

Algebraic Structures and Their Applications Vol. 10 No. 2 (2023) pp 173-181.

Research Paper

THE EFFECT OF SINGULARITY ON A TYPE OF SUPPLEMENTED MODULES

ALI REZA MONIRI HAMZEKOLAEE* AND ALI VALINEJAD

ABSTRACT. Let R be a ring, M a right R-module, and $S = End_R(M)$ the ring of all R-Endomorphisms of M. We say that M is Endomorphism δ -H-supplemented (briefly, E- δ -Hsupplemented) provided that for every $\varphi \in S$, there exists a direct summand D of M such that $M = Im\varphi + X$ if and only if M = D + X for every submodule X of M with M/Xsingular. In this paper, we prove that a non- δ -cosingular module M is E- δ -H-supplemented if and only if M is dual Rickart. We also show that every direct summand of a weak duo E- δ -H-supplemented module inherits the property.

1. INTRODUCTION

Throughout this paper, all rings are associative ring with identity, and all modules are unitary right *R*-modules. Let *M* and *N* be *R*-modules. Then by $S = End_R(M)$, we denote

DOI: 10.22034/as.2023.3044

MSC(2010): Primary 05C50.

Keywords: Dual Rickart module, δ -small-submodule, E- δ -H-supplemented modules, E-H-supplemented module, H-supplemented module.

Received: 19 December 2022, Accepted: 08 April 2023.

^{*}Corresponding author

 $[\]ensuremath{\textcircled{}}$ 02023 Yazd University.

the ring of all endomorphisms of M, and by $N \leq M$, we mean that N is a submodule of M. A submodule N of M is said to be *small* in M if $N + K \neq M$ for any proper submodule K of M, and we denote it by $N \ll M$. As a generalization, Zhou [12] was introduced the concept of δ -small submodules. A submodule N of M is called δ -small in M (denoted by $N \ll_{\delta} M$) if $M \neq N + K$ for any proper submodule K of M with M/K singular. General properties and some useful characterizations of δ -small submodules of a module was investigated in [12].

The notion of *H*-supplemented modules was introduced by Mohamed and Muller in [5]. A module M was called *H*-supplemented if for every submodule N of M there exists a direct summand D of M such that M = N + X if and only if M = D + X for every submodule X of M. Different definition's style, unusual properties and being a generalization of lifting modules, all led many researchers to study and investigate *H*-supplemented modules further than what was investigated in [5]. Maybe the first serious effort has been made in [2]. He investigated some general properties of *H*-supplemented modules, such as homomorphic images and direct summands of these modules. The authors in reference [3], proposed some equivalent conditions for a module to be *H*-supplemented, which show that this class of modules is closely related to the concept of small submodules. They proved that a module M is *H*-supplemented if and only if for every submodule N of M there is a direct summand D of M such that $(N + D)/N \ll M/N$ and $(N + D)/D \ll M/D$. In [7], Moniri and etc. investigated, the *E*-*H*-supplemented definition of module M, a homological approach of a *H*-supplemented modules. A module M is called *E*-*H*-supplemented, if for every endomorphism φ of M there exists a direct summand D of M such that Imf + X = M if and only if D + X = M.

Let M be a module over a ring R. Following [11], M is called (non)cosingular if $(\overline{Z}(M) = M)$ $\overline{Z}(M) = 0$, where $\overline{Z}(M) = \bigcap \{Kerf \mid f : M \to U\}$, in which U is an arbitrary small right R-module. The author in [8] considered the class of right δ -small R-modules in the definition of $\overline{Z}(M)$, and defined $\overline{Z}_{\delta}(M)$ to be $\bigcap \{Kerg \mid g : M \to V\}$ where V is a δ -small module (i.e. there exists another module U such that $V \ll_{\delta} U$). In [8], M is said to be $(non)\delta$ -cosingular in case $(\overline{Z}_{\delta}(M) = M) \ \overline{Z}_{\delta}(M) = 0$. Hence for module M, we have $\overline{Z}_{\delta}(M) \subseteq \overline{Z}(M)$. Therefore, every cosingular right R-module is δ -cosingular, and every non- δ -cosingular module is noncosingular.

