a prime submodule or Z(R) is a nil
ideal of R. Again by [3, Theorem 2.7], there exists a vertex N in AG∗(M) that is joined to all
other vertices, i.e., M(N :R M)(K :R M) = 0 for every other vertex K. Set N ′ = M(N :R M).
Since M is faithful, N ′ is a vertex in SAG∗(M) that is joined to all other vertices.

Example 2.8. Q ⊕ Q as a Q ⊕ Z-module is faithful and SAG∗(Q ⊕ Q) is a star graph with
two adjacent vertices Q⊕ (0) and (0)⊕Q.

Recall that a ring is called reduced if it has no nonzero nilpotent element.

Corollary 2.9. Let R be a reduced ring and M be a faithful R-module. The following state-
ments are equivalent:

(1) There exists a vertex in SAG∗(M) that is adjacent to every other vertex.
(2) SAG∗(M) is a star graph.
(3) M = M1 ⊕M2, where M1 is a simple submodule and M2 is a prime submodule of M .

Proof. (1) ⇔ (3) follows from Theorem 2.7.
(2) ⇒ (1) is clear.
(1) ⇒ (2). Since M is faithful, the set of vertices of SAG∗(M) and AG∗(M) are the same.
Therefore there exists a vertex in AG∗(M) that is adjacent to every other vertex. By [3,
Corollary 2.9], AG∗(M) is a star graph. Assume that N is the central vertex in AG∗(M). If
there exists a vertex K in SAG∗(M) such that it is not adjacent to N , then N(K :R M) ̸= 0

and K(N :R M) ̸= 0. On the other hand M(N :R M)(K :R M) = 0 and we conclude that
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M(N :R M) ̸= N . It is clear that M(N :R M) ̸= 0 and 0 ̸= (N :R M) ⊆ (M(N :R M) :R M).
Thus M(N :R M) is a vertex in SAG∗(M) that is joined to K and so this vertex is joined to
K in AG∗(M), contradicting the fact that AG∗(M) is a star graph.

Corollary 2.10. Let R be an Artinian ring and annR(M) be a nil ideal of R. Then there
exists a vertex in SAG(M) that is adjacent to every other vertex if and only if M = M1 ⊕M2

where M1 is simple and M2 is prime semisimple or R is a local ring with nonzero maximal
ideal or M is a vertex in SAG(M).

Proof. It follows from [3, Corollary 2.10] and Theorem 2.7.

Example 2.11. Consider M = Z3 ⊕ Z8 as a Z48-module. One can easily check that
annZ48(M) = {0, 24} is a nil ideal and SAG(M) is a star graph whose the set of vertices
is V (SAG(M)) = {Z3 ⊕ (0), (0)⊕ Z8, (0)⊕ 2Z8, (0)⊕ 4Z8} and its centeral vertex is Z3 ⊕ (0).

Corollary 2.12. Let R be an Artinian ring and M be a faithful R-module. Then there exists
a vertex in SAG∗(M) that is adjacent to every other vertex if and only if M = M1⊕M2 where
M1 and M2 are both simple or R is a local ring with a nonzero maximal ideal.

Proof. First suppose that N is a vertex in SAG∗(M) that is adjacent to every other vertex.
Since M is faithful, V (SAG∗(M)) = V (AG∗(M)) and we know that any edge in SAG∗(M)

is an edge in AG∗(M). Thus N is adjacent to every other vertex in AG∗(M). Now the
assertion follows from [3, Corollary 2.12]. Conversely, suppose that M = M1 ⊕ M2, where
M1 and M2 are both simple or R is a local ring with a nonzero maximal ideal. By [3,
Corollary 2.12], there exists a vertex N in AG∗(M) that is adjacent to every other vertex.
Thus M(N :R M)(K :R M) = 0, for every other vertex K in AG∗(M). Since M is faithful,
M(N :R M) ̸= 0. Also 0 ̸= (N :R M) ⊆ (M(N :R M) :R M). Thus M(N :R M)(K :R M) = 0

implies that M(N :R M) is a vertex in SAG∗(M) that is joined to every other vertex.

