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1. Introduction

The rings considered in this article are commutative with identity which admit at least one
non-zero annihilating-ideal. The study of associating a graph with a ring and investigating the
interplay between the ring-theoretic properties of the ring and the graph-theoretic properties
of the graph associated with it began with the research work of Beck in [9]. In [9], Beck was
mainly interested in colorings. Let R be a ring. Let Z(R) denote the set of all zero-divisors of
R and let us denote Z(R)\{0} by Z(R)∗. The graphs considered in this article are undiredted
and simple. For a graph G, we denote the vertex set of G by V (G) and the edge set of G

by E(G). Recall from [6] that the zero-divisor graph of R, denoted by Γ(R), is an undirected
graph with V (Γ(R)) = Z(R)∗ and distinct vertices x and y are adjacent in Γ(R) if and only if
xy = 0. During the last two decades, several mathematicians contributed to the area of zero-
divisor graphs in commutative rings. For an excellent and interesting survey on zero-divisor
graphs in commutative rings, the reader is referred to [4].

Let R be a ring. As in [10], we denote the set of all annihilating ideals of R by A(R)

and we denote A(R)\{(0)} by A(R)∗. Let R be such that A(R)∗ ̸= ∅. The concept of the
annihilating-ideal graph of a ring was introduced by Behboodi and Rakeei in [10]. Recall from
[10] that the annihilating-ideal graph of R, denoted by AG(R), is an undirected graph with
V (AG(R)) = A(R)∗ and distinct vertices I and J are adjacent in this graph if and only if
IJ = (0). Several interesting and inspiring theorems were proved on AG(R) in [10, 11]. The
annihilating-ideal graph of a commutative ring was also considered by several other researchers,
for example, refer [1, 2, 3, 14].

Let G = (V,E) be a graph. We say that G satisfies (A) if G does not contain K3,3 as a
subgraph. We say that G satisfies (B) if G does not contain K5 as a subgraph. A complete
subgraph of a graph G is called a clique of G ([8], Definition 1.2.2). Let k ∈ N be such that
each clique of G is a clique on at most k vertices. The clique number of G, denoted by ω(G), is
defined as the largest positive integer n such that G contains a clique on n vertices ([8], page
185). If G contains a clique on n vertices for all n ≥ 1, then we define ω(G) = ∞. Observe
that a graph G satisfies (B) if and only if ω(G) ≤ 4.

Let G = (V,E) be a graph. A vertex coloring of G is a map f : V → S, where S is a set
of distinct colors. A vertex coloring f : V → S is said to be proper, if adjacent vertices of G
receive distinct colors of S; that is, if u, v ∈ V are adjacent in G, then f(u) ̸= f(v) ([8], page
129). Recall from ([8], Definition 7.1.2) that the chromatic number of G, denoted by χ(G),
is the minimum number of colors needed for a proper vertex coloring of G. It is well-known
that ω(G) ≤ χ(G).

Let R be a ring. The ring R is said to be quasi-local (respectively, semi-quasi-local) if
R has only one maximal ideal (respectively, has only a finite number of maximal ideals). If
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R is quasi-local with m as its unique maximal ideal, then we denote it using the notation
(R,m) . A Noetherian quasi-local (respectively, semi-quasi-local) ring is referred to as a local
(respectively, semi-local) ring. The Krull dimension of R is simply referred to as the dimension
of R. We denote the dimension of R by dimR. We denote the set of all maximal ideals of R
by Max(R). We denote the cardinality of a set A by |A|. This article is a continuation of our
work which appeared in [16] regarding the planarity of AG(R), where R is a zero-dimensional
semi-quasi-local ring, which is not quasi-local. Let n ∈ N be such that n ≥ 2. Let R be a
zero-dimensional ring with |Max(R)| ≥ n. It was shown in ([17], Lemma 3.15) that there
exist zero-dimensional rings R1, R2, . . . , Rn such that R ∼= R1 × R2 × · · · × Rn as rings. Let
R be the direct product of n rings R1, . . . , Rn. It was shown in ([16], Lemma 2.3) that if
AG(R) satisfies (A), then n ≤ 3. Hence, it follows from ([17], Lemma 3.15) and ([16], Lemma
2.3) that if AG(R) satisfies (A) for a zero-dimensional ring R, then |Max(R)| ≤ 3. Thus the
assumption that R is semi-quasi-local in the statement of Theorem 5.1 of [16] is superfluous.
For a zero-dimensional non-quasi-local ring R, it was shown in ([16], Theorem 5.1) that AG(R)

satisfies (A) if and only if AG(R) is planar and moreover, such rings R were characterized in
([16], Statement (iii) of Theorem 5.1). Notice that it follows from Kuratowski’s Theorem ([13],
Theorem 5.9) and (ii) ⇒ (iv) of ([16], Theorem 5.1) that if AG(R) satisfies (A), then AG(R)

satisfies (B). Moreover, in ([16], Example 6.13), an example of a local Artinian ring (R,m)

was provided such that AG(R) is K5. Hence, we obtain that AG(R) satisfies (A) but it does
not satisfy (B).

The aim of this article is to characterize zero-dimensional rings R such that AG(R) satisfies
(B) and to determine χ(AG(R)) in the case when AG(R) satisfies (B). In Section 2 of this
article, we state and prove several supporting results for proving the main theorems which
characterize zero-dimensional rings R for which AG(R) satisfies (B). We observe in Corollary
2.2 that if AG(R) satisfies (B), then |Max(R)| ≤ 4. In Theorem 3.2, we characterize zero-
dimensional rings R with |Max(R)| = 4 such that AG(R) satisfies (B). In Section 4, we
consider zero-dimensional rings R with |Max(R)| = 3 and in Theorem 4.16, we are able to
characterize such rings R in order that AG(R) to satisfy (B). In Section 5, we consider the
problem of characterizing zero-dimensional rings R with |Max(R)| = 2 such that AG(R)

satisfies (B). We are not able to solve this problem completely. However, Proposition 5.8,
Lemmas 5.11 to 5.13, and Lemma 5.15 contain the required characterization in certain special
cases. In Section 6, we try to characterize zero-dimensional quasi-local rings R such that
AG(R) satisfies (B). Let (R,m) be a quasi-local zero-dimensional ring. In Propositions 6.2
and 6.3, we provide a characterization of R such that ω(AG(R)) ≤ 4 in some special cases. In
Remark 6.5, we provide a characterization of R such that ω(AG(R)) ∈ {1, 2} and moreover,
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we are able to provide a characterization of R such that ω(AG(R)) ∈ {3, 4} in some special
cases. In Remark 6.5, we also mention the problems that remain to be solved.

Let R be a ring. We denote the nilradical of R by nil(R). We say that R is reduced if
nil(R) = (0). We denote the set of all minimal prime ideals of R by Min(R). We denote the
group of units of R by U(R).

2. Some preliminary results

Lemma 2.1. Let n ∈ N be such that n ≥ 2 and let R = R1 × R2 × · · · × Rn, where Ri is a
ring for each i ∈ {1, 2, . . . , n}. If AG(R) satisfies (B), then n ≤ 4.

Proof. Assume that AG(R) satisfies (B). For any i ∈ {1, 2, . . . , n}, let ei ∈ R be such that its
i-th coordinate is 1, whereas its j-th coordinate is 0 for all j ∈ {1, 2, . . . , n}\{i}. It is clear
that the subgraph of AG(R) induced by {Rei | i ∈ {1, 2, . . . , n}} is a clique. This implies that
ω(AG(R)) ≥ n. Since ω(AG(R)) ≤ 4, it follows that n ≤ 4.

Corollary 2.2. Let R be a ring such that dimR = 0. If AG(R) satisfies (B), then
|Max(R)| ≤ 4.

Proof. Assume that AG(R) satisfies (B). If |Max(R)| ≥ 5, then it follows from ([17], Lemma
3.15) that there exist zero-dimensional rings R1, R2, . . . , R5 such that R ∼= R1 ×R2 × · · · ×R5

as rings. It follows from the proof of Lemma 2.1 that ω(AG(R1 ×R2 × · · · ×R5)) ≥ 5 and so,
ω(AG(R)) ≥ 5, which contradicts AG(R) satisfies (B). Therefore, |Max(R)| ≤ 4.

Let T = Z× Z. Notice that T is a reduced ring with |Min(T )| = 2. Hence, it follows from
([11], Corollary 2.11) that ω(AG(T )) = χ(AG(T )) = 2. Hence, AG(T ) satisfies (B). Notice
that Max(T ) is infinite. Thus this example illustrates that Corollary 2.2 can fail to hold for
a ring of positive dimension.

For a ring R with A(R)∗ ̸= ∅, we know from ([10], Theorem 2.1) that AG(R) is connected.
Thus if |A(R)∗| ≥ 2, then it is possible to find distinct I, J ∈ A(R)∗ such that IJ = (0). We
use this remark in the proofs of some of the results of this article.

Lemma 2.3. Let R = R1 × R2 × R3 × R4, where Ri is a ring for each i ∈ {1, 2, 3, 4}. If
AG(R) satisfies (B), then |A(Ri)

∗| ≤ 1 for each i ∈ {1, 2, 3, 4}.

Proof. Assume that AG(R) satisfies (B). Suppose that for some i ∈ {1, 2, 3, 4}, |A(Ri)
∗| ≥ 2.

Without loss of generality, we can assume that |A(R1)
∗| ≥ 2. Hence, there exist distinct

I11, I12 ∈ A(R1)
∗ such that I11I12 = (0). Let I1 = I11 × (0)× (0)× (0), I2 = I12 × (0)× (0)×

(0), I3 = (0)×R2× (0)× (0), I4 = (0)× (0)×R3× (0), and I5 = (0)× (0)× (0)×R4. It is clear
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that the subgraph of AG(R) induced by {Ij | j ∈ {1, 2, . . . , 5}} is a clique. This is impossible,
since ω(AG(R)) ≤ 4. Therefore, |A(Ri)

∗| ≤ 1 for each i ∈ {1, 2, 3, 4}.

Recall that a principal ideal ring R is called a special principal ideal ring (SPIR) if R has
a unique prime ideal. If m is the only prime ideal of R, then it follows from ([7], Proposition
1.8) that m is necessarily nilpotent. If R is an SPIR with m as its only prime ideal, then we
denote it by saying that (R,m) is an SPIR. Let (R,m) be an SPIR which is not a field. Then
m = Rm is principal and let n ≥ 2 be least with the property that mn = (0). Then it follows
from the proof of (iii) ⇒ (i) of ([7], Proposition 8.8) that {mi = Rmi | i ∈ {1, . . . , n − 1}} is
the set of all non-zero proper ideals of R.

For a ring R, we know from ([10], Corollary 2.9(a)) that |A(R)∗| = 1 if and only if (R,Z(R))

is an SPIR with (Z(R))2 = (0). One can also refer ([15], Lemma 2.6) for a proof of ([10],
Corollary 2.9(a)).

Lemma 2.4. Let R = R1 × R2 × R3 × R4, where, Ri is a ring for each i ∈ {1, 2, 3, 4}. If
AG(R) satisfies (B), then there exists at most one i ∈ {1, 2, 3, 4} such that A(Ri)

∗ ̸= ∅.

Proof. Suppose that A(Ri)
∗ ̸= ∅ for at least two values of i ∈ {1, 2, 3, 4}. Without loss of

generality we can assume that A(R1)
∗ ̸= ∅ and A(R2)

∗ ̸= ∅. Now, it follows from Lemma 2.3
that |A(R1)

∗| = |A(R2)
∗| = 1. Let m1 (respectively, m2) be the unique non-zero annihilating

ideal of R1(respectively, R2). Notice that (Ri,mi) is an SPIR with m2
i = (0) for each i ∈ {1, 2}.

