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MODAL OPERATORS ON L-ALGEBRAS
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Abstract. The main goal of this paper is to introduce analogously modal operators on

L-algebras and study their properties. To begin with, we introduce the notion of modal

operators on L-algebras and investigate some important properties of this operator. In order

for the kernel of modal operator to be ideal, we investigate what conditions are required.

Relations between modal operator and endomorphism of L-algebras are investigated. Also,

we define the concept of positive L-algebra and some characterizations of positive L-algebra

are established. Finally, we introduce a map ka and show that ka is a modal operator and we

prove that the set of all ka on a positive L-algebra makes a dual BCK-algebra.

1. Introduction

L-algebras, which are related to algebraic logic and quantum structures, were introduced
by Rump [12]. Many examples shown that L-algebras are very useful. Yang and Rump
[14], characterized pseudo-MV-algebras and Bosbach’s non-commutative bricks as L-algebras.
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Wu and Yang [16] proved that orthomodular lattices form a special class of L-algebras in
different ways. It was shown that every lattice-ordered effect algebra has an underlying L-
algebra structure in Wu et al. [15]. Also, other mathematicians studied the relationship
between basic algebras and L-algebras. They proved that a basic algebra which satisfies
(z⊕¬x)⊕¬(y⊕¬x) = (z⊕¬y)⊕¬(x⊕¬y) can be converted into an L-algebra. Conversely,
if an L-algebra with the least element “0” and some conditions such that it is an involutive
bounded lattice can be organized into a basic algebra, it must be a lattice-ordered effect algebra.
We refer the reader to the following sources for further study in the field of L-algebras [3, 4, 5].

In 1981, modal operators (special cases of closure operators) on Heyting algebras were intro-
duced and studied by Macnab [9]. Since then, properties of modal operators were considered
on other algebraic structures such as MV-algebra [7], bounded commutative residuated Rℓ-
monoids (simply called Rℓ-monoids) [11], commutative residuated lattices [8] and so on. The
essence of modal operator is closure operator, and closure operator is an important part of the
theoretical study of partial order sets.

In this paper, we introduce the notion of modal operator on L-algebras and investigate
some important properties of this operator. In order for the kernel of modal operator to
be ideal, we investigate what conditions are required. Relations between modal operator and
endomorphism of L-algebras are investigated. Also, we define the concept of positive L-algebra
and some characterizations of positive L-algebra are established. Finally, we introduce a map
ka and show that ka is a modal operator and we prove that the set of all ka on a positive
L-algebra makes a dual BCK-algebra.

2. Preliminaries

This section lists the known default contents that will be used later.

Definition 2.1. [6] An L-algebra is an algebraic structure (L;⇝, 1) of type (2, 0) satisfying
(L1) x⇝ x = x⇝ 1 = 1 and 1⇝ x = x,
(L2) (x⇝ y)⇝ (x⇝ z) = (y ⇝ x)⇝ (y ⇝ z),
(L3) if x⇝ y = y ⇝ x = 1, then x = y,
for any x, y, z ∈ L. Condition (L1) states that 1 is a logical unit, while (L2) is related to the
quantum Yang-Baxter equation. Note that a logical unit is always unique. In addition, easily
it can be seen that the relation

x ≤ y if and only if x⇝ y = 1,

defines a partial order for any L-algebra L. If L admits a smallest element 0 with respect to
the ordering ≤, then it is called a bounded L-algebra.
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We say that a bounded L-algebra L has negation if the map x 7−→ x′ is bijective, where
x′ = x⇝ 0. The inverse map will then be denoted by x 7→ x∼. If x∼ = x′, then L is called an
L-algebra with double negation.

Proposition 2.2. [14] Let L be an L-algebra. Then x ≤ y implies z ⇝ x ≤ z ⇝ y, for any
x, y, z ∈ L.

Proposition 2.3. [14] For an L-algebra L, the following are equivalent:
(i) x ≤ y ⇝ x,
(ii) if x ≤ z, then z ⇝ y ≤ x⇝ y,
(iii) ((x⇝ y)⇝ z)⇝ z ≤ ((x⇝ y)⇝ z)⇝ ((y ⇝ x)⇝ z),
for any x, y, z ∈ L.

Definition 2.4. [13] An L-algebra L which satisfies

x⇝ (y ⇝ x) = 1, (K)

for any x, y ∈ L is called a KL-algebra.
A CKL-algebra is an L-algebra which satisfies

x⇝ (y ⇝ z) = y ⇝ (x⇝ z), (C)

for any x, y, z ∈ L (see [13]).