As a pioneer research on lifting modules, supplemented modules, \oplus -supplemented modules, and others concept of singularity. Zhou [12] made a different impression on works that made on supplemented modules and related concepts. The first person who worked on δ -version was Koşan, that introduced δ -lifting modules and δ -supplemented modules and tried to investigate their natural properties [4]. According to [6], a module M is said to be δ -H-supplemented, if for every submodule N of M there is a direct summand D of M such that M = N + X if and only if M = D + X, for every submodule X of M with M/X singular. Inspired by [7] and [6], in this manuscript, we are interested in studying δ -H-supplemented modules via homomorphisms. Combining the two concepts E-H-supplemented modules and δ -H-supplemented modules, we call a module M, a E- δ -H-supplemented module if for every endomorphism φ of M there exists a direct summand D of M such that $Im\varphi + X = M$ if and only if D + X = M, for all submodules X of M with M/X singular. We introduce some equivalent conditions for this definition impressing the close relation of δ -H-supplemented modules to the concept of δ -small submodules.

2. SINGULARITY AND ENDOMORPHISM H-SUPPLEMENTED MODULES

In this section, we introduce a new generalization of the class of E-H-supplemented modules and δ -H-supplemented modules, namely Endomorphism δ -H-supplemented modules. We work on factor modules, particularly direct summands of Endomorphism δ -H-supplemented modules.

Definition 2.1. A module M is called *Endomorphism* δ -*H*-supplemented (*E*- δ -*H*-supplemented, for short) if for every $f \in S$, there exists a direct summand D of M such that Imf + X = M if and only if D + X = M for every submodule X of M with M/X singular.

Every δ -*H*-supplemented module is *E*- δ -*H*-supplemented. We shall present some conditions showing that the concept of *E*- δ -*H*-supplemented modules is closely related to the concept δ small submodules.

Theorem 2.2. The following are equivalent for a module M:

(1) M is E-H-supplemented;

(2) For every $f \in S$, there exists a direct summand D of M with $\frac{Imf+D}{D} \ll_{\delta} \frac{M}{D}$ and $\frac{Imf+D}{Imf} \ll_{\delta} \frac{M}{Imf}$;

(3) For every $f \in S$, there exist a direct summand D and a submodule N of M with $Imf \subseteq N$ and $D \subseteq N$ such that $\frac{N}{D} \ll_{\delta} \frac{M}{D}$ and $\frac{N}{Imf} \ll_{\delta} \frac{M}{Imf}$.

Proof. (1) \Rightarrow (2) Let $f \in S$. By (1), there exists a direct summand D of M such that Imf + X = M if and only if D + X = M for every submodule X of M with M/X singular. Let (Imf + D)/Imf + X/Imf = M/Imf for a submodule X of M containing Imf such that M/X is singular. It follows that D + X = M. Now, (1) implies Imf + X = M. Therefore, X = M, showing that $(Imf + D)/Imf \ll_{\delta} M/Imf$. For the second one, suppose that (Imf + D)/D + Y/D = M/D where Y is a submodule of M, which contains D with M/Y singular. Then Imf + Y = M combining with (1) implies M = Y, as required.

 $(2) \Rightarrow (3)$ Set N = Imf + D.

 $(3) \Rightarrow (1)$ Let $f \in S$. Then by assumption there is a submodule N and a direct summand D of M such that $N/D \ll_{\delta} M/D$ and $N/Imf \ll_{\delta} M/Imf$. Suppose that Imf + X = M for a submodule X of M with M/X singular. Then M = N + X. Now, N/D + (X + D)/D = M/D. As M/X is singular, we conclude that M/(X+D) is singular. Being N/D a δ -small submodule of M/D implies M = X + D. For the converse, let M = Y + D for a submodule Y of M with M/Y singular. Then M = N + Y which implies N/Imf + (Y + Imf)/Imf = M/Imf. Note also that M/(Y + Imf) is singular and M/Y. Therefore, M = Imf + Y is desired. \Box

We present some assumptions, which under two concepts E-H-supplemented modules and E- δ -H-supplemented modules are coincide.