Let I1 = m1 × (0) × (0) × (0), I2 = (0) × m2 × (0) × (0), I3 = m1 × m2 × (0) × (0), I4 =

(0)×(0)×R3×(0), and I5 = (0)×(0)×(0)×R4. Observe that the subgraph of AG(R) induced
by {Ii | i ∈ {1, 2, . . . , 5}} is a clique and this implies that ω(AG(R)) ≥ 5. This is impossible,
since ω(AG(R)) ≤ 4 by assumption. Therefore, there exists at most one i ∈ {1, 2, 3, 4} such
that A(Ri)

∗ ̸= ∅.

Lemma 2.5. Let (S,m) be an SPIR and t ≥ 2 be least with the property that mt = (0). Then
the following statements hold

(i) If t = 2k for some k ≥ 1, then ω(AG(S)) = χ(AG(S)) = k.
(ii) If t = 2k + 1 for some k ≥ 1, then ω(AG(S)) = χ(AG(S)) = k + 1.

Proof. (i) Notice that the subgraph of AG(S) induced by {mi | i ∈ {k, k + 1, . . . , 2k − 1}}
is a clique on k vertices. Hence, ω(AG(S)) ≥ k. We next verify that χ(AG(S)) ≤ k.
Let {c1, . . . , ck} be a set of k distinct colors. Let us assign the color ci+1 to mk+i for
each i ∈ {0, . . . , k − 1}. Let us assign the color cj to mk−j for each j ∈ {1, . . . , k − 1}.
It is easy to verify that the above assignment of colors is indeed a proper vertex coloring
of AG(S). Hence, we obtain that χ(AG(S)) ≤ k ≤ ω(AG(S)) ≤ χ(AG(S)). Therefore,
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ω(AG(S)) = χ(AG(S)) = k.
(ii) Observe that the subgraph of AG(S) induced by {mi | i ∈ {k, k+1, . . . , 2k}} is a clique on
k+1 vertices. Hence, ω(AG(S)) ≥ k+1. Let {c1, c2 . . . , ck+1} be a set of k+1 distinct colors.
Let us assign the color ci+1 to mk+i for each i ∈ {0, 1, . . . , k}. Let us assign the color cj to
mk−j for each j ∈ {1, . . . , k− 1}. It is easy to verify the above assignment of colors is a proper
vertex coloring of AG(S). This proves that χ(AG(S)) ≤ k + 1 ≤ ω(AG(S)) ≤ χ(AG(S)).
Therefore, ω(AG(S)) = χ(AG(S)) = k + 1.

For any ring R, we denote the set of all proper ideals of R by I(R) and we denote the set
I(R)\{(0)} by I(R)∗. Since any proper ideal of an Artinian ring R is an annihilating ideal of
R, it follows that I(R) = A(R).

Lemma 2.6. Let D be an integral domain, (S,m) be a local Artinian ring with m ̸= (0),
and k ∈ N be such that ω(AG(S)) = χ(AG(S)) = k. Let R = D × S. Then ω(AG(R)) =

χ(AG(R)) = k + 1.

Proof. Let {I1, . . . , Ik} ⊆ A(S)∗ be such that the subgraph of AG(S) induced by {I1, . . . , Ik}
is a clique. Observe that the subgraph of AG(R) induced by {(0)× I1, . . . , (0)× Ik, D× (0)} is
a clique. Hence, ω(AG(R)) ≥ k+1. We next verify that χ(AG(R)) ≤ k+1. Let {c1, . . . , ck+1}
be a set of k + 1 distinct colors. Since χ(AG(S)) = k, the vertices of AG(S) can be properly
colored using {c1, . . . , ck}. Let Vi = {I ∈ A(S)∗ | I receives color ci} for each i ∈ {1, . . . , k}.
Observe that A(S)∗ =

∪k
i=1 Vi. Since S is Artinian, I(S) = A(S). Let Wi = {(0)× I | I ∈ Vi}

for each i ∈ {1, . . . , k}. Let V = {A × I | A ∈ I(D)∗ ∪ {D}, I ∈ A(S)}. It is easy to verify
that A(R)∗ = (

∪k
i=1Wi) ∪ V ∪ {(0) × S}. Let us assign the color ci to all the members

of Wi for each i ∈ {1, . . . , k}, assign the color ck+1 to all the members of V , and assign
the color c1 to (0) × S. It is clear that the above assignment of colors is a proper vertex
coloring of AG(R). Therefore, χ(AG(R)) ≤ k+1 ≤ ω(AG(R)) ≤ χ(AG(R)). This proves that
ω(AG(R)) = χ(AG(R)) = k + 1.

Lemma 2.7. Let T be a reduced ring such that |Min(T )| = n for some n ∈ N with
n ≥ 2. Let k ∈ N and (S,m) be a local Artinian ring which is not a field such that
ω(AG(S)) = χ(AG(S)) = k. Let R = T × S. Then ω(AG(R)) = χ(AG(R)) = n+ k.

Proof. As T is a reduced ring with |Min(T )| = n ≥ 2, we obtain from ([11], Corollary
2.11) that ω(AG(T )) = χ(AG(T )) = n. Let {Ii | i ∈ {1, 2, . . . , n}} ⊆ A(T )∗ be
such that the subgraph of AG(T ) induced by {I1, I2, . . . , In} is a clique. By hypothesis,
ω(AG(S)) = χ(AG(S)) = k. Let {J1, . . . , Jk} ⊆ A(S)∗ be such that the subgraph of
AG(S) induced by {J1, . . . , Jk} is a clique. Notice that the subgraph of AG(R) induced by
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{Ii×(0) | i ∈ {1, . . . , n}}∪{(0)×Jj | j ∈ {1, . . . , k}} is a clique. Therefore, ω(AG(R)) ≥ n+k.
We next verify that χ(AG(R)) ≤ n+ k. Let {c1, c2, . . . , cn+k} be a set of n+ k distinct colors.
Since χ(AG(T )) = n, the vertices of AG(T ) can be properly colored using {c1, c2 . . . , cn}. Let
Vi = {I ∈ A(T )∗ | I receives color ci} for each i ∈ {1, 2, . . . , n}. Observe that A(T )∗ =

∪n
i=1 Vi.

As χ(AG(S)) = k, the vertices of AG(S) can be properly colored using {cn+1, . . . , cn+k}. Let
Uj = {J ∈ A(S)∗ | J receives color cn+j} for each j ∈ {1, . . . , k}. Since S is Artinian, it
follows that I(S) = A(S). Notice that A(S)∗ =

∪k
j=1 Uj . For each i ∈ {1, 2, . . . , n}, let

Wi = {I × J | I ∈ Vi, J ∈ I(S) ∪ {S}}. Let V = {I × J | I ∈ (I(T )\A(T )) ∪ {T}, J ∈ I(S)}. It
is easy to verify that A(R)∗ = (

∪n
i=1Wi)∪ V ∪ (

∪k
j=1{(0)× J | J ∈ Uj})∪ {(0)× S}. We now

color the vertices of AG(R) as follows: Let us assign the color ci to all the elements of Wi for
each i ∈ {1, 2, . . . , n}, assign the color c1 to all the elements of V , assign the color cn+j to all
the elements of {(0)× J |J ∈ Uj} for each j ∈ {1, . . . , k}, and assign the color cn+1 to (0)× S.
The above assignment of colors using a set of n + k colors is indeed a proper vertex coloring
of AG(R). This proves that χ(AG(R)) ≤ n+ k ≤ ω(AG(R)) ≤ χ(AG(R)). Hence, we obtain
that ω(AG(R)) = χ(AG(R)) = n+ k.

Corollary 2.8. Let T be a reduced ring and n ∈ N\{1} be such that |Min(T )| = n. Let (S,m)

be an SPIR and t ≥ 2 be least with the property that mt = (0). Let R = T × S. Then the
following statements hold:

(i) If t = 2k for some k ≥ 1, then ω(AG(R)) = χ(AG(R)) = n+ k.
(ii) If t = 2k + 1 for some k ≥ 1, then ω(AG(R)) = χ(AG(R)) = n+ k + 1.

Proof. (i) We know from Lemma 2.5(i) that ω(AG(S)) = χ(AG(S)) = k. It now follows
immediately from Lemma 2.7 that ω(AG(R)) = χ(AG(R)) = n+ k.
(ii) By Lemma 2.5(ii), we get that ω(AG(S)) = χ(AG(S)) = k + 1. Hence, we obtain from
Lemma 2.7 that ω(AG(R)) = χ(AG(R)) = n+ k + 1.

3. Characterization of zero-dimensional rings R with |Max(R)| = 4 such that
ω(AG(R)) ≤ 4

Let R be a zero-dimensional ring such that |Max(R)| = 4. It follows from ([17], Lemma 3.15)
that there exist zero-dimensional rings R1, R2, R3, R4 such that R ∼= R1×R2×R3×R4 as rings.
Since |Max(R)| = 4 by assumption, it follows that Ri is quasi-local for each i ∈ {1, 2, 3, 4}.
The aim of this section is to characterize such rings R in order that AG(R) to satisfy (B).

Lemma 3.1. Let R = R1×R2×R3×R4, where Ri is a ring for each i ∈ {1, 2, 3, 4}. Suppose
that R is not reduced. Then the following statements are equivalent:
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(i) AG(R) satisfies (B).
(ii) Ri is an integral domain for exactly three values of i ∈ {1, 2, 3, 4} and if j ∈ {1, 2, 3, 4}

is such that Rj is not an integral domain, then Rj is an SPIR with the square of its
unique maximal ideal equals the zero ideal.

(iii) ω(AG(R)) = χ(AG(R)) = 4.

Proof. (i) ⇒ (ii) Since R is not reduced, it follows that Rj is not an integral domain for at
least one j ∈ {1, 2, 3, 4}. As AG(R) satisfies (B) by assumption, we obtain from Lemma 2.4
that there is exactly one j ∈ {1, 2, 3, 4} such that A(Rj)

∗ ̸= ∅ and it follows from Lemma
2.3 that Rj has only one non-zero annihilating ideal. Hence, (Rj , Z(Rj)) is an SPIR with
(Z(Rj))

2 = (0). It is clear that for a ring T , A(T )∗ = ∅ if and only if T is an integral domain.
From the above arguments, we obtain (i) ⇒ (ii).

(ii) ⇒ (iii) Without loss of generality, we can assume that Ri is an integral domain for each
i ∈ {1, 2, 3}. Notice that R4 is an SPIR with unique non-zero maximal ideal m4 such that
m2

4 = (0). Let T = R1 ×R2 ×R3. Observe that T is a reduced ring and |Min(T )| = 3. Since
R ∼= T ×R4 as rings, it follows from Corollary 2.8(i) that ω(AG(R)) = χ(AG(R)) = 4.

(iii) ⇒ (i) This is clear.

Let (A,m) be quasi-local. Suppose that A is reduced and zero-dimensional. Notice that
Spec(A) = {m}. Since A is reduced, it follows from ([7], Proposition 1.8) that m = (0) and so,
A is a field.