Clearly, every CKL-algebra is a KL-algebra, since for any x, y ∈ L, we have

x⇝ (y ⇝ x) = y ⇝ (x⇝ x) = y ⇝ 1 = 1.

Proposition 2.5. [1] Assume (L,⇝, 1) is a CKL-algebra. Then for any x, y, z ∈ L, the
following properties hold:
(i) if x ≤ y, then z ⇝ x ≤ z ⇝ y,
(ii) x⇝ (y ⇝ x) = 1, i.e., x ≤ y ⇝ x,
(iii) x ≤ (x⇝ y)⇝ y,
(iv) x ≤ y ⇝ z if and only if y ≤ x⇝ z,
(v) if x ≤ y, then y ⇝ z ≤ x⇝ z,
(vi) ((x⇝ y)⇝ z)⇝ z ≤ ((x⇝ y)⇝ z)⇝ ((y ⇝ x)⇝ z),
(vii) z ⇝ y ≤ (y ⇝ x)⇝ (z ⇝ x),
(viii) z ⇝ y ≤ (x⇝ z)⇝ (x⇝ y),
If L has a least element as 0, then
(ix) if x ≤ y, then y′ ≤ x′, where x′ = x⇝ 0,
(x) x ≤ x′′, and x′ = x′′′,
(xi) x′ ≤ x⇝ y,
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(xii) ((x⇝ y)⇝ y)⇝ y = x⇝ y,
(xiii) If L has double negation, then x⇝ y = y′ ⇝ x′.

Definition 2.6. [12] A subset I of an L-algebra L is called an ideal of L if it satisfies the
following conditions for all x, y ∈ I,
(I1) 1 ∈ I,
(I2) if x ∈ I and x⇝ y ∈ I, then y ∈ I,
(I3) if x ∈ I, then (x⇝ y)⇝ y ∈ I,
(I4) if x ∈ I, then y ⇝ x ∈ I and y ⇝ (x⇝ y) ∈ I.

If we consider the ideal of CKL-algebra, the conditions (I3) and (I4) can be dropped. In
fact, for any x ∈ I, by (C) and (I1) we have

x⇝ ((x⇝ y)⇝ y) = (x⇝ y)⇝ (x⇝ y) = 1 ∈ I,

for any y ∈ L. It follows by (I2) that (x ⇝ y) ⇝ y ∈ I. Thus (I3) holds. Furthermore, if
x ∈ I, then for any y ∈ L, by (K) we have x⇝ (y ⇝ x) = 1 ∈ I and by (I2), y ⇝ x ∈ I.

For an L-algebra, a binary relation ∼ is a congruence relation [12] on L if it is an equivalence
relation such that for any x, y, z ∈ L,

x ∼ y ⇔ (z ⇝ x) ∼ (z ⇝ y) and (x⇝ z) ∼ (y ⇝ z).

Theorem 2.7. [12] Let (L,⇝, 1) be an L-algebra. Then every ideal I of L defines a congruence
relation on L, for any x, y ∈ L, where

x ∼ y ⇔ x⇝ y, y ⇝ x ∈ I.

Conversely, every congruence relation ∼ defines an ideal I = {x ∈ L | x ∼ 1}.

Definition 2.8. [12] Let L and H be two L-algebras. Then a map f : L → H is called an
L-homomorphism if for any x, y ∈ L we have f(x⇝L y) = f(x)⇝H f(y).

If f is an injective, then f is called a monomorphism and if f is onto, then f is called an
epimorphism. In addition, if f is a bijective function, then f is called an isomorphism.

Note. From now on, we let (L,⇝, 1) or L, for short, be an L-algebra.

3. Modal operators on L-algebras

In this section, we introduce the notion of modal operators on L-algebras and investigate
some important properties of this operator. In order for the kernel of modal operator to be
ideal, we investigate what conditions are required.



Alg. Struc. Appl. Vol. 10 No. 2 (2023) 107-125. 111

Definition 3.1. A mapping m : L → L is called a modal operator on L if for each x, y ∈ L
we have:
(M1) x ≤ m(x),
(M2) m(m(x)) = m(x),
(M3) m(x⇝ y) ≤ m(x)⇝ m(y).

The set of all modal operators on L is denoted by Mod(L).

Remark 3.2. Assume m ∈ Mod(L). Then
(i) Since for any x ∈ L, x ≤ m(x), we get 1 ≤ m(1), and so m(1) = 1.
(ii) If x ≤ y, then x ⇝ y = 1, and so 1 = m(1) = m(x ⇝ y). Also, since m ∈ Mod(L), by
(M3) we have

1 = m(1) = m(x⇝ y) ≤ m(x)⇝ m(y),

and so m(x) ⇝ m(y) = 1. Hence, m(x) ≤ m(y). Therefore, every modal operator on L is
order preserving.