Proposition 2.3. Let M be a module. In each of the following cases, M is E-H-supplemented if and only if M is E- δ -H-supplemented.

- (1) M is a singular module.
- (2) M has no simple projective submodule.

Proof. (1) This follows from the fact that every homomorphic image of a singular module is singular. In fact, every δ -small submodule of a singular module is a small submodule of that module.

(2) Let M be a E- δ -H-supplemented module with simple projective submodule. Suppose that f is an endomorphism of M. Then there is a direct summand D of M such that $(Imf + D)/Imf \ll_{\delta} M/Imf$ and $(Imf + D)/D \ll_{\delta} M/D$. Let (Imf + D)/Imf + T/Imf = M/Imffor a submodule T/Imf of M/Imf. Then, by [12, Lemma 1.2], (Imf + D)/Imf contains a semisimple projective direct summand Y/Imf of M/Imf such that $Y/Imf \oplus T/Imf =$ M/Imf. So, there is a submodule N' of Y such that $Y = Imf \oplus N'$, since Y/Imf is projective. It follows that N' contains a simple projective submodule. Now, Y = Imf, and consequently T/Imf = M/Imf implies that $(Imf + D)/Imf \ll M/Imf$. Applying the same argument, we can prove $(Imf + D)/D \ll M/D$. Therefore, M is H-supplemented. \square

Corollary 2.4. Let R be a ring such that every simple right R-module is singular(consider the ring \mathbb{Z}). Then a right R-module M is E-H-supplemented if and only if M is E- δ -H-supplemented. Particularly, an \mathbb{Z} -module M is E-H-supplemented if and only if M is E- δ -H-supplemented.

Proposition 2.5. Let M be an indecomposable module. Then M is $E-\delta$ -H-supplemented if and only if the image of each endomorphism of M is δ -small in M or every endomorphism of M is an epimorphism. Proof. Let M be an indecomposable E- δ -H-supplemented module. Consider a nonzero endomorphism f of M. Then there is a direct summand D of M such that $(Imf + D)/Imf \ll_{\delta} M/Imf \ll_{\delta} M/Imf \ll_{\delta} M/D$. Suppose D = 0. Then clearly, $Imf \ll_{\delta} M$. Otherwise, D = M implies $M/Imf \ll_{\delta} M/Imf$. Now [12, Lemma 1.2] yields that M/Imf is projective and semisimple (it is sufficient in [12, Lemma 1.2] that we set M = M/Imf, N = M/Imf and X = 0). It follows now that Imf must be a direct summand of M. Being M indecomposable implies Imf = 0, a contradiction. The converse is straightforward to check. \square

We next present some examples of $E-\delta$ -H-supplemented modules.

Example 2.6. (1) Suppose that M_1 is a *H*-supplemented module with a unique composition series $M_1 \supset U \supset V \supset 0$ (we may choose the \mathbb{Z} -module $M_1 = \mathbb{Z}_8$). Now, let $M = M_1 \oplus M_1/U \oplus U/V \oplus V/0$. Then *M* is a *H*-supplemented module by [3, Corollary 4.5(2)] and a δ -*H*-supplemented module. Hence *M* is *E*- δ -*H*-supplemented.

(2) Every *H*-supplemented module is $E-\delta$ -*H*-supplemented. The converse does not hold in general. Now let $F = \mathbb{Z}_2$, which is a field, and $S = \prod_{i=1}^{\infty} F_i$ where $F_i = F$ for each *i*. Let *R* be the subring of *S* generated by $\bigoplus_{i=1}^{\infty} F_i$ and 1_S . It is well-known that *R* is not a semiperfect ring which yields that R_R is not a *H*-supplemented module. By [12, Example 4.1], *R* is a δ -semiperfect ring. Now [4, Theorem 3.3] implies that R_R is δ -lifting and consequently R_R is δ -*H*-supplemented. Hence R_R is $E-\delta$ -*H*-supplemented.

Note if the image of every endomorphism of M is a direct summand of M, that module M is dual Rickart.