Theorem 3.2. Let R be a zero-dimensional ring with |Max(R)| = 4. Then the following
statements are equivalent:

(i) AG(R) satisfies (B).
(ii) Either R ∼= F1 × F2 × F3 × F4 as rings, where Fi is a field for each i ∈ {1, 2, 3, 4} or

R ∼= F1 ×F2 ×F3 ×R4 as rings, where Fi is a field for each i ∈ {1, 2, 3} and R4 is not
a field but R4 is an SPIR with the square of its unique maximal ideal equals the zero
ideal.

(iii) ω(AG(R)) = χ(AG(R)) = 4.

Proof. Since R is a zero-dimensional ring with |Max(R)| = 4, it follows that R ∼= R1 × R2 ×
R3 ×R4 as rings, where Ri is a zero-dimensional quasi-local ring for each i ∈ {1, 2, 3, 4}.

(i) ⇒ (ii) If R is reduced, then Ri is reduced for each i ∈ {1, 2, 3, 4}. Since any
zero-dimensional quasi-local reduced ring is a field (see the paragraph which appears just
preceding the statement of this theorem), it follows that Ri is a field. With Fi = Ri for each
ii ∈ {1, 2, 3, 4}, we obtain that Fi is a field and R ∼= F1 × F2 × F3 × F4 as rings. Suppose that
R is not reduced. Then it follows from (i) ⇒ (ii) of Lemma 3.1 that Ri is a field for exactly
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three values of i ∈ {1, 2, 3, 4}. Without loss of generality, we can assume that Ri is a field for
each i ∈ {1, 2, 3}. Again it follows from (i) ⇒ (ii) of Lemma 3.1 that R4 is an SPIR with the
square of its unique maximal ideal equals the zero ideal. With Fi = Ri for each i ∈ {1, 2, 3},
we obtain that Fi is a field and R ∼= F1 × F2 × F3 ×R4 as rings.

(ii) ⇒ (iii) This follows from ([11], Corollary 2.11) and (ii) ⇒ (iii) of Lemma 3.1.
(iii) ⇒ (i) This is clear.

4. Characterization of zero-dimensional rings R with |Max(R)| = 3 such that
ω(AG(R)) ≤ 4

The aim of this section is to characterize zero-dimensional rings R with |Max(R)| = 3 such
that ω(AG(R)) ≤ 4. Notice that it follows from ([17], Lemma 3.15) that there exist zero-
dimensional rings R1, R2, R3 such that R ∼= R1 × R2 × R3 as rings. Since |Max(R)| = 3 by
assumption, it follows that Ri is quasi-local for each i ∈ {1, 2, 3}.

We first consider a ring R which is the direct product of three rings and try to determine
necessary conditions on R for AG(R) to satisfy (B).

Lemma 4.1. Let R = R1 × R2 × R3, where Ri is a ring for each i ∈ {1, 2, 3}. If AG(R)

satisfies (B), then there exists at most one i ∈ {1, 2, 3} such that |A(Ri)
∗| ≥ 2.

Proof. Suppose that |A(Ri)
∗| ≥ 2 for at least two values of i ∈ {1, 2, 3}. Without loss of

generality, we can assume that |A(R1)
∗| ≥ 2 and |A(R2)

∗| ≥ 2. Notice that there exist
distinct I11, I12 ∈ A(R1)

∗ (respectively, I21, I22 ∈ A(R2)
∗) such that I11I12 = (0) (respectively

I21I22 = (0)). It is clear that the subgraph of AG(R) induced by {I1 = I11 × (0) × (0), I2 =

I12 × (0) × (0), I3 = (0) × I21 × (0), I4 = (0) × I22 × (0), I5 = (0) × (0) × R3} is a clique and
hence, ω(AG(R)) ≥ 5. This contradicts the assumption AG(R) satisfies (B). Therefore, there
exists at most one i ∈ {1, 2, 3} such that |A(Ri)

∗| ≥ 2.

Lemma 4.2. Let R = R1 × R2 × R3, where Ri is a ring for each i ∈ {1, 2, 3}. If AG(R)

satisfies (B), then Ri is reduced for at least one i ∈ {1, 2, 3}.

Proof. Suppose that Ri is not reduced for each i ∈ {1, 2, 3}. Then there exists ai ∈ Ri\(0)
such that a2i = 0 for each i ∈ {1, 2, 3}. Observe that the subgraph of AG(R) induced by
{I1 = R1a1×(0)×(0), I2 = (0)×R2a2×(0), I3 = R1a1×R2a2×(0), I4 = (0)×R2a2×R3a3, I5 =

(0)×(0)×R3a3} is a clique. This implies that ω(AG(R)) ≥ 5. This contradicts the assumption
AG(R) satisfies (B). Therefore, Ri is reduced for at least one i ∈ {1, 2, 3}.
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Lemma 4.3. Let R = R1 × R2 × R3, where Ri is a ring for each i ∈ {1, 2, 3}. Suppose that
A(R1)

∗ ̸= ∅. If AG(R) satisfies (B), then ω(AG(R1)) ≤ 2.

Proof. Suppose that ω(AG(R1)) ≥ 3. Then there exist I11, I12, I13 ∈ A(R1)
∗ such that

the subgraph of AG(R1) induced by {I11, I12, I13} is a clique. Notice that the subgraph of
AG(R) induced by {I1 = I11 × (0) × (0), I2 = I12 × (0) × (0), I3 = I13 × (0) × (0), I4 =

(0)×R2 × (0), I5 = (0)× (0)×R3} is a clique. This is impossible, since AG(R) satisfies (B).
Therefore, ω(AG(R1)) ≤ 2.

Lemma 4.4. Let R = R1 × R2 × R3, where Ri is a ring for each i ∈ {1, 2, 3}. Suppose that
R1 is not reduced and |A(R1)

∗| ≥ 2. If AG(R) satisfies (B), then R2 and R3 must be integral
domains.

Proof. Since R1 is not reduced by hypothesis, there exists a1 ∈ R1\{0} such that a21 = 0.
Let I11 = R1a1. By hypothesis, |A(R1)

∗| ≥ 2. Hence, there exists I12 ∈ A(R1)
∗, I12 ̸= I11

and I11I12 = (0). We first verify that R2 is an integral domain. Suppose that R2 is not an
integral domain. Then there exist a, b ∈ R2\{0} such that ab = 0. Observe that the subgraph
of AG(R) induced by {I1 = I11 × (0) × (0), I2 = I12 × (0) × (0), I3 = I11 × R2a × (0), I4 =

(0)×R2b×(0), I5 = (0)×(0)×R3} is a clique. This implies that ω(AG(R)) ≥ 5, a contradiction.
Therefore, R2 is an integral domain. Similarly, it can be shown that R3 is an integral domain.

We often use the following Lemma 4.5 in the verification of several results of this article.

Lemma 4.5. Let R be a ring and a, b ∈ nil(R). If Ra = Rab, then a = 0.

Proof. From Ra = Rab, it follows that a = rab for some r ∈ R. Hence, a(1 − rb) = 0.
Since b ∈ nil(R), we obtain from ([7], Exercise 1, page 10) that 1 − rb ∈ U(R). Hence, from
a(1− rb) = 0, we get that a = 0.

Lemma 4.6. Let R be a ring with |A(R)∗| ≥ 1 and m ∈ N. If ω(AG(R)) ≤ m, then
(nil(R))2m = (0).

Proof. Suppose that m = 1. As ω(AG(R)) = 1 and AG(R) is connected by ([10], Theorem 2.1),
it follows that |A(R)∗| = 1. Hence, (R,Z(R)) is an SPIR with Z(R) ̸= (0) but (Z(R))2 = (0).
Notice that Z(R) = nil(R) and (nil(R))2 = (0). Therefore, in proving this lemma, we can
assume that m ≥ 2. Let a ∈ nil(R). We assert that a2m = 0. Suppose that a2m ̸= 0. Let
n ∈ N be least with the property that an = 0. Then n ≥ 2m+1. Let i ∈ {1, 2, . . . ,m+1} and
let Ii = Ran−i. It is clear that Ii ̸= (0). It follows from Lemma 4.5 that Ii, Ij are distinct ideals
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for all distinct i, j ∈ {1, 2, . . . ,m + 1}. Observe that for all distinct i, j ∈ {1, 2, . . . ,m + 1},
i + j ≤ 2m + 1. Hence, 2n − (i + j) ≥ 2n − (2m + 1). As n ≥ 2m + 1, it follows that
2n− (2m+ 1) ≥ n. Therefore, IiIj = Ra2n−(i+j) = (0) for all distinct i, j ∈ {1, 2, . . . ,m+ 1}.
This shows that the subgraph of AG(R) induced by {I1, . . . , Im+1} is a clique. This implies
that ω(AG(R)) ≥ m+1. This contradicts ω(AG(R)) ≤ m. Hence, a2m = 0 for any a ∈ nil(R).

Let a, b1, . . . , bm ∈ nil(R). We claim that am
∏m

i=1 bi = 0. Suppose that am
∏m

i=1 bi ̸= 0. Let
I1 = Ram and for each j ∈ N with 2 ≤ j ≤ m+1, let Ij = R(am

∏j−1
k=1 bk). As am

∏m
i=1 bi ̸= 0,

it follows from Lemma 4.5 that the non-zero ideals I1, . . . Im+1 are all distinct. Moreover, from
a2m = 0, it follows that IiIj = (0) for all distinct i, j ∈ {1, . . . ,m + 1}. Hence, the subgraph
of AG(R) induced by {I1, . . . , Im+1} is a clique. This implies that ω(AG(R)) ≥ m + 1. This
contradicts ω(AG(R)) ≤ m. Thus for any a, b1, . . . , bm ∈ nil(R), am

∏m
i=1 bi = 0.

Let k be a non-negative integer such that k < m. Assume that we have proved, for any
a, b1, . . . , bm+k ∈ nil(R), am−k

∏m+k
i=1 bi = 0. Suppose that k + 1 < m. Let a, b1, . . . , bm+k+1 ∈

nil(R). We claim that am−k−1
∏m+k+1

i=1 bi = 0. Suppose that am−k−1
∏m+k+1

i=1 bi ̸= 0.
Let t ∈ {1, . . . ,m + 1} and let It = R(am−k−1

∏k+t
j=1 bj). It is clear that It ̸= (0).

Since am−k−1
∏m+k+1

j=1 bj ̸= 0, it follows from Lemma 4.5 that Ii ̸= Ij for all distinct
i, j ∈ {1, . . . ,m + 1}. Let t1, t2 ∈ {1, . . . ,m + 1} with t1 < t2. Observe that It1It2 =

R(am−kam−k−2(
∏k+t1

j=1 b2j )(
∏k+t2

j=k+t1+1 bj)). Notice that m − k − 2 + 2(k + t1) + t2 − t1 =

m + k + t1 + t2 − 2 > m + k. As am−kc1c2 . . . cm+k = 0 for any a, c1, . . . , cm+k ∈ nil(R), we
obtain that It1It2 = (0) for all distinct t1, t2 ∈ {1, . . . ,m + 1}. This shows that the subgraph
of AG(R) induced by {I1, . . . , Im+1} is a clique. This contradicts ω(AG(R)) ≤ m. Thus for
any a, b1, . . . , bm+k+1 ∈ nil(R), am−k−1

∏m+k+1
i=1 bi = 0. This shows that for all integers s with

1 ≤ s < m, for any a, b1, . . . , bm+s ∈ nil(R), am−s
∏m+s

i=1 bi = 0. Hence, on applying with
s = m− 1, we obtain that for any a, b1, . . . , b2m−1 ∈ nil(R), a

∏2m−1
i=1 bi = 0. This proves that

(nil(R))2m = (0).