Example 3.3. (i) Clearly, idL ∈ Mod(L).
(ii) Let (L = {a, b, c, 1},≤) be a chain where a ≤ b ≤ c ≤ 1. Define the operation ⇝ on L in
Table 1:

⇝ a b c 1

a 1 1 1 1

b a 1 1 1

c a b 1 1

1 a b c 1

Table 1

Then (L,⇝, 1) is an L-algebra. If we consider a map m : L → L as follows:

m(1) = 1, m(a) = m(b) = b, m(c) = c,

it is easily to see that m ∈ Mod(L).
(iii) Let (L = {a, b, c, 1},≤) be a poset where a, c ≤ b ≤ 1. Then (L,⇝, 1) is an L-algebra
where the operation ⇝ is defined in Table 2:

⇝ a b c 1

a 1 1 a 1

b a 1 c 1

c a 1 1 1

1 a b c 1

Table 2
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If m : L → L is m(a) = m(b) = m(c) = b and m(1) = 1, then m ∈ Mod(L).

Proposition 3.4. Let m ∈ Mod(L). Then the following statements hold:
(i) m(x)⇝ m(y) = m(m(x)⇝ m(y)).
(ii) If L is a KL-algebra, then m(m(x)⇝ m(y)) = x⇝ m(y) = m(x⇝ m(y)).
(iiii) If L is a bounded CKL-algebra, then m(x) ≤ (m(x)⇝ m(0))⇝ m(0).
(iv) If L is bounded, then m(x′) ≤ m(x)⇝ m(0).

Proof. (i) Assume x, y ∈ L. Then by (M1), m(x) ⇝ m(y) ≤ m(m(x) ⇝ m(y)). Conversely,
since m(x),m(y) ∈ L and m ∈ Mod(L), by (M3) and (M2) we have

m(m(x)⇝ m(y)) ≤ m(m(x))⇝ m(m(y)) = m(x)⇝ m(y).

Hence, m(x)⇝ m(y) = m(m(x)⇝ m(y)).
(ii) By (M1), for any x ∈ L, x ≤ m(x). Since L is a KL-algebra, by Proposition 2.3(ii),
m(x) ⇝ m(y) ≤ x ⇝ m(y). Then by (i), m(x) ⇝ m(y) = m(m(x) ⇝ m(y)) and so
m(m(x) ⇝ m(y)) ≤ x ⇝ m(y). Conversely, since m ∈ Mod(L), by (M1), (M3) and (M2),
respectively, we have

x⇝ m(y) ≤ m(x⇝ m(y)) ≤ m(x)⇝ m(m(y)) = m(x)⇝ m(y) ≤ m(m(x)⇝ m(y)).

So, x ⇝ m(y) ≤ m(m(x) ⇝ m(y)). Hence, m(m(x) ⇝ m(y)) = x ⇝ m(y). Also, clearly,
by (M1), x ⇝ m(y) ≤ m(x ⇝ m(y)). Also, by (M1), for any x ∈ L, x ≤ m(x). Since L is
a KL-algebra, by Proposition 2.3(ii), m(x) ⇝ m(y) ≤ x ⇝ m(y). Then by (M3) and (M2),
m(x ⇝ m(y)) ≤ m(x) ⇝ m(m(y)) = m(x) ⇝ m(y), and so m(x ⇝ m(y)) ≤ x ⇝ m(y).
Therefore, x⇝ m(y) = m(x⇝ m(y)).
(iii) By assumption, L is bounded, so m(0) is well-known. Since m(x) ⇝ m(0) ≤ m(x) ⇝
m(0), by Proposition 2.5(iv) we have m(x) ≤ (m(x)⇝ m(0))⇝ m(0).
(iv) By (M1), since L is bounded, we obtain 0 ≤ m(0), then by Proposition 2.5(i), x ⇝ 0 ≤
x⇝ m(0), and so x′ ≤ x⇝ m(0). Thus, we have

m(x′) ≤ m(x⇝ m(0)) by Remark 3.2(ii)

≤ m(x)⇝ m(m(0)) by (M3)

= m(x)⇝ m(0). by (M2)

Theorem 3.5. Let L be a KL-algebra and m : L → L be a map. Then m ∈ Mod(L) if and
only if m satisfies in the following conditions:
(1) m(x⇝ y) ≤ m(x)⇝ m(y),
(2) m(x)⇝ m(y) = x⇝ m(y).
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Proof. (⇒) By the definition of a modal operator and Proposition 3.4(i) and (ii), the proof is
clear.
(⇐) Let x ∈ L and (1) and (2) hold. Clearly, (M3) holds. Since m(x) ⇝ m(x) = 1, by (2)
we have 1 = m(x) ⇝ m(x) = x ⇝ m(x). Thus, x ≤ m(x), and so (M1) holds. Now, we
prove m(x) = m(m(x)). For this, by (M1), obviously, m(x) ≤ m(m(x)). On the other side,
by (2), m(m(x)) ⇝ m(x) = m(x) ⇝ m(x) = 1, and so m(m(x)) ≤ m(x). Thus, (M2) holds.
Therefore, m ∈ Mod(L).