Theorem 2.7. Let M be a module. Then the following statements are equivalent:

- (1) M is dual Rickart;
- (2) M is $E-\delta$ -H-supplemented and δ -noncosingular.

In particular, if M is a non- δ -cosingular E- δ -H-supplemented module, it is dual Rickart.

Proof. $(1) \Rightarrow (2)$ It is clear by definitions.

(2) \Rightarrow (1) Let M be \mathcal{T} - δ -noncosingular and E- δ -H-supplemented. Suppose that $f \in S$. Now there is a direct summand D of M such that $(Imf + D)/D \ll_{\delta} M/D$ and $(Imf + D)/Imf \ll_{\delta} M/Imf$. Consider the R-homomorphism $\lambda \colon M \to M/D$ defined by $\lambda(m) = f(m) + D$. Set $M = D \oplus D'$ for a submodule D' of M. So that there is an isomorphism $h \colon M/D \to D'$ induced by the decomposition $M = D \oplus D'$. Consider the homomorphism $joho\lambda \colon M \to M$ where $j \colon D' \to M$ is the inclusion map. Since $Im\lambda = (Imf + D)/D \ll_{\delta} M/D$, we can get $joho\lambda(M) = h((Imf + D)/D) \ll_{\delta} D' \subseteq M$. So $Im(joho\lambda) \ll_{\delta} M$. Being M, \mathcal{T} - δ -noncosingular implies that $joho\lambda = 0$. It follows that $(Imf + D)/D \subseteq Kerh$. Hence (Imf + D)/D = D/D. Therefore, $Imf \subseteq D$. Since $D/Imf \ll_{\delta} M/Imf$ and D/Imf + (D' + Imf)/Imf = M/Imf, we conclude that D' + Imf = M. By modularity, Imf = D is a direct summand of M. \Box

Remark 2.8. By the last result, every dual Rickart module is $E-\delta$ -H-supplemented, while the other side may not hold. Let M be a hollow module with at least an endomorphism f which is distinct from zero and id_M (for example the \mathbb{Z} -module \mathbb{Z}_{p^n} where p is prime and n > 1). Then clearly, M is $E-\delta$ -H-supplemented, which is not dual Rickart.

The following indicates that the class of E- δ -H-supplemented modules properly contains the class of H-supplemented modules.

Example 2.9. Every injective module over a right hereditary ring is $E-\delta$ -H-supplemented by [1, Theorem 2.29]. Consider the \mathbb{Z} -module $M = \mathbb{Q}$. It is well-known that M is not supplemented; hence it is not H-supplemented while is a dual Rickart \mathbb{Z} -module. Therefore, every non-supplemented injective module over a right hereditary ring is $E-\delta$ -H-supplemented but not H-supplemented.

We shall deal with homomorphic images of E- δ -H-supplemented modules.

Proposition 2.10. Let M be a E- δ -H-supplemented module and N a direct summand of M. Suppose that for every direct summand K of M, there exists a direct summand T/N of M/N such that $(K + T)/T \ll_{\delta} M/T$ and $(K + T)/(K + N) \ll_{\delta} M/(K + N)$. Then M/N is E- δ -H-supplemented.

Proof. Let $M = N \oplus N'$, for some $N' \leq M$, and $f: M/N \to M/N$ be an endomorphism. Consider the natural epimorphism $\pi: M \to M/N$ defined by $\pi(x) = x + N$ and the isomorphism $h: M/N \to N'$ defined by h(n' + N) = n' induced by the decomposition $M = N \oplus N'$. Therefore, $hofo\pi: M \to M$ is an endomorphism. Set Imf = L/N. It is easy to check that $Im(hofo\pi) = L \cap N'$. Since M is $E-\delta$ -H-supplemented, there exists a direct summand K of M such that $[(L \cap N') + K]/K \ll_{\delta} M/K$ and $[(L \cap N') + K]/(L \cap N') \ll_{\delta} M/(L \cap N')$. By assumption, there is a submodule T of M such that T/N is a direct summand of M/N such that $(K + T)/T \ll_{\delta} M/T$ and $(K + T)/(K + N) \ll_{\delta} M/(K + N)$. We shall prove that $\frac{L/N + T/N}{L/N} \ll_{\delta} \frac{M/N}{T/N}$ and $\frac{L/N + T/N}{T/N} \ll_{\delta} \frac{M/N}{T/N}$.