Lemma 4.7. Let I be a non-zero nilpotent ideal of a ring R and n ∈ N be least with the
property that In = (0). Let i ∈ N be such that i < n. If an ideal J of R with J ⊆ Ii is such
that Ii = J + Ii+1, then J = Ii.

Proof. From Ii = J + Ii+1, it follows that Ii = J + IiI = J + (J + Ii+1)I = J + Ii+2.
Hence, Ii = J + IiI2 = J + (J + Ii+2)I2 = J + Ii+4. Proceeding in this way, we obtain that
Ii = J + Ii+2k for all k ≥ 1. It follows from In = (0) that Ii = J .

Lemma 4.8. Let m ∈ N and R be a ring with |A(R)∗| ≥ 1. If ω(AG(R)) ≤ m and
(nil(R))2m−1 ̸= (0), then nil(R) is principal.
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Proof. If m = 1, then as is remarked in the proof of Lemma 4.6, we know that (R,Z(R)) is
an SPIR with Z(R) ̸= (0) but (Z(R))2 = (0). Thus Z(R) = nil(R) is principal. Hence, in
proving this lemma, we can assume that m ≥ 2. For convenience, let us denote nil(R) by n.
We know from Lemma 4.6 that n2m = (0). By hypothesis, n2m−1 ̸= (0). Hence, nm ̸= nm+1.
Let x ∈ nm\nm+1. We claim that nm = Rx. Suppose not. Then it follows from Lemma 4.7
that nm ̸= Rx+ nm+1. Let y ∈ nm\(Rx+ nm+1). Let I1 = nm+1, . . . , Im−1 = n2m−1, Im = Rx,
and Im+1 = Ry. It is clear from the choice of the elements x, y and from the hypothesis
n2m−1 ̸= (0) that Ii, Ij are distinct non-zero ideals for all distinct i, j ∈ {1, . . . ,m + 1}. It
follows from n2m = (0) that the subgraph of AG(R) induced by {I1, . . . , Im+1} is a clique. This
implies that ω(AG(R)) ≥ m+1. This contradicts ω(AG(R)) ≤ m. Thus for any x ∈ nm\nm+1,
nm = Rx.

Since n2m−1 ̸= (0), it follows that n2m−2a ̸= (0) for some a ∈ n. It follows from n2m = (0)

that a /∈ n2. We assert that n = Ra + n2. Suppose not. Then there exists b ∈ n\(Ra + n2).
It follows from n2m−2a ̸= (0) that either n2m−2b ̸= (0) or n2m−2(a + b) ̸= (0). It is clear that
a+ b ∈ n\(Ra+n2). Hence, on replacing b by a+ b if necessary, we can assume without loss of
generality that n2m−2b ̸= (0). Since n2m = (0) but n2m−2a ̸= (0), it follows that nm−1a ̸⊆ nm+1.
Similarly, it follows from n2m−2b ̸= (0) that nm−1b ̸⊆ nm+1. Let c ∈ (nm−1a)\nm+1. Then it
follows from the previous paragraph that nm = Rc = nm−1a. Let d ∈ (nm−1b)\nm+1. Then
Rd = nm = nm−1b. This shows that nm−1a = nm−1b. Hence, we obtain that nma = nmb. Let
x ∈ nm\nm+1. Then nm = Rx. Therefore, it follows that Rxa = Rxb. Hence, there exists
r ∈ R such that xb = rxa and so, x(b − ra) = 0. Notice that b − ra ∈ n\n2. Moreover,
nm(b − ra) = (0). Let I1 = nm, I2 = nm+1, . . . , Im = n2m−1, and Im+1 = R(b − ra) . From
the choice of the elements a, b and from the hypothesis n2m−1 ̸= (0), we obtain that Ii, Ij are
distinct non-zero ideals for all distinct i, j ∈ {1, . . . ,m+1}. As n2m = (0) and nm(b−ra) = (0),
it follows that the subgraph of AG(R) induced by {I1, . . . , Im+1} is a clique. This contradicts
ω(AG(R)) ≤ m. Hence, n = Ra+n2. Therefore, it follows from Lemma 4.7 that n = Ra. This
proves that nil(R) is principal.

Lemma 4.9. Let m ∈ N be such that m ≥ 2 and R be a ring such that (nil(R))2m−1 = (0)

but (nil(R))2m−2 ̸= (0). If ω(AG(R)) ≤ m, then (nil(R))j is principal for each j ∈ N such
that m ≤ j ≤ 2m− 2.

Proof. Let j ∈ N be such that m ≤ j ≤ 2m − 2. It is convenient to denote nil(R) by n.
It follows from n2m−1 = (0), whereas n2m−2 ̸= (0) that nj ̸= nj+1. Let x ∈ nj\nj+1. We
assert that nj = Rx. Suppose that nj ̸= Rx. Then it follows from Lemma 4.7 that there
exists y ∈ nj\(Rx + nj+1). Let A = {nt | t ∈ {m − 1,m, . . . , 2m − 2}\{j}}. It is clear
that A ∪ {Rx,Ry} is a collection of m + 1 distinct and non-zero ideals of R. It follows from
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2j ≥ 2m and n2m−1 = (0) that the subgraph of AG(R) induced by A ∪ {Rx,Ry} is a clique.
This implies that ω(AG(R)) ≥ m + 1. This contradicts ω(AG(R)) ≤ m. Thus if j ∈ N with
m ≤ j ≤ 2m− 2, then for any x ∈ nj\nj+1, nj = Rx. This proves that nj is principal for each
j ∈ {m, . . . , 2m− 2}.

Lemma 4.10. Let m ∈ N be such that m ≥ 2 and R be a ring such that (nil(R))2m−1 = (0).
Let z ∈ (nil(R))m−1 be such that z2 ̸= (0). If ω(AG(R)) ≤ m, then nil(R) is principal.

Proof. It is convenient to denote nil(R) by n. We are assuming that z2 ̸= 0 for some z ∈ nm−1.
Since z2 ∈ n2m−2, it follows that n2m−2 ̸= (0). Let x ∈ n2m−2, x ̸= 0. It follows from the proof
of Lemma 4.9 that n2m−2 = Rx. Since z2 ∈ n2m−2\{0}, we obtain that n2m−2 = Rz2.

From n2m−1 = (0), whereas n2m−2 ̸= (0), it follows that nm ̸= nm+1. Let x ∈ nm\nm+1. It
follows from the proof of Lemma 4.9 that nm = Rx.

Since n2m−2 ̸= (0), we obtain that n2m−3a ̸= (0) for some a ∈ n. By hypothesis, n2m−1 = (0).
Hence, a /∈ n2. We claim that n = Ra+ n2. Suppose not. Then there exists b ∈ n\(Ra+ n2).
It is clear that either n2m−3b ̸= (0) or n2m−3(a + b) ̸= (0). Notice that a + b ∈ n\(Ra + n2).
Therefore, on replacing b by a+ b if necessary, we can assume without loss of generality that
n2m−3b ̸= (0). It follows from n2m−3a ̸= (0), n2m−3b ̸= (0), n2m−1 = (0) that nm−1a ̸⊆ nm+1

and nm−1b ̸⊆ nm+1. Since for any x ∈ nm\nm+1, nm = Rx, we get that nm−1a = nm−1b.
We next verify that nm−1 = Rz. Consider the map f : nm−1 → n2m−2 defined by

f(w) = wz. It is clear that f is a homomorphism of R-modules. Since z ∈ nm−1 and
n2m−2 = Rz2, we obtain that f is onto. As n2m−1 = (0), we get that nm ⊆ Ker(f). It is clear
from the definition of f that (Rz)Ker(f) = (0). It follows from z2 ̸= 0 that z /∈ Ker(f).
We claim that Ker(f) = nm. Suppose that Ker(f) ̸= nm. Let Ii = nm+i−1 for each
i ∈ {1, . . . ,m − 1}, Im = Rz, and Im+1 = Ker(f). It is clear from the above discussion that
Ii, Ij are distinct non-zero ideals for all distinct i, j ∈ {1, . . . ,m+1}. Moreover, it follows from
(Rz)Ker(f) = (0) and n2m−1 = (0) that the subgraph of AG(R) induced by {I1, I2, . . . , Im+1}
is a clique. This is impossible, since ω(AG(R)) ≤ m. Therefore, Ker(f) = nm. Now, we
obtain from the fundamental theorem of homomorphism of modules that nm−1

Ker(f)=nm
∼= n2m−2

as R-modules. As n2m−2 is generated by any non-zero element of it and z /∈ Ker(f), it follows
that nm−1 = Rz + nm. Hence, we obtain from Lemma 4.7 that nm−1 = Rz.

It follows from nm−1a = nm−1b and nm−1 = Rz that Rza = Rzb. Hence, z(b − ra) = 0

for some r ∈ R. Let Ii = nm−1+i−1 for each i ∈ {1, . . . ,m}, and Im+1 = R(b − ra). From
n2m−2 ̸= (0), n2m−1 = (0), it follows that Ii, Ij are distinct non-zero ideals for all distinct
i, j ∈ {1, . . . ,m + 1} and moreover, the subgraph of AG(R) induced by {I1, . . . , Im+1} is a
clique. This is impossible. Therefore, n = Ra + n2 and so, we obtain from Lemma 4.7 that
nil(R) = n = Ra is principal.
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Lemma 4.11. Let m ∈ N be such that m ≥ 2 and R be a ring such that (nil(R))2m−1 = (0).
Suppose that (nil(R))2m−2 ̸= (0), whereas z2 = 0 for each z ∈ (nil(R))m−1. If ω(AG(R)) ≤ m,
then (nil(R))i can be generated by two elements for each i ∈ {1, . . . ,m − 1} and (nil(R))m−1

is not principal. Moreover, m = 2.

Proof. It is convenient to denote nil(R) by n. Let i ∈ {1, . . . ,m− 1}. By hypothesis, n2m−2 ̸=
(0). Hence, there exist elements a1, . . . , a2m−2 ∈ n such that

∏2m−2
k=1 ak ̸= 0. Consider the

map f : ni → nm+i−1 defined by f(x) = x(
∏m+i−1

s=i+1 as). It is clear that f is a homomorphism
of R-modules. It follows from n2m−1 = (0),

∏2m−2
k=1 ak ̸= 0 that

∏m+i−1
t=1 at ∈ nm+i−1\nm+i.

Hence, we obtain from the proof of Lemma 4.9 that nm+i−1 = R(
∏m+i−1

t=1 at) and this implies
that f is onto. Observe that

∏m+i−1
s=i+1 as ∈ nm−1 and as z2 = 0 for each z ∈ nm−1, it

follows that
∏m+i−1

s=i+1 as ∈ Ker(f). We claim that Ker(f) = R(
∏m+i−1

s=i+1 as). Suppose that
Ker(f) ̸= R(

∏m+i−1
s=i+1 as). From the definition of f , it is clear that (

∏m+i−1
s=i+1 as)Ker(f) = (0).