Proposition 2.13. Let M = M1 ⊕M2, where annR(M) is a nil ideal of R, M1 is a simple
submodule of M and M2 is a prime submodule of M . Then there exists a vertex in AG(M)

that is joined to every other vertex.

Proof. Due to simplicity of M1 and being prime of M2, we conclude that annR(M1) is a
maximal ideal of R and annR(M2) is a prime ideal of R. The following two situations may
occur:
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(a) annR(M1) = annR(M2). This implies that M1 is a vertex that is joined to all other
submodules of M , because for any 0 ̸= N ≤ M ;

N(M1 :R M) = NannR(M2) = NannR(M) = 0.

(b) annR(M1) ̸= annR(M2). If R is local, then annR(M2) ⊆ annR(M1) and therefore
annR(M) = annR(M2) ∩ annR(M1) = annR(M2). Thus for any nonzero submodule N of
M we have

M(N :R M)(M1 :R M) = M(N :R M)annR(M2)

⊆ MannR(M2) = MannR(M) = 0.

Hence M1 is a vertex that is joined to all nonzero submodules of M . Now we suppose that R is
not local. By [3, Lemma 2.4], since M1 is minimal, we have either M(M1 :R M)(M1 :R M) = 0

or M1 = Me, where e is an idempotent element in R. First we assume that M(M1 :R M)(M1 :R

M) = 0. If M(M1 :R M) = 0, then M1 is joined to M and so it is joined to all nonzero
submodules of M . Now if M(M1 :R M) ̸= 0, then since M1 is minimal, M(M1 : M) = M1 and
hence M1(M1 :R M) = 0. Thus M1annR(M2) = 0 and so annR(M2) ⊆ annR(M1). It follows
that annR(M) = annR(M2). Hence for any nonzero submodule N of M ;

M(N :R M)(M1 :R M) = M(N :R M)annR(M2) = 0.

This means that M1 is adjacent to any submodule of M . Now, if the second case occurs, then
we will have M = Me⊕M(1−e) and it can be easily seen that M(1−e) ∼= M2. Thus M(1−e)

is a prime submodule of M . Now by [3, Lemma 2.4], there exists a vertex in AG(M) that is
joined to all other vertices.

Lemma 2.14. Let R be an Artinian ring and annR(M) be a nil ideal of R. If SAG(M) is a
star graph, Then M = M1 ⊕M2, where M1 and M2 are both simple or R is a local ring with
the maximal ideal P = annR(M), that MP 4 = 0 or M is a vertex in SAG(M)

Proof. Suppose that M is not vertex. Since AG(M) is star, Corollary 2.10 implies that M =

M1 ⊕ M2, where M1 is simple and M2 is homogeneous semisimple or R is a local ring with
the maximal ideal P = annR(M). In the first case we show that M2 is simple too. If not,
then M2 = ⊕i∈ISi and |I| ≥ 2. Therefore SAG(M) includes the triangle S1 −M1 − S2 − S1

which contradicts being the star of SAG(M). Now suppose that R is local and P = annR(M).
Since R is Artinian, we can consider n to be the smallest positive integer such that MPn = 0

and MPn−1 ̸= 0. If MP 2 = MPn−2, then MP 4 = 0. Thus we assume that MP 2 ̸= MPn−2.
It is clear that MP 2 and MPn−2 are adjacent. But 0 ̸= MPn−1 is the central vertex of the
SAG(M), so MPn−1 = MPn−2 or MPn−1 = MP 2. Multiplying the ideal P in the first case
we have MPn−1 = 0, a contradiction. Therefore MPn−1 = MP 2 and so MP 3 = 0.
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Remark 2.15. If M is a faithful R-module and AG(M) is a complete graph, then AG(R) is
also complete.

Proof. Suppse that I and J are two vertices in AG(R). Then there exist I ′, J ′ ∈ V (AG(M))

such that II ′ = JJ ′ = 0. Now we have

M(MI :R M)(MI ′ :R M) = MI(MI ′ :R M) = M(MI ′ :R M)I = MI ′I = 0.