To verify the last assertions, we assume (L + T)/L + X/L = M/L for a submodule X of M containing L such that M/X is singular. Then, T + X = M. Now, (K + T)/(K + N) + (K + X)/(K + N) = M/(K + N). As M/X is singular, we can say M/(K + X) is singular as a homomorphic image of M/X. Being (K + T)/(K + N) a δ -small submodule of M/(K + N), we conclude that M = K + X. Hence, $[(L \cap N') + X]/(L \cap N') + X/(L \cap N') = M/(L \cap N')$. Therefore, M = X due to $[(L \cap N') + K]/(L \cap N') \ll \delta M/(L \cap N')$. We turn to the second

assertion. Suppose that (L+T)/T + Y/T = M/T where Y is a submodule of M containing T such that M/Y is singular. Then L+Y = M. As L contains N, we have $N + (L \cap N') + Y = M$, which implies $(L \cap N') + Y = M$. It follows that $[(L \cap N') + K]/K + (Y + K)/K = M/K$. Since $[(L \cap N') + K]/K$ is a δ -small submodule of M/K and M/Y is a singular module, we conclude that M = Y + K. Now (K + T)/T + Y/T = M/T causes M = Y, as required (note that $(K + T)/T \ll_{\delta} M/T)$. \Box

Recall that a submodule N of M is said to be fully invariant (projection invariant) if for every endomorphism (idempotent endomorphism) f of M, we have $f(N) \subseteq N$. Let M be a module with a submodule N. The module M is a (weak) duo if every (direct summand) submodule of M is fully invariant.

Proposition 2.11. Let M be a module and N a projection invariant (fully invariant) direct summand of M. If M is E- δ -H-supplemented, then M/N is E- δ -H-supplemented.

Proof. Let D and D' be submodules of M such that $M = D \oplus D'$. By assumption, we have $N = (D \cap N) \oplus (D' \cap N)$. Then $(D + N) \cap (D' + N) = [D \oplus (D' \cap N)] \cap [(D \cap N) \oplus D'] = (D \cap N) \oplus (D' \cap N) = N$. So $M/N = [(D + N)/N] \oplus [(D' + N)/N]$. So that for an arbitrary direct summand D of M, there exists (D + N)/N that is a direct summand of M/N and $(D + D + N)/(D + N) \ll_{\delta} M/N$. The result follows from Proposition 2.10. \Box

Corollary 2.12. Let M be a E- δ -H-supplemented weak duo module. Then every direct summand of M is E- δ -H-supplemented.

As a direct consequence of the last proposition, we can say every direct summand of a duo (distributive) $E-\delta$ -H-supplemented module inherits the property.

Example 2.13. ([10, Example 3.9]) Let I and J be two ideals of a commutative local ring R with maximal ideal m such that $I \subset J \subseteq m$ (e.g., R is a discrete valuation ring with maximal ideal m, $I = m^3$ and $J = m^2$). Every direct summand of M is H-supplemented by [10, Proposition 2.1]. Hence every direct summand of M is E- δ -H-supplemented.

Theorem 2.14. Let $M = M_1 \oplus M_2$ be a distributive module. Then M is $E \cdot \delta \cdot H$ -supplemented module if and only if M_1 and M_2 are $E \cdot \delta \cdot H$ -supplemented.