Notice that
∏m+i−1

s=i as ∈ nm\nm+1. Hence, from the proof of Lemma 4.9, we obtain that
nm = R(

∏m+i−1
s=i as). Therefore, nmKer(f) = (0). As

∏m+i−1
s=i+1 as ∈ Ker(f) and

∏m+i−1
s=i+1 as ∈

nm−1\nm, it follows that Ker(f) /∈ {nj | j ∈ {m, . . . , 2m − 2}}. Notice that A = {nj | j ∈
{m, . . . , 2m− 2}}∪ {Ker(f), R(

∏m+i−1
s=i+1 as)} is a set consisting of m+1 distinct and non-zero

ideals of R. Since n2m−1 = (0) and (
∏m+i−1

s=i+1 as)Ker(f) = (0), we obtain that the subgraph of
AG(R) induced by A ∪ {Ker(f), R(

∏m+i−1
s=i+1 as)} is a clique. This implies that ω(AG(R)) ≥

m + 1 and this is a contradiction. Hence, Ker(f) = R(
∏m+i−1

s=i+1 as). It now follows from the
fundamental theorem of homomorphism of modules that ni

Ker(f)=R(
∏m+i−1

s=i+1 as)
∼= nm+i−1 as R-

modules. It follows from nm+i−1 = R(
∏m+i−1

s=1 as) that ni = R(
∏i

s=1 as)+R(
∏m+i−1

s=i+1 as). This
proves that (nil(R))i is two generated for each i ∈ {1, . . . ,m − 1}. If there exists i ∈ N with
i < m−1, then from ni = R(

∏i
s=1 as)+R(

∏m+i−1
s=i+1 as), we obtain that ni = R(

∏i
s=1 as)+ni+1.

Hence, it follows from Lemma 4.7 that ni = R(
∏i

s=1 as) is principal. By hypothesis, z2 = 0 for
each z ∈ nm−1. As n2m−2 ̸= (0), it follows that (nil(R))m−1 is not principal. We next verify
that m = 2. Suppose that m ≥ 3. Then 1 < m− 1. Therefore, n is principal and so, nm−1 is
principal. This is a contradiction. Therefore, m = 2.

Lemma 4.12. Let R be a ring such that nil(R) ̸= (0), but (nil(R))2 = (0). If ω(AG(R)) ≤ 2,
then nil(R) is principal.

Proof. Suppose that nil(R) is not principal. Let x ∈ nil(R), x ̸= 0. Now, there exists
y ∈ nil(R)\Rx. From (nil(R))2 = (0), it follows that the subgraph of AG(R) induced by
{Rx,Ry, nil(R)} is a clique. This implies that ω(AG(R)) ≥ 3, a contradiction. Therefore, we
obtain that nil(R) is principal.
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Lemma 4.13. Let (R,m) be a local Artinian ring with m3 = (0),m2 ̸= (0), z2 = 0 for each
z ∈ m, and m is generated by two elements. Then ω(AG(R)) = χ((AG(R)) = 2.

Proof. It is clear that the subgraph of AG(R) induced by {m,m2} is a clique. Therefore,
ω(AG(R)) ≥ 2. We next show that χ(AG(R)) ≤ 2. We first verify that if I and J are any
distinct non-zero proper ideals of R different from m2, then IJ ̸= (0). By hypothesis, there
exist x, y ∈ m such that m = Rx+Ry. From z2 = 0 for each z ∈ m, it follows that m2 = Rxy.
Now, m3 = (0) and so, m2 = Rxy is of dimension one regarded as a vector space over the
field R

m . Since m2 ̸= (0) and z2 = 0 for each z ∈ m, it follows that m is not principal. As
m is generated by two elements, it follows that m

m2 is of dimension two regarded as a vector
space over R

m . Let I be any non-zero proper ideal of R different from m2. As dimR
m
(m2) = 1, it

follows that I ̸⊆ m2. Let a ∈ I\m2. Notice that there exist b ∈ m\m2 such that {a+m2, b+m2}
is a basis of m

m2 as a vector space over R
m . Hence, we obtain that m = Ra + Rb. Therefore,

m2 = Rab ⊆ Im. Similarly, it follows that if J is any non-zero proper ideal of R with J ̸= m2,
then m2 ⊆ Jm. Let I, J be non-zero distinct proper ideals of R such that both are different
from m2. If I = m or J = m, then it is clear that m2 ⊆ IJ . Suppose that I and J are both
different from m. Notice that m2 ⊂ I ⊂ m and m2 ⊂ J ⊂ m. Thus dimR

m
( I
m2 ) = dimR

m
( J
m2 ) = 1.

Hence, there exist a ∈ I, b ∈ J such that I = Ra + m2 and J = Rb + m2. As m2 ⊆ Im ∩ Jm,
we obtain that I = Ra + Im and J = Rb + Jm. Therefore, it follows from ([7], Corollary
2.7) that I = Ra and J = Rb. From I ̸= J , it follows that dimR

m
( I+J

m2 ) = 2 = dimR
m
( m
m2 ).

Therefore, m = I + J = Ra+Rb. Hence, m2 = Rab ⊆ IJ . This proves that if I, J are distinct
non-zero proper ideals of R which are both different from m2, then m2 ⊆ IJ and so, IJ ̸= (0)

and indeed, IJ = m2. This proves that AG(R) is a star graph. (It is useful to mention here
that the local Artinian ring (R,m) satisfies (ii) of ([10], Theorem 2.6).) Hence, it follows that
ω(AG(R)) = χ(AG(R)) = 2.

For any n ≥ 2, we denote the ring of integers modulo n by Zn and we denote the polynomial
ring in one variable X (respectively, in two variables X, Y ) over Zn by Zn[X] (respectively,
Zn[X,Y ]). We provide some examples in Example 4.14 to illustrate Lemma 4.13.

Example 4.14. (i) Let T = Z2[X,Y ] and I = TX2 + TY 2. Let R = T
I . It is easy to

verify that R is a local Artinian ring with unique maximal ideal m = TX+TY
I and

R satisfies the hypotheses of Lemma 4.13. Hence, by Lemma 4.13, we obtain that
ω(AG(R)) = χ(AG(R)) = 2.

(ii) Let T = Z4[X,Y ] and I = TX2 + TY 2 + T (XY − 2). Let R = T
I . It is easy to

verify that R is a local Artinian ring with unique maximal ideal m = TX+TY
I and R

satisfies the hypotheses of Lemma 4.13. Therefore, we obtain from Lemma 4.13 that
ω(AG(R)) = χ(AG(R)) = 2.
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(iii) Let T = Z4[X] and I = TX2. Let R = T
I . It is easy to verify that R is a local Artinian

ring with unique maximal ideal m = T2+TX
I and R satisfies the hypotheses of Lemma

4.13. Therefore, it follows from Lemma 4.13 that ω(AG(R)) = χ(AG(R)) = 2.
Examples (i), (ii), and (iii) given above appeared in the list of local rings of order 16 given

in ([12], p.475).

Lemma 4.15. Let i ∈ {1, 2} and (Ri,mi) be an SPIR with mi ̸= (0) but m2
i = (0) for each

i ∈ {1, 2}. Let R = R1 ×R2 × F , where F is a field. Then ω(AG(R)) = χ(AG(R)) = 4.

Proof. Let V1 = {R1 × (0) × (0), R1 × (0) × F,R1 × m2 × (0), R1 × m2 × F,R1 × R2 × (0)},
V2 = {(0) × R2 × (0), (0) × R2 × F,m1 × R2 × (0),m1 × R2 × F}, V3 = {(0) × (0) × F, (0) ×
m2 × F,m1 × (0)× F,m1 ×m2 × F}, and V4 = {m1 × (0)× (0), (0)×m2 × (0),m1 ×m2 × (0)}.
Observe that the subgraph of AG(R) induced by V4 ∪ {m1 × m2 × F} is a clique. Hence,
ω(AG(R)) ≥ 4. We next verify that χ(AG(R)) ≤ 4. Let {c1, c2, c3, c4} be a set of four distinct
colors. Notice that A(R)∗ =

∪4
i=1 Vi and Vi∩Vj = ∅ for all distinct i, j ∈ {1, 2, 3, 4}. Moreover,

observe that no two distinct members of Vi are adjacent in AG(R) for all i ∈ {1, 2, 3}. Let
us assign the color ci to all the members of Vi for each i ∈ {1, 2, 3}. Let us assign the
color c1 to m1 × (0) × (0), color c2 to (0) × m2 × (0), and the color c4 to m1 × m2 × (0). It
is clear that the above assignment of colors is indeed a proper vertex coloring of AG(R).
This proves that χ(AG(R)) ≤ 4 ≤ ω(AG(R)) ≤ χ(AG(R)). Therefore, we obtain that
ω(AG(R)) = χ(AG(R)) = 4.

The following theorem characterizes zero-dimensional rings R with |Max(R)| = 3 such that
AG(R) satisfies (B).

Theorem 4.16. Let R be a zero-dimensional ring with |Max(R)| = 3. Then the following
statements are equivalent:

(i) AG(R) satisfies (B).
(ii) R ∼= R1 × R2 × R3 as rings, where (Ri,mi) is a zero-dimensional quasi-local ring for

each i ∈ {1, 2, 3} satisfying exactly one of the following:
(a) Ri is a field for each i ∈ {1, 2, 3}.
(b) Exactly two among R1, R2, R3 are fields and if Ri is not a field, then either

(Ri,mi) is an SPIR with m4
i = (0) or (Ri,mi) is a local Artinian ring with

m2
i ̸= (0),m3

i = (0), z2 = 0 for each z ∈ mi, and moreover, mi is generated by
two elements and is not principal.

(c) Exactly one among R1, R2, R3 is a field and if Ri and Rj are not fields, then
(Ri,mi) (respectively, (Rj ,mj)) is an SPIR with m2

i = (0) (respectively, m2
j = (0)).
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(iii) If (a) of (ii) holds, then ω(AG(R)) = χ(AG(R)) = 3. If (b) of (ii) holds, then
ω(AG(R)) = χ(AG(R)) ∈ {3, 4}. If (c) of (ii) holds, then ω(AG(R)) = χ(AG(R)) = 4.

Proof. (i) ⇒ (ii) Since R is a zero-dimensional ring with |Max(R)| = 3, it follows that there
exist zero-dimensional quasi-local rings R1, R2, R3 such that R ∼= R1 × R2 × R3 as rings. Let
mi denote the unique maximal ideal of Ri for each i ∈ {1, 2, 3}. Since AG(R) satisfies (B),
it follows from Lemma 4.2 that Ri is reduced for at least one i ∈ {1, 2, 3}. We can assume
without loss of generality that R3 is reduced. Hence, R3 is a field. If R1, R2 are also reduced,
then we obtain that they are also fields. Therefore, (a) holds.

If exactly one between R1 and R2 is not reduced, then we can assume without loss of
generality that R1 is not reduced. Now R2 and R3 are fields. Notice that A(R1)

∗ ̸= ∅. Since
AG(R) satisfies (B), we obtain from Lemma 4.3 that ω(AG(R1)) ≤ 2. As nil(R1) = m1, we
obtain from Lemma 4.6 that m4

1 = (0). If m3
1 ̸= (0), then we obtain from Lemma 4.8 that m1

is principal. In such a case, it follows from the proof of (iii) ⇒ (i) of ([7], Proposition 8.8)
that {m1,m

2
1,m

3
1} is the set of all non-zero proper ideals of R1. Hence, we obtain that(R1,m1)

is an SPIR. If m3
1 = (0) and z2 ̸= 0 for some z ∈ m1, then it follows from Lemma 4.10 that

m1 is principal. Therefore, (R1,m1) is an SPIR with {m1,m
2
1} is the set of all non-zero proper

ideals of R1. If m3
1 = (0),m2

1 ̸= (0) but z2 = 0 for each z ∈ m1, then we obtain from Lemma
4.11 that m1 is not principal and there exist a, b ∈ m1 such that m1 = R1a+R1b. If m2

1 = (0),
then Lemma 4.12 implies that m1 is principal and hence, (R1,m1) is an SPIR with m1 as its
only non-zero proper ideal. Thus (b) holds.