Thus MI is a vertex in AG(M). Similarly, MJ is a vertex. Due to the completeness of AG(M)

we have
0 = M(MI :R M)(MJ :R M) = MIJ.

Since M is faithful, IJ = 0 and hence I and J are adjacent in AG(M).

Theorem 2.16. Let R be an Artinian ring and M be an R-module such that annR(M) is a
nil ideal of R and M is not a vertex in SAG(M). If SAG(M) is a nonempty star graph, then
M = M1 ⊕M2, where M1 and M2 both are simple or R is a local ring with the maximal ideal
P , where P ∈ Ass(M) and one of the following conditions occurs;

(1) MP 2 = 0 and MP is the only minimal submodule of M that M(N :R M) = MP , for
any nonzero proper submodule N of M .

(2) MP 3 = 0 and 0 ̸= MP 2 = mR is the only minimal submodule of M , for some m ∈ M

and NP (N :R M) = MP 2, for any submodule N of Mwith P 2 ̸⊆ annR(N).
(3) MP 4 = 0 and 0 ̸= MP 3 = mR and MP = Ma, for some m ∈ M and 0 ̸= a ∈ R, and

every nonzero proper submodule of M is a vertex.

Proof. By Lemma 2.14, M = M1 ⊕M2 where both M1 and M2 are simple or R is a local ring
with the maximal ideal P such that MP 4 = 0. Suppose that the second case holds. Note that
since R is Artinian, there is a minimal submodule K of M and so P = annR(K). Since K is
a prime R-module, P ∈ Ass(M). Then one of the following cases occurs:

(1) MP 2 = 0. Since (N :R M) ⊆ P , for any nonzero proper submodule N of M , we have
MP (N :R M) ⊆ MP 2 = 0. Then MP is joined to all other vertices in SAG(M) and
since SAG(M) is star, MP is the central vertex. Also note that for 0 ̸= x ∈ MP ,
annR(x) = P . We claim that MP is a minimal submodule of M . Otherwise let
0 ̸= N ⊊ MP . Now since SAG(M) is star, M has no other nontrivial submodule than
MP and N . For any x ∈ MP \N , we have MP = xR and since N is simple, N = yR,
where 0 ̸= y ∈ N . On the other hand since P = annR(xR) = annR(yR), it can be
easily seen that MP = xR ∼= yR = N , a contradiction. Hence MP is minimal. Since
M is not a vertex and P is maximal, we conclude that M(N :R M) = MP , for any
nonzero proper submodule N of M .
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(2) MP 3 = 0 and MP 2 ̸= 0. Then MP 2 is the central vertex in SAG(M). Since P ∈
Ass(M), we have P = annR(m), for some 0 ̸= m ∈ M . Thus mR(N :R M) ⊆ mP = 0,
for any nonzero proper submodule N of M . Therefore mR = MP 2. If there exists
0 ̸= N ⪇ MP 2, then we have the cycle MP −N −MP 2−MP that is a contradiction.
Thus MP 2 is a minimal submodule of M . If T ̸= MP 2 is a minimal submodule of M ,
then annR(T ) is a maximal ideal and since R is local, P = annR(T ). Therefore we have
MP (T :R M) = M(T :R M)P ⊆ TP = 0, contradicting the fact that SAG(M) is star.
Thus MP 2 is the only minimal submodule of M . Now let N be a submodule of M such
that P 2 ̸⊆ annR(N). Then NP (N :R M) ⊆ NP 2 ⊆ MP 2. If NP (N :R M) = 0, then
since SAG(M) is a star graph, we have NP = N , NP = MP 2 or N = MP 2. In any
case we conclude that P 2 ̸⊆ annR(N), a contradiction. Therefore NP (N :R M) ̸= 0

and so NP (N :R M) = MP 2.
(3) MP 4 = 0 and MP 3 ̸= 0. In this case we show that AG(M) is also a star graph, i.e,