Proof. Let M_1 and M_2 be E- δ -H-supplemented and $f \in End_R(M)$. Let $f(M_i)$ be a submodule of M_i for i = 1, 2. Then, there is a direct summand D_i of M_i for i = 1, 2, such that $(Imf_i + D_i)/Imf_i \ll_{\delta} M_i/Imf_i$ and $(Imf_i + D_i)/D_i \ll_{\delta} M_i/D_i$. We shall prove that $(Imf+D)/Imf \ll_{\delta} M/Imf$ and $(Imf+D)/D \ll_{\delta} M/D$ where $D = D_1 \oplus D_2$ which is a direct summand of M. Suppose that (Imf + D)/Imf + X/Imf = M/Imf for a submodule X of M containing Imf with M/X singular. Then D + X = M. It follows that $D_1 + (X \cap M_1) = M_1$. Now $(Imf_1+D_1)/Imf_1 + (X \cap M_1)/Imf_1 = M_1/Imf_1$ and $M_1/(X \cap M_1) \cong X + M_1/X \le M/X$ is a singular module. Therefore, $X \cap M_1 = M_1$, which implies that M_1 is in X. Now consider the equality D + X = M. Then $D_2 + (X \cap M_2) = M_2$. As $(Imf_2+D_2) + (X \cap M_2)/Imf_2 = M_2/Imf_2$ and $(Imf_2+D_2)/Imf_2 \ll_{\delta} M_2/Imf_2$ and also $M_2/X \cap M_2 \cong (X+M_2)/X \le M/X$ is singular, we conclude that $X \cap M_2 = M_2$. So M_2 is in X, which implies that X = M. For the other δ -small case, let (Imf + D)/D + T/D = M/D where $T/D \le M/D$ and M/T is singular. Now Imf + T = M and hence $Imf_1 + (T \cap M_1) = M_1$. Being $(Imf_1 + D_1)/D_1$ a δ -small submodule of M_1/D_1 combining with the fact that $M_1/(T \cap M_1)$ is singular and the last equality implies that $T \cap M_1 = M_1$ and therefore $M_1 \subseteq T$. By a same process, T will contain M_2 . Hence T = M as required. It follows now that M is $E - \delta - H$ -supplemented. The converse follows from Corollary 2.12. \Box

3. Acknowledgments

The authors wish to sincerely thank the referees for several useful comments.

References

- [1] G. Lee, S. T. Rizvi and C. S. Roman, Dual Rickart modules, Comm. Algebra, 39 No. 11 (2011) 4036-4058.
- [2] M. T. Kosan and D. Keskin Tütüncü, *H*-supplemented duo modules, J. Algebra Appl., 6 No. 6 (2007) 965-971.
- [3] D. Keskin Tütüncü, M. J. Nematollahi and Y. Talebi, On H-Supplemented modules, Algebra Colloq., 18 No. Spec01 (2011) 915-924.
- [4] M. T. Koşan, δ -lifting and δ -supplemented modules, Algebra Colloq., 14 No. 1 (2007) 53-60.
- [5] S. H. Mohamed and B. J. Müller, *Continuous and Discrete Modules*, Vol. 147, Cambridge University Press, 1990.
- [6] A. R. Moniri Hamzekolaee, H-supplemented modules and singularity, Alg. Struc. Appl., 7 No. 1 (2020) 49-57.
- [7] A. R. Moniri Hamzekolaee, A. Harmanci, Y. Talebi and B. Ungor, A new approach to H-supplemented modules via homomorphisms, Turk. J. Math., 42 (2018) 1941-1955.
- [8] A. Ç. Özcan, The torsion theory cogenerated by δ-M-small modules and GCO-modules, Comm. Algebra, 35 (2007) 623-633.
- [9] Y. Talebi, M. Hosseinpour and T. C. Quynh, On *τ*-δ-noncosingular modules, Sib. Elect. Math. Rep., 15 (2018) 321-331.
- [10] Y. Talebi, R. Tribak and A. R. Moniri Hamzekolaee, On H-cofinitely supplemented modules, Bull. Iranian Math. Soc., 30 No. 2 (2013) 325-346.

- [11] Y. Talebi and N. Vanaja, The torsion theory cogenerated by M-small modules, Comm. Algebra, 30 No. 3 (2002) 1449-1460.
- [12] Y. Zhou, Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloq., 7 No. 3 (2000) 305-318.

Ali Reza Moniri Hamzekolaee

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran a.monirih@umz.ac.ir

Ali Valinejad

Department of Computer Sciences, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran valinejad@umz.ac.ir