Suppose that exactly one among R1, R2, R3 is a field. It is already assumed that R3 is a
field. Since AG(R) satisfies (B), it follows from Lemma 4.4 that |A(R1)

∗| = |A(R2)
∗| = 1.

Hence, we obtain that (R1,m1) (respectively (R2,m2)) is an SPIR with m2
1 = (0) (respectively,

m2
2 = (0)). Thus in this case (c) holds.
(ii) ⇒ (iii) Let T = R1 × R2 × R3. Since R ∼= T as rings, it is enough to show that (iii)

holds for AG(T ) .
Suppose that (a) of (ii) holds. Then T is a reduced ring with |Min(T )| = 3. Hence, we

obtain from ([11], Corollary 2.11) that ω(AG(T )) = χ(AG(T )) = 3.
Suppose that (b) of (ii) holds. We can assume without loss of generality that R2 and R3

are fields. We first assume that (R1,m1) is an SPIR with m4
1 = (0) . Let 2 ≤ t ≤ 4 be the least

integer such that mt
1 = (0). Observe that R2×R3 is a reduced ring and has exactly two minimal

prime ideals. If t = 4, then it follows from Corollary 2.8(i) that ω(AG(T )) = χ(AG(T )) = 4.
If t = 3, then it follows from Corollary 2.8(ii) that ω(AG(T )) = χ(AG(T )) = 4. If t = 2, then
we obtain from Corollary 2.8(i) that ω(AG(T )) = χ(AG(T )) = 3.

Suppose that R2 and R3 are fields and (R1,m1) is a local Artinian ring with m3
1 = (0),m2

1 ̸=
(0) but z2 = 0 for each z ∈ m1 and m1 is generated by two elements. We know from
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Lemma 4.13 that ω(AG(R1)) = χ(AG(R1)) = 2. It now follows from Lemma 2.7 that
ω(AG(T )) = χ(AG(T )) = 4.

Suppose that (c) of (ii) holds. We can assume without loss of generality that R3 is a field
and (Ri,mi) is an SPIR with m2

i = (0) for each i ∈ {1, 2}. On applying Lemma 4.15, we obtain
that ω(AG(T )) = χ(AG(T )) = 4.

(iii) ⇒ (i) This is clear.

5. Characterization of zero-dimensional rings R with |Max(R)| = 2 such that
AG(R) satisfies (B)

In this section, we try to determine all zero-dimensional rings R with |Max(R)| = 2 such
that AG(R) satisfies (B). It follows from ([17], Lemma 3.15) that there exist zero-dimensional
rings R1, R2 such that R ∼= R1 × R2 as rings. Since |Max(R)| = 2, it follows that Ri is
quasi-local for each i ∈ {1, 2}. We state and prove several results that are needed for proving
the main result of this section.

Lemma 5.1. Let R = R1 × R2, where R1 and R2 are rings. Suppose that A(Ri)
∗ ̸= ∅ for

some i ∈ {1, 2}. If AG(R) satisfies (B), then ω(AG(Ri)) ≤ 3.

Proof. We can assume without loss of generality that A(R1)
∗ ̸= ∅. Suppose that ω(AG(R1)) ≥

4. Then there exist distinct non-zero annihilating ideals I11, I12, I13, I14 of R1 such that the
subgraph of AG(R1) induced by {I1i | i ∈ {1, 2, 3, 4}} is a clique. Observe that the subgraph
of AG(R) induced by {I11× (0), I12× (0), I13× (0), I14× (0), (0)×R2} is a clique. This implies
that ω(AG(R)) ≥ 5 and this contradicts AG(R) satisfies (B). Therefore, ω(AG(R1)) ≤ 3.

Lemma 5.2. Let R be a ring such that (nil(R))2 = (0) but nil(R) ̸= (0). If ω(AG(R)) ≤ 3,
then nil(R) is principal.

Proof. As (nil(R))2 = (0) and ω(AG(R)) ≤ 3 by assumption, it follows that nil(R) cannot
contain more than three non-zero ideals of R. Therefore, we obtain that nil(R) is finitely
generated. Suppose that nil(R) is not principal. Then there exist x, y ∈ nil(R) such that
x /∈ Ry and y /∈ Rx. Notice that in such a case, R(x + y) /∈ {Rx,Ry}. Observe that
Rx,Ry,R(x + y), nil(R) are distinct non-zero ideals contained in nil(R). This is impossible.
Therefore, we obtain that nil(R) is principal.

Lemma 5.3. Let R = R1 ×R2, where R1 and R2 are rings. If AG(R) satisfies (B), then the
following hold:

(i) Either (nil(R1))
2 = (0) or (nil(R2))

2 = (0).
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(ii) (nil(Ri))
3 = (0) for each i ∈ {1, 2}.

Proof. (i) Suppose that (nil(R1))
2 ̸= (0) and (nil(R2))

2 ̸= (0). As AG(R) satisfies (B) by
assumption, it follows from Lemmas 5.1 and 4.6 that (nil(R1))

6 = (0) and (nil(R2))
6 = (0).

Let m ≥ 3 be least with the property that (nil(R1))
m = (0) and n ≥ 3 be least with

the property that (nil(R2))
n = (0). By the choice of m,n, it follows that the subgraph

of AG(R) induced by {(nil(R1))
m−2 × (0), (nil(R1))

m−1 × (0), (0) × (nil(R2))
n−2, (0) ×

(nil(R2))
n−1, (nil(R1))

m−1 × (nil(R2))
n−1} is a clique. This implies that ω(AG(R)) ≥ 5.

This contradicts AG(R) satisfies (B). Therefore, either (nil(R1))
2 = (0) or (nil(R2))

2 = (0).
(ii) As AG(R) satisfies (B) by assumption, it follows from (i) that either (nil(R1))

2 = (0)

or (nil(R2))
2 = (0). Without loss of generality, we can assume that (nil(R2))

2 = (0).
Hence, (nil(R2))

3 = (0). Suppose that (nil(R1))
3 ̸= (0). We know from Lemmas 5.1 and

4.6 that (nil(R1))
6 = (0). Let m ≥ 4 be least with the property that (nil(R1))

m = (0).
Notice that the subgraph of AG(R) induced by {(nil(R1))

m−2 × (0), (nil(R1))
m−1 × (0), (0)×

nil(R2), (nil(R1))
m−2 × nil(R2), (nil(R1))

m−1 × nil(R2)} is a clique on five vertices. This
contradicts AG(R) satisfies (B). Therefore, (nil(R1))

3 = (0).

Remark 5.4. Let R be a zero-dimensional ring with |Max(R)| = 2. Then there exist zero-
dimensional quasi-local rings (R1,m1) and (R2,m2) such that R ∼= R1 × R2 as rings. If R is
reduced, then both R1 and R2 are fields and in such a case, ω(AG(R)) = χ(AG(R)) = 2 and
so, AG(R) satisfies (B). Hence, in characterizing zero-dimensional rings R with |Max(R)| = 2

such that AG(R) satisfies (B), we assume that R is not reduced.

Lemma 5.5. Let R = R1×R2, where R1, R2 are rings. Let {J1, J2, J3} ⊆ A(R2)
∗ be such that

J2
1 = (0) and the subgraph of AG(R2) induced by {J1, J2, J3} is a clique. If AG(R) satisfies

(B), then R1 is reduced.

Proof. Suppose that R1 is not reduced. Then there exists x ∈ R1 such that x ̸= 0, but x2 = (0).
Notice that the subgraph of AG(R) induced by {R1x×(0), R1x×J1, (0)×J1, (0)×J2, (0)×J3}
is a clique on five vertices. This implies that ω(AG(R)) ≥ 5. This contradicts AG(R) satisfies
(B). Therefore, R1 is reduced.

Lemma 5.6. Let R = R1 ×R2, where (Ri,mi) is a zero-dimensional quasi-local ring for each
i ∈ {1, 2}. Suppose that both R1 and R2 are not reduced. If AG(R) satisfies (B), then (Ri,mi)

is an SPIR for each i ∈ {1, 2}.

Proof. Notice that nil(Ri) = mi ̸= (0) for each i ∈ {1, 2}. Assume that AG(R) satisfies (B). It
follows from Lemma 5.1 that ω(AG(Ri)) ≤ 3 for each i ∈ {1, 2}. We know from Lemma 5.3(i)
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that either m2
1 = (0) or m2

2 = (0). If m2
i = (0) for some i ∈ {1, 2}, then we obtain from Lemma

5.2 that mi is principal. Hence, (Ri,mi) is an SPIR with mi ̸= (0) but m2
i = (0). Without

loss of generality, we can assume that (R1,m1) is an SPIR with m1 ̸= (0) but m2
1 = (0). We

know from Lemma 5.3(ii) that m3
2 = (0). Suppose that (R2,m2) is not an SPIR. If m2 is

principal, then it follows from the proof of (iii) ⇒ (i) of ([7], Proposition 8.8) that (R2,m2) is
an SPIR. This contradicts our assumption. Hence, m2 is not principal. Therefore, we obtain
from Lemma 5.2 that m2

2 ̸= (0). We claim that ω(AG(R2)) = 2. Since the subgraph of AG(R2)

induced by {m2,m
2
2} is a clique, it follows that ω(AG(R2)) ≥ 2. Thus if ω(AG(R2)) ̸= 2, then

ω(AG(R2)) = 3. Let A = {J1, J2, J3} ⊆ A(R2)
∗ be such that the subgraph of AG(R2) induced

by A is a clique. Since m3
2 = (0) and ω(AG(R2)) = 3 by assumption, it follows that m2

2 ∈ A.
Without loss of generality, we can assume that J1 = m2

2. In such a case, as R1 is not reduced,
we obtain from Lemma 5.5 that AG(R) does not satisfy (B). This contradicts AG(R) satisfies
(B). Therefore, ω(AG(R2)) = 2. Now, as m2 is not principal, it follows from Lemma 4.10
that z2 = 0 for each z ∈ m2. Let z ∈ m2\m2

2. Notice that the subgraph of AG(R) induced by
{m1 × (0),m1 ×R2z,m1 ×m2

2, (0)×R2z, (0)×m2
2} is a clique on five vertices. This contradicts

AG(R) satisfies (B). Therefore, m2 is principal and so, we obtain that (R2,m2) is an SPIR.

We use Lemma 5.7 in the proof of Proposition 5.8.

Lemma 5.7. Let (Ri,mi) be an SPIR with mi ̸= (0) for each i ∈ {1, 2}. Let n ≥ 2 be least
with the property that mn

1 = (0) and m ≥ 2 be least with the property that mm
2 = (0). Let

R = R1 ×R2. Then the following statements hold:

(i) ω(AG(R)) = χ(AG(R)) = n
2 + m

2 + nm
4 if both n and m are even.

(ii) ω(AG(R)) = χ(AG(R)) = n
2 + m+1

2 + n(m−1)
4 if n is even and m is odd.

(iii) ω(AG(R)) = χ(AG(R)) = n+1
2 + m+1

2 + (n−1)(m−1)
4 if both n and m are odd.