AG(M) = SAG(M). First note that for any ideal I of R and any submodule N of M ,
if MI − N is an edge in AG(M), then MI − N is also an edge in SAG(M), because
M(MI :R M) = MI. Now suppose that AG(M) is not star and N −K is an edge in
AG(M) such that N ̸= K and N,K /∈ {MP,MP 2,MP 3}. Thus M(N :R M)(K :R

M) = 0 and since SAG(M) is star, one of the following occurs:
(a) M(N :R M) = N . Then N(K :R M) = 0 and so N −K is an edge in SAG(M), a

contradiction.
(b) M(N :R M) = MP 3. Then 0 = MP 3(MP :R M) = M(N :R M)(MP :R M) =

M(MP :R M)(N :R M) = MP (N :R M) and so MP −N is an edge in SAG(M),
a contradiction.

(c) M(N :R M) = K. Then similarly, M(K :R M) = N . In this case, we conclude
that K ⊆ N and N ⊆ K and so N = K, a contradiction.

Therefore, AG(M) is also a star graph and we are done by Case 3 in the proof of
Theorem 2.14 in [3].

Proposition 2.17. (a) Let M be a faithful R-module such that it has only one nonzero
proper submodule. Then M ∼= R as R-modules.

(b) Let R be an Artinian ring and M be a finitely generated faithful R-module. Then any
nonzero proper submodule of M is a vertex in SAG∗(M).

Proof. (a) Suppose that N is the only nonzero proper submodule of M . Clearly N = xR,
for any 0 ̸= x ∈ N . Let y ∈ M \ N and we claim that M = (x + y)R. If not,
then (x + y)R = 0 or (x + y)R = N . In any case we conclude that y ∈ N , which
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is a contradiction. Hence (x + y)R = M and one can easily see that ϕ : R → M by
ϕ(r) = (x+ y)r is an R-isomorphism.

(b) Suppose that N is a nonzero proper submodule of M . There exists a maximal submod-
ule K of M containing N . Because of maximality of K, M/K is simple and therefore
(K :R M) is maximal. On the other hand since annR(M) ⊆ (K :R M), we have
(K :R M) ∈ Ass(M). Then there exists 0 ̸= m ∈ M such that (N :R M) ⊆ (K :R

M) = annR(m) and so mR(N :R M) = 0. Thus N is a vertex in SAG∗(M).

Theorem 2.18. Let M be a faithful R-module that is not a vertex in SAG(M). Then the
following statements hold:

(a) SAG(M) is a graph with only one vertex if and only if M has only one nonzero proper
submodule.

(b) SAG(M) is a graph with two vertices if and only if M = M1 ⊕M2, where M1 and M2

are simple or M has exactly two nonzero proper submodules.
(c) SAG(M) is a graph with three vertices if and only if M has exactly three nonzero

submodules m1R, m2R and m3R such that

m3R = m1R ∩m2R,

Z(R) = annR(m3),

(m1R)2 = (m2R)2 = (m3R)2 = 0,

or

Λ∗M = {MZ(R),MZ2(R),MZ3(R)},

where Λ∗M is the set of nonzero proper submodules of M .

Proof. Since V (SAG(M)) = V (AG(M)), the proof follows from [3, Corollary 2.16].

3. Coloring of SAG∗(M)

In a graph G, a clique of G is a complete subgraph and the supremum of the sizes of cliques
in G, denoted by cl(G), is called the clique number of G. Let χ(G) denote the chromatic
number of the graph G, that is, the minimal number of colors needed to color the vertices of
G so that no two adjacent vertices have the same color. Clearly χ(G) ≥ cl(G). In this section,
we study the coloring of graphs SAG∗(M) and SAG∗(M), espicially when they are (complete)
bipartite graphs or their chromatic and clique numbers are finite.
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Proposition 3.1. Let M be a faithful R-module. Then χ(SAG(M)) = 1 if and only if M has
only one nonzero proper submodule.

Proof. Suppose that χ(SAG(M)) = 1. By [11, Theorem 2.4], SAG(M) is connected and can
not have more than one vertex. Since M is faithful, according to Theorem 2.18(1), M has
only one nonzero proper submodule.

Remark 3.2. If AG∗(M) is a bipartite graph, then clearly SAG∗(M) is a bipartite graph.
Also V (AG∗(M)) ⊆ V (SAG∗(M)) and if M is faithful or M is not a vertex in AG∗(M),
then SAG∗(M) is a subgraph of AG∗(M) and V (AG∗(M)) = V (SAG∗(M)). To see this, let
N and K be adjacent vertices in AG∗(M). Then M(K :R M) ̸= 0, M(N :R M) ̸= 0 and
M(N :R M)(K :R M) = 0. Thus (K :R M) ̸= 0, (N :R M) ̸= 0 and K ′(N :R M) = 0 where
K ′ = M(K :R M) ⊆ K. Also (K ′ :R M) ̸= 0, because

0 ̸= (K :R M) ⊆ (M(K :R M) :R M) = (K ′ :R M).

Threfore K ′ is a vertex in SAG∗(M) that is joined to N .

Proposition 3.3. Let M be a faithful R-module. Then,

(a) SAG∗(M) is a bipartite graph if and only if AG∗(M) is a bipartite graph.
(b) If R is a reduced ring, then f AG∗(M) has an infinite clique number if and only if

SAG∗(M) has an infinite clique number.

Proof. (a) If AG∗(M) is a bipartite graph, then by Remark 3.2, SAG∗(M) is a bipartite
graph. Now suppose that SAG∗(M) is a bipartite graph. If AG∗(M) is not a bipartite
graph, then there are two vertices K and N in one part of the graph SAG∗(M) such
that they are adjacent in the AG∗(M). By Remark 3.2, N − K ′ and N ′ − K are
two edges in SAG∗(M), where K ′ = M(K :R M) and N ′ = M(N :R M). It follows
that N ′ − K ′ is also an edge in SAG∗(M) that contradicts being bipartite graph of
SAG∗(M).

(b) Clearly, if SAG∗(M) has an infinite clique number, then so is AG∗(M). Conversely, if
AG∗(M) has an infinite clique, then there exist vertices K and K1,K2, · · · such that
K is joined to Ki, for every i ≥ 1 and also for any i ̸= j, Ki is joined to Kj in the
AG∗(M). Thus the following hold;

M(K :R M)(Ki :R M) = 0, i ≥ 1,

M(Ki :R M)(Kj :R M) = 0, i, j ≥ 1, i ̸= j.
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Set K ′
i = M(Ki :R M) and K ′

j = M(Kj :R M). Similar to part (a) can be shown that
K ′

i and K ′
j are adjacent in SAG∗(M). Note that K ′

i ̸= K ′
j , otherwise;

M(Ki :R M) = M(Kj :R M),

and so

M(Ki :R M)2 = M(Ki :R M)(Kj :R M) = 0.

Since M is faithful and R is reduced, we conclude that (Ki :R M) = 0, a contradiction.

Lemma 3.4. Let R be a reduced ring and M be a faithful R-module. Then AG∗(M) is
a (complete) bipartite graph with two nonempty parts if and only if AG(R) is a (complete)
bipartite graph with two nonempty parts.

Proof. Suppose that AG∗(M) is a (complete) bipartite graph with two nonempty parts A and
B. Then one can easily see that AG(R) is a (complete) bipartite graph with parts A′ = {I ≤
R | MI ∈ A} and B′ = {I ≤ R | MI ∈ B}. Conversely, if AG(R) is a (complete) bipartite
graph with two parts A and B, then it is easy to see that AG∗(M) is a (complete) bipartite
graph with two parts A′ = {N ≤ M | (N :R M) ∈ A} and B′ = {N ≤ M | (N :R M) ∈ B}

Theorem 3.5. For any faithful R-module M , the following statements are equivalent:

(a) χ(SAG∗(M)) = 2.
(b) SAG∗(M) is a bipartite graph with two nonempty parts.
(c) R is a reduced ring with exactly two minimal prime ideals or SAG∗(M) is a star graph

with more than one vertex.