Proof. (i) Suppose that n = 2k and m = 2t for some k, t ∈ N. We know from Lemma
2.5(i) that ω(AG(R1)) = χ(AG(R1)) = k and ω(AG(R2)) = χ(AG(R2)) = t. Moreover, it
is clear that the subgraph of AG(R1) induced by {mk+i

1 | i ∈ {0, . . . , k − 1}} is a clique on
k vertices and the subgraph of AG(R2) induced by {mt+j

2 | j ∈ {0, . . . , t − 1}} is a clique on
t vertices. It is convenient to denote mk+i

1 by Ii for each i ∈ {0, . . . , k − 1} and mt+j
2 by Jj

for each j ∈ {0, . . . , t − 1}. Observe that I2i = (0) for each i ∈ {0, . . . , k − 1} and J2
j = (0)

for each j ∈ {0, . . . , t − 1}. Notice that the subgraph of AG(R) induced by {Ii × (0) | i ∈
{0, . . . , k− 1}}∪{(0)×Jj | j ∈ {0, . . . , t− 1}}∪{Ii×Jj | i ∈ {0, . . . , k− 1}, j ∈ {0, . . . , t− 1}}
is a clique on k + t + kt vertices. Therefore, ω(AG(R)) ≥ k + t + kt. We next verify that
χ(AG(R)) ≤ k+ t+kt. Let {c1, . . . , ck, ck+1, . . . , ck+t}∪{crs | r ∈ {1, . . . , k}, s ∈ {1, . . . , t}} be
a set of k+ t+ kt distinct colors. Since ω(AG(R1)) = χ(AG(R1)) = k, the vertices of AG(R1)
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can be properly colored using {c1, . . . , ck}. Similarly, since ω(AG(R2)) = χ(AG(R2)) = t, the
vertices of AG(R2) can be properly colored using {ck+1, . . . , ck+t}. Let Vr = {I ∈ A(R1)

∗ |
I receives color cr} for each r ∈ {1, . . . , k} and let Ws = {J ∈ A(R2)

∗ | J receives color ck+s}
for each s ∈ {1, . . . , t}. Notice that Vr × {(0)} = {I × (0) | I ∈ Vr} for each r ∈ {1, . . . , k},
{(0)}×Ws = {(0)×J | J ∈ Ws} for each s ∈ {1, . . . , t}, and Vr×Ws = {I×J | I ∈ Vr, J ∈ Ws}
for each r ∈ {1, . . . , k} and s ∈ {1, . . . , t}, {R1} × I(R2) == {R1 × B | B ∈ I(R2)}, and
I(R1) × {R2} = {A × R2 | A ∈ I(R1)} are subsets of A(R)∗ and it is easy to verify that
A(R)∗ = (

∪k
r=1 Vr × {(0)}) ∪ (

∪t
s=1{(0)} × Ws) ∪ (

∪
r∈{1,...,k},s∈{1,...,t} Vr × Ws) ∪ ({R1} ×

I(R2)) ∪ (I(R1) × {R2}). Let us assign the color cr to all the elements of Vr × {(0)} for each
r ∈ {1, . . . , k}, assign the color ck+s to all the elements of {(0)} ×Ws for each s ∈ {1, . . . , t},
assign the color crs to all the elements of Vr ×Ws for each r ∈ {1, . . . , k} and s ∈ {1, . . . , t},
assign the color c1 to all the elements of {R1} × I(R2), and assign the color ck+1 to all the
elements of I(R1)×{R2}.. It is not hard to verify that the above assignment of colors is indeed
a proper vertex coloring of AG(R). Since this proper coloring uses k+ t+kt distinct colors, we
obtain that χ(AG(R)) ≤ k+ t+ kt. Hence, χ(AG(R)) ≤ k+ t+ kt ≤ ω(AG(R)) ≤ χ(AG(R)).
Therefore, ω(AG(R)) = χ(AG(R)) = k + t+ kt = n

2 + m
2 + mn

4 .
(ii) Suppose that n = 2k and m = 2t + 1 for some k, t ∈ N. Let Ii = mk+i

1 for
each i ∈ {0, . . . , k − 1} be as in the proof of (i). We know from Lemma 2.5(ii) that
ω(AG(R2)) = χ(AG(R2)) = t+ 1. Moreover, it is clear that the subgraph of AG(R2) induced
by {mt+j

2 | j ∈ {0, 1, . . . , t}} is a clique on t + 1 vertices. For convenience, let us denote mt+j
2

by Jj for each j ∈ {0, 1, . . . , t}. Notice that J2
0 ̸= (0), whereas J2

j = (0) for each j ∈ {1, . . . , t}.
Observe that the subgraph of AG(R) induced by {Ii× (0) | i ∈ {0, . . . , k− 1}}∪{(0)×Jj | j ∈
{0, 1, . . . , t}} ∪ {Ii × Jj | i ∈ {0, . . . , k− 1}, j ∈ {1, . . . , t}} is a clique on k+ t+1+ kt vertices.
Hence, ω(AG(R)) ≥ k + t + 1 + kt. We next verify that χ(AG(R)) ≤ k + t + 1 + kt. Let
{c1, . . . , ck, ck+1, . . . , ck+t+1}∪{crs | r ∈ {1, . . . , k}, s ∈ {2, . . . , t+1}} be a set of k+ t+1+ kt

distinct colors. Since ω(AG(R1)) = χ(AG(R1)) = k, the vertices of AG(R1) can be properly
colored using {c1, . . . , ck}. Let us assign the color ck+1 to J0, the color ck+s+1 to both Js

and mt−s
2 for each s ∈ {1, . . . , t − 1}, and the color ck+t+1 to Jt. This is a proper vertex

coloring of AG(R2). Let Vr, Vr × {(0)} be as in the proof of (i) for each r ∈ {1, . . . , k}. Let
Us = {J ∈ A(R2)

∗|J receives color ck+s} and let {(0)} × Us = {(0) × J | J ∈ Us} for each
s ∈ {1, . . . , t + 1}. Let Vr × Us = {I × J | I ∈ Vr, J ∈ Us} for each r ∈ {1, . . . , k} and
s ∈ {2, . . . , t + 1}. Let {R1} × I(R2) = {R1 × J | J ∈ I(R2)} be as in the proof of (i) and
let (I(R1) × {R2}) ∪ (A(R1)

∗ × {J0}) = {I × R2 | I ∈ I(R1)} ∪ {A × J0 | A ∈ A(R1)
∗}. It is

easy to verify that A(R)∗ = (
∪k

r=1 Vr ×{(0)})∪ (
∪t+1

s=1{(0)}×Us)∪ (
∪

r∈{1,...,k},s∈{2,...,t+1} Vr ×
Us) ∪ ({R1} × I(R2)) ∪ (I(R1) × {R2}) ∪ (A(R1)

∗ × {J0}). Let us assign the color cr to all
the elements of Vr × {(0)} for each r ∈ {1, . . . , k}, assign the color ck+s to all the elements
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of {(0)} × Us for each s ∈ {1, . . . , t + 1}, assign the color crs to all the elements of Vr × Us

for each r ∈ {1, . . . , k} and s ∈ {2, . . . , t + 1}, assign the color c1 to all the elements of
{R1}×I(R2), and assign the color ck+1 to all the elements of (I(R1)×{R2})∪(A(R1)

∗×{J0}).
It is not hard to verify that the above assignment of colors is indeed a proper vertex
coloring of AG(R). As this proper coloring uses k + t + 1 + kt colors, it follows that
χ(AG(R)) ≤ k + t + 1 + kt. Hence, χ(AG(R)) ≤ k + t + 1 + kt ≤ ω(AG(R)) ≤ χ(AG(R)).
Therefore, ω(AG(R)) = χ(AG(R)) = k + t+ 1 + kt = n

2 + m+1
2 + n(m−1)

4 .
(iii) Suppose that n = 2k + 1 and m = 2t+ 1 for some k, t ∈ N. Using Lemma 2.5, it can be
as shown as in the proof of (ii) that ω(AG(R)) = χ(AG(R)) = n+1

2 + m+1
2 + (n−1)(m−1)

4 .

Proposition 5.8. Let R = R1 ×R2, where (Ri,mi) is a zero-dimensional quasi-local ring for
each i ∈ {1, 2}. Suppose that both R1 and R2 are not reduced. Then the following statements
are equivalent:

(i) AG(R) satisfies (B).
(ii) (Ri,mi) is an SPIR for each i ∈ {1, 2} with either m2

1 = m2
2 = (0) or there exists

exactly one i ∈ {1, 2} such that m2
i = (0) and if i ∈ {1, 2} is such that m2

i ̸= (0), then
m3

i = (0).

Proof. (i) ⇒ (ii) Observe that nil(Ri) = mi for each i ∈ {1, 2}. The statement (ii) follows
immediately from Lemmas 5.3 and 5.6.

(ii) ⇒ (i) By assumption, (Ri,mi) is an SPIR for each i ∈ {1, 2}. If m2
i = (0) for each

i ∈ {1, 2}, then it follows from Lemma 5.7(i) that ω(AG(R)) = χ(AG(R)) = 3. If there exists
exactly one i ∈ {1, 2} such that m2

i = (0), then without loss of generality, we can assume
that i = 1. In such a case, by assumption m3

2 = (0). Now it follows from Lemma 5.7(ii) that
ω(AG(R)) = χ(AG(R)) = 4. Hence, AG(R) satisfies (B).

Remark 5.9. Let R = R1×R2, where (Ri,mi) is a zero-dimensional quasi-local ring for each
i ∈ {1, 2} such that exactly one between R1 and R2 is reduced. Without loss of generality, we
can assume that R2 is reduced. In such a case, R2 is a field. Observe that nil(R1) = m1 ̸= (0).
If AG(R) satisfies (B), then it follows from Lemmas 5.1 and 4.6 that m6

1 = (0). Hence, in
characterizing zero-dimensional rings R with |Max(R)| = 2 with R ∼= R1×R2 as rings, where
(R1,m1) is a zero-dimensional non-reduced ring and R2 is a field such that AG(R) satisfies
(B), for convenience, after a change of notation, we can assume that R = S×F , where (S,m)

is quasi-local with m ̸= (0) but m6 = (0) and F is a field.

Corollary 5.10. Let (S,m) be an SPIR with m ̸= (0) but m6 = (0). Let R = S × F , where F

is a field. Then ω(AG(R)) = χ(AG(R)) ∈ {2, 3, 4}.
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Proof. Let t ≥ 2 be the least positive integer with the property that mt = (0). Then
t ∈ {2, 3, 4, 5, 6}. If t = 2, then it follows from Lemmas 2.5(i) and 2.6 that ω(AG(R)) =

χ(AG(R)) = 2. If t = 3, then it follows from Lemmas 2.5(ii) and 2.6 that ω(AG(R)) =

χ(AG(R)) = 3. If t = 4, then it follows from Lemmas 2.5(i) and 2.6 that ω(AG(R)) =

χ(AG(R)) = 3. If t = 5, then it follows from Lemmas 2.5(ii) and 2.6 that ω(AG(R)) =

χ(AG(R)) = 4. If t = 6, then it follows from Lemmas 2.5(i) and 2.6 that ω(AG(R)) =

χ(AG(R)) = 4.

Lemma 5.11. Let R = S × F , where (S,m) is quasi-local with m6 = (0) and F is a field.
Suppose that m5 ̸= (0). Then AG(R) satisfies (B) if and only if (S,m) is an SPIR.

Proof. Observe that nil(S) = m. Assume that AG(R) satisfies (B). Then it follows from
Lemmas 5.1 and 4.8 that m is principal. Hence, we obtain from the proof of (iii) ⇒ (i) of
([7], Proposition 8.8) that {mi | i ∈ {1, 2, 3, 4, 5}} is the set of all non-zero proper ideals of S.
Therefore, (S,m) is an SPIR.