Proof. (a) ⇔ (b) is trivial.
(b) ⇒ (c). Suppose that SAG∗(M) is a bipartite graph with two nonempty parts. Then
AG∗(M) is the same by Propsition 3.3(a). Therefore by [3, Theorem 3.3], R is a reduced
ring with exactly two minimal prime ideals or AG∗(M) is a star graph with more than one
vertex. If AG∗(M) is a star graph with more than one vertex, then so is SAG∗(M). To see
this, assume that N is a centeral vertex in the AG∗(M) and N ̸= K is an arbitrary vertex in
AG∗(M) that is not joined to N in SAG∗(M). Then by the proof of Remark 3.2, there is a
vertex 0 ̸= N ′ ⪇ N such that K − N ′ is an edge in SAG∗(M). This implies that K − N ′ is
also an edge in AG∗(M) which contradicts AG∗(M) being a star.
(c) ⇒ (b). If SAG∗(M) is a star graph with more than one vertex, then it is clearly a (complete)
bipartite graph. Now assume that R is a reduced ring with two minimal prime ideals. Then
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by [7, Theorem 2.3], AG(R) is a complete bipartite graph with two nonempty parts and so is
AG∗(M) by Lemma 3.4. It follows that SAG∗(M) is a bipartite graph.

Corollary 3.6. Let R be an Artinian ring and M be a faithful R-module. Then the following
are equivalent:

(a) χ(SAG∗(M)) = 2.
(b) SAG∗(M) is a bipartite graph with two nonempty parts.
(c) M = M1 ⊕M2 where M1 and M2 are homogeneous semisimple modules or SAG∗(M)

is a star graph with more than one vertex.

Proof. (a) ⇔ (b) follows from Theorem 3.5.
(b) ⇒ (c). Suppose that SAG∗(M) is a bipartite graph with two nonempty parts. By Propo-
sition 3.3(a), AG∗(M) is a bipartite graph and hence by Lemma 3.4, AG(R) is also a bipartite
graph. If R is reduced, then since R is Artinian and commutative, by Wedderburn-Artin
Theorem, R ∼= F1 × F2 × · · · × Fn, where each Fi is a field (see [12, Theorem 3.5]). If n ≥ 3,
then F1 − F2 − F3 − F1 is a triangle in AG(R), a contradiction. Thus R ∼= F1 × F2. This
implies that there are only two nonisomorphic simple (right) R-modules, up to isomorphism.
Therefore M is semisimple and we can write M = (⊕

I
S) ⊕ (⊕

J
T ), where |I| ≥ 1, |J | ≥ 1, S, T

are simple and S ̸∼= T . (Note that annR(S) = F1 × (0) and annR(T ) = (0)× F2). Now if R is
not reduced, then by Theorem 3.5, SAG∗(M) is a star graph with more than one vertex and
the proof is complete.
(c) ⇒ (b). Suppose that M = (⊕

I
S) ⊕ (⊕

J
T ), where |I| ≥ 1, |J | ≥ 1 and S, T are simple with

S ̸∼= T . Then one can check that SAG∗(M) is a bipartite graph with two parts A and B,
where

A = {0 ̸= N ⪇ M | N ∼= (⊕
I
S)⊕ (⊕

J1
T ), J1 ⊊ J and |J1| ≥ 0},

B = {0 ̸= K ⪇ M | K ∼= (⊕
I1
S)⊕ (⊕

J
T ), I1 ⊊ I and |I1| ≥ 0}.

Corollary 3.7. Let R be a reduced ring and M be a faithful R-module. The following state-
ments are equivqlent:

(a) χ(SAG∗(M)) = 2.
(b) SAG∗(M) is a bipartite graph with two nonempty parts.
(c) R has only two minimal ideals.

Proof. Follows from [7, Theorem 2.5], Proposition 3.3 and Lemma 3.4.
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An R-module M is called semiprime if, for any r ∈ R and any submodule N of M , Nr2 = 0

implies that Nr = 0.

Lemma 3.8. Let M be a semiprime R-module such that the clique number of SAG∗(M) is
not infinite. Then the set of all submodules of the form annM (I), where I is an ideal of R,
satisfies the ACC condition.

Proof. Assuming the contrary, there is a strictly ascending chain

annM (I1) ⊊ annM (I2) ⊊ ...,

in M . Since for any i ≥ 1, annM (Ii+1)Ii ̸= 0, there exists ri ∈ Ii such that annM (Ii+1)ri ̸= 0.
We set Ji = annM (Ii+1)ri for i = 1, 2, 3, ..., and we show that for any i < j, Ji ̸= Jj . Otherwise
annM (Ii+1)ri = annM (Ij+1)rj , where i < j. Then

0 = annM (Ii+1)rirj = annM (Ij+1)r
2
j .

Since M is semiprime, annM (Ij+1)rj = 0, a contradiction. Now for any i < j;

Jj(Ji :R M) = annM (Ij+1)rj(annM (Ii+1)ri :R M) ⊆ annM (Ii+1)rirj = 0.

Therefore for any i < j, Ji and Jj are joined in SAG∗(M) and hence SAG∗(M) has an infinite
clique number which contradicts the hypothesis.

Lemma 3.9. Let P1 = annM (r1) and P2 = annM (r2) be two distinct prime submodules of
R-module M . Then Mr1 is joined to Mr2 in SAG(M).

Proof. We claim that Mr1r2 = 0. Otherwise, annM (r1)r1 = 0 ⊆ annM (r2) implies that
annM (r1) ⊆ annM (r2), because Mr1r2 ̸= 0 and annM (r2) is a prime submodule of M . Simi-
larly we have annM (r2) ⊆ annM (r1), contradicting the hypothesis. Therefore Mr1r2 = 0 and
so Mr1(Mr2 :R M) ⊆ Mr1r2 = 0, as desired.

Theorem 3.10. For a semiprime module M , the following statements are equivqlent;

(a) χ(SAG∗(M)) is finite.
(b) cl(SAG∗(M)) is finite.
(c) SAG∗(M) dose not have an infinite clique number.
(d) There are prime submodules P1, P2, . . . , Pk in M such that

∩k
i=1(Pi :R M) = (0).

Proof. (a) ⇒ (b) and (b) ⇒ (c) are clear.
(c) ⇒ (d). Suppose that SAG∗(M) dose not have an infinite clique number. By lemma 3.8,
M satisfies the ACC condition on the submodules of the form annM (I), where I is an ideal
of R. Thus the set {annM (x) | Mx ̸= 0} has a maximal element. It is easy to check that the
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maximal elements of this set are prime submodules of M . By lemma 3.9, the set of distinct
maximal elements of the above set is finite. We name these elements annM (x1), . . . , annM (xk).
Now we claim that ∩k

i=1(annM (xi) :R M) = 0. Let 0 ̸= x ∈ ∩k
i=1(annM (xi) :R M), then for

any i, Mx ⊆ annM (xi). On the other hand there is 1 ≤ j ≤ k such that annM (x) ⊆ annM (xj).
Thus Mxjx = 0 and so Mxj ⊆ annM (x). Then Mxj ⊆ annM (xj) and hence Mx2j = 0. Since
M is a semiprime module, we conclude that Mxj = 0, a contradiction.
(d) ⇒ (a). Suppose that there are prime submodules P1, P2, . . . , Pk in M such that

∩k
i=1(Pi :R

M) = (0). For N ∈ V (SAG∗(M)), we define

f(N) = min{n ∈ N | (N :R M) ̸⊆ (Pn :R M)}.

Now we claim that χ(SAG∗(M)) ≤ k. Let N and K be adjacent in SAG∗(M). Then N(K :R

M) = 0 or K(N :R M) = 0. Anyway M(N :R M)(K :R M) = 0 and so

(N :R M)(K :R M) ⊆ annR(M) ⊆ (Pn :R M).

Since (Pn :R M) is a prime ideal of R, (N :R M) ⊆ (Pn :R M) or (K :R M) ⊆ (Pn :R M)

which is a contradiction in any case. Thus every two adjacent vertices have different colors.
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