Conversely, assume that (S,m) is an SPIR with m6 = (0), but m5 ̸= (0). Then we obtain
from Corollary 5.10 that AG(R) satisfies (B). Indeed, it follows from the proof of Corollary
5.10 that ω(AG(R)) = χ(AG(R)) = 4.

Lemma 5.12. Let R = S × F , where (S,m) is quasi-local with m5 = (0) but m4 ̸= (0) and F

is a field. If AG(R) satisfies (B), then z2 ̸= 0 for some z ∈ m2.

Proof. Notice that nil(S) = m. As AG(R) satisfies (B), we obtain from Lemma 5.1 that
ω(AG(S)) ≤ 3. Observe that the subgraph of AG(S) induced by {m2,m3,m4} is a clique on
three vertices. Hence, it follows that ω(AG(S)) = 3. Therefore, we obtain from Lemma 4.11
that z2 ̸= 0 for some z ∈ m2.

Lemma 5.13. Let R = S × F , where (S,m) is quasi-local with m5 = (0) but m4 ̸= (0) and F

is a field. Then AG(R) satisfies (B) if and only if (S,m) is an SPIR.

Proof. Notice that nil(S) = m. Assume that AG(R) satisfies (B). Then it follows from
Lemmas 5.1, 5.12, and 4.10 that m is principal. Hence, we obtain from the proof of (iii) ⇒ (i)

of ([7], Proposition 8.8) that {mi | i ∈ {1, 2, 3, 4}} is the set of all non-zero proper ideals of S.
Therefore, (S,m) is an SPIR.

Conversely, assume that (S,m) is an SPIR with m5 = (0) but m4 ̸= (0). Then we obtain
from the proof of Corollary 5.10 that ω(AG(R)) = χ(AG(R)) = 4. Therefore, AG(R) satisfies
(B).
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Example 5.14. Let T = Z2[X,Y ] and I = TX2+TY 2. Let S = T
I . Then S is a local Artinian

ring with m = TX+TY
I as its unique maximal ideal such that m3 = (0 + I) but m2 ̸= (0 + I).

Let R = S × F , where F is a field. Then AG(R) satisfies (B) but (S,m) is not an SPIR.

Proof. It is clear that (S,m) is a local Artinian ring with m3 = (0 + I) but m2 ̸= (0 + I). We
know from Example 4.14(i) that ω(AG(S)) = χ(AG(S)) = 2. Hence, we obtain from Lemma
2.6 that ω(AG(R)) = χ(AG(R)) = 3. Therefore, we get that AG(R) satisfies (B). As m is not
a principal ideal of S, it follows that (S,m) is not an SPIR.

Lemma 5.15. Let R = S × F , where (S,m) is quasi-local with m ̸= (0) but m2 = (0) and F

is a field. Then the following statements are equivalent:

(i) AG(R) satisfies (B).
(ii) (S,m) is an SPIR.

Proof. Notice that nil(S) = m.
(i) ⇒ (ii) It follows from Lemmas 5.1 and 5.2 that m is principal. From m2 = (0), we obtain

that m is the only non-zero proper ideal of R. Therefore, (S,m) is an SPIR.
(ii) ⇒ (i) It follows from the proof of Corollary 5.10 that ω(AG(R)) = χ(AG(R)) = 2.

Therefore, AG(R) satisfies (B).

6. Characterization of zero-dimensional quasi-local rings R such that AG(R)

satisfies (B)

In this section, we try to characterize zero-dimensional quasi-local rings R such that AG(R)

satisfies (B). We are not able to solve the problem of characterizing such rings. However,
we present some partial results regarding this problem. As mentioned in the introduction, we
consider rings which admit at least one non-zero annihilating ideal.

Lemma 6.1. Let (R,m) be a zero-dimensional quasi-local ring. If AG(R) satisfies (B), then
m8 = (0).

Proof. Observe that nil(R) = m. Hence, if AG(R) satisfies (B), then we obtain from Lemma
4.6 that m8 = (0).

Proposition 6.2. Let (R,m) be a zero-dimensional quasi-local ring such that m7 ̸= (0). Then
the following statements are equivalent:

(i) AG(R) satisfies (B).
(ii) (R,m) is an SPIR with m8 = (0).
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Proof. (i) ⇒ (ii) Notice that nil(R) = m. It follows from Lemma 6.1 that m8 = (0). Since
m7 ̸= (0) by hypothesis, we obtain from Lemma 4.8 that m is principal. Hence, it follows from
the proof of (iii) ⇒ (i) of ([7], Proposition 8.8) that {mi | i ∈ {1, 2, . . . , 7}} is the set of all
non-zero proper ideals of R. Therefore, (R,m) is an SPIR.

(ii) ⇒ (i) As (R,m) is an SPIR with m8 = (0), whereas m7 ̸= (0), we obtain from Lemma
2.5(i) that ω(AG(R)) = 4. Therefore, AG(R) satisfies (B).

Proposition 6.3. Let (R,m) be a zero-dimensional quasi-local ring with m7 = (0). If z2 ̸= (0)

for some z ∈ m3, then the following statements are equivalent:

(i) AG(R) satisfies (B).
(ii) (R,m) is an SPIR.

Proof. (i) ⇒ (ii) Observe that nil(R) = m. As z2 ̸= 0 for some z ∈ m3, it follows from Lemma
4.10 that m is principal. It follows from the proof of (iii) ⇒ (i) of ([7], Proposition 8.8) that
{mi | i ∈ {1, 2, . . . , 6}} is the set of all non-zero proper ideals of R. Therefore, (R,m) is an
SPIR.

(ii) ⇒ (i) (R,m) is an SPIR and by hypothesis, m7 = (0), whereas m6 ̸= (0). Hence, we
obtain from Lemma 2.5(ii) that ω(AG(R)) = 4. Therefore, AG(R) satisfies (B).

We provide Example 6.4 to illustrate that the hypotheses of Propositions 6.2 and 6.3 cannot
be omitted.

Example 6.4. Let T = Z4[X,Y, Z] be the polynomial ring in three variables X,Y, Z over Z4

and I be the ideal of T generated by {X2 − 2, Y 2 − 2, Z2, XY, Y Z − 2, ZX, 2X, 2Y, 2Z}. Let
R = T

I . The ring R appeared in [5] and it was shown there that ω(Γ0(R)) = 5 < χ(Γ0(R)) = 6,
where Γ0(R) is the Beck’s zero-divisor graph of R. It was observed in [5] that R is local with
m = TX+TY+TZ

I as its unique maximal ideal, m3 = (0+ I), and |R| = 32. The ring R was also
considered in [11] and it was shown in ([11], Proposition 2.1) that ω(AG(R)) = χ(AG(R)) = 4.
Hence, AG(R) satisfies (B) but m is not principal and so, (R,m) is not an SPIR.

Remark 6.5. Let (R,m) be a zero-dimensional quasi-local ring with m ̸= (0).
Since AG(R) is connected by ([10], Theorem 2.1), it is clear that

ω(AG(R)) = 1 if and only if AG(R) is a graph on a single vertex. This happens if and only if
(R,m) is an SPIR with m2 = (0).

Suppose that ω(AG(R)) = 2.
As nil(R) = m, it follows from Lemma 4.6 that m4 = (0). If m3 ̸= (0), then we obtain from

Lemma 4.8 that m is principal and hence, (R,m) is an SPIR. In such a case, we obtain from
Lemma 2.5(i) that χ(AG(R)) = 2.



152 S. Visweswaran and P. T. Lalchandani

Suppose that m3 = (0). We claim that m2 ̸= (0). Suppose that m2 = (0). Since we are
assuming that ω(AG(R)) = 2, it follows that m cannot be principal. Hence, there exist a, b ∈ m

such that {a, b} is linearly independent over R
m . Observe that the subgraph of AG(R) induced

by {Ra,Rb,R(a + b), Ra + Rb} is a clique on four vertices. This is impossible. Therefore,
m2 ̸= (0). If z2 ̸= 0 for some z ∈ m, then it follows from Lemma 4.10 that m is principal.
Hence, (R,m) is an SPIR and moreover, we obtain from Lemma 2.5(ii) that χ(AG(R)) = 2.
If z2 = 0 for each z ∈ m, then from Lemma 4.11, we get that m is generated by two elements
and is not principal. In this case, it is shown in Lemma 4.13 that χ(AG(R)) = 2.

Suppose that ω(AG(R)) = 3.
It follows from Lemma 4.6 that m6 = (0). If m5 ̸= (0), then we obtain from Lemma 4.8 that

m is principal. Hence, (R,m) is an SPIR and in this case, we know from Lemma 2.5(i) that
χ(AG(R)) = 3.

Suppose that m5 = (0) but m4 ̸= (0). As ω(AG(R)) = 3 by assumption, we obtain from
Lemma 4.11 that z2 ̸= 0 for some z ∈ m2. In such a case, it follows from Lemma 4.10 that m

is principal. Hence, (R,m) is an SPIR and we obtain from Lemma 2.5(ii) that χ(AG(R)) = 3.
Since ω(AG(R)) = 3 by assumption, it follows as argued above that m2 ̸= (0). We are not

able to determine rings R with ω(AG(R)) = 3 such that either m3 = (0) or m4 = (0) but
m3 ̸= (0).

Suppose that ω(AG(R)) = 4.
Then we know from Lemma 4.6 that m8 = (0). If m7 ̸= (0), then it follows from Lemma

4.8 that m is principal. Hence, (R,m) is an SPIR and we get from Lemma 2.5(i) that
χ(AG(R)) = 4.

Suppose that m7 = (0), whereas m6 ̸= (0). Since we are assuming that ω(AG(R)) = 4,
we obtain from Lemma 4.11 that z2 ̸= 0 for some z ∈ m3. Therefore, it follows from Lemma
4.10 that m is principal. Hence, (R,m) is an SPIR and we obtain from Lemma 2.5(ii) that
χ(AG(R)) = 4.

Suppose that m2 = (0). As we are assuming that ω(AG(R)) = 4, it is clear that m is
not principal. Hence, dimR

m
(m) ≥ 2. We claim that dimR

m
(m) = 2. Otherwise, there exist

a, b, c ∈ m such that {a, b, c} is linearly independent over R
m . Observe that the subgraph

of AG(R) induced by {Ra,Rb,Rc,R(a + b), Ra + Rb} is a clique. This is impossible, since
ω(AG(R)) = 4. Therefore, dimR

m
(m) = 2. Hence, there exist a, b ∈ m such that m = Ra+Rb.

We assert that |Rm | = 2. Suppose that |Rm | > 2. Then there exists r ∈ R such that r, r− 1 /∈ m.
Notice that the subgraph of AG(R) induced by {Ra,Rb,R(a + b), R(a + rb), Ra + Rb} is a
clique. This contradicts ω(AG(R)) = 4. Therefore, |Rm | = 2. Observe that |m| = 4 and |R| = 8.
Let T1 = Z2[X,Y ] be the polynomial ring in two variables X,Y over Z2 and T2 = Z4[X] be
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the polynomial ring in one variable X over Z4. Let m1 = T1X + T1Y and m2 = T22+ T2X. It
is not hard to show that either R ∼= T1

m2
1

or R ∼= T2

m2
2

as rings.
Let i ∈ {2, 3, 4, 5}. We are not able to characterize rings R such that ω(AG(R)) = 4

satisfying the condition that mi+1 = (0) but mi ̸= (0).
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