Corollary 3.6. If L is a CKL-algebra and m : L → L is a map, then m ∈ Mod(L) if and
only if for any x, y ∈ L, m(x)⇝ m(y) = x⇝ m(y).

Proof. Since every CKL-algebra is a KL-algebra, it follows from Theorem 3.5.
Conversely, by Theorem 3.5, it is enough to prove (M3). For this, let x, y ∈ L. Then

m(x⇝ y)⇝ (m(x)⇝ m(y)) = m(x⇝ y)⇝ (x⇝ m(y)) by assumption

= x⇝ (m(x⇝ y)⇝ m(y)) by (C)

= x⇝ ((x⇝ y)⇝ m(y)) by assumption

= (x⇝ y)⇝ (x⇝ m(y)) by (C)

= 1. by (M1) and Proposition 2.5(i)

Hence, m(x⇝ y)⇝ (m(x)⇝ m(y)) = 1 and so m(x⇝ y) ≤ m(x)⇝ m(y). Therefore, (M3)

holds and so m ∈ Mod(L).

Note. For any m1,m2 ∈ Mod(L), m1 ≤ m2 if and only if for any x ∈ L, m1(x) ≤ m2(x).

Remark 3.7. Consider m1,m2 ∈ Mod(L). Then the condition (M1) and (M3) hold for
composition of m1 and m2. Because if x ∈ L, clearly, m2(x) ∈ L, then x ≤ m2(x) ≤
m1(m2(x)). Also, since m2 ∈ Mod(L), we have m2(x ⇝ y) ≤ m2(x) ⇝ m2(y). By Remark
3.2(ii),

m1(m2(x⇝ y)) ≤ m1(m2(x)⇝ m2(y)) ≤ m1(m2(x))⇝ m1(m2(y)).

In the next example we show that composition of two modal operators do not meet the
condition (M2).

Example 3.8. Consider (L,⇝, 1) and m1 : L → L as L-algebra and modal operator as in
Example 3.3(ii). Define m2 : L → L as follows:

m2(1) = 1, m2(a) = a, m2(b) = m2(c) = c.



114 M. Aaly Kologani

Obviously, m2 ∈ Mod(L), but m1m2 /∈ Mod(L), because

m1(m2(m1(m2(a)))) = m1(m2(m1(a))) = m1(m2(b)) = m1(c) = c 6= b = m1(a) = m1(m2(a)).

Thus, (M3) does not hold.

Theorem 3.9. Consider m1,m2 ∈ Mod(L). Then m1m2 ∈ Mod(L) if and only if m1m2 =

m2m1.

Proof. (⇒) Assume m1m2 ∈ Mod(L). Since m1,m2 ∈ Mod(L), by Remark 3.2(ii), they are
order preserving, so m1m2 is order preserving, too. For proving m1m2 = m2m1, we show
that m1m2 ≤ m2m1. For this, since m1m2 ∈ Mod(L), by (M1), for x ∈ L, we have x ≤
m1(m2(x)). In addition, by using Remark 3.2(ii) twice we get m1(x) ≤ m1(m1(m2(x))), and
so m2(m1(x)) ≤ m2(m1(m1(m2(x)))). Since m1 ∈ Mod(L), by (M2) we have m2(m1(x)) ≤
m2(m1(m2(x))). By (M1) for m1 we get m2(m1(x)) ≤ m2(m1(m2(x))) ≤ m1(m2(m1(m2(x)))).
Since m1m2 ∈ Mod(L), by (M2), m2(m1(x)) ≤ m1(m2(x)). The proof of other side is similar.
Hence, m1m2 = m2m1.
(⇐) Suppose m1,m2 ∈ Mod(L) such that m1m2 = m2m1. By (M1), for x ∈ L, x ≤ m2(x), and
so x ≤ m2(x) ≤ m1(m2(x)). Thus (M1) holds. Also, by (M3) we have m2(x⇝ y) ≤ m2(x)⇝
m2(y). Since m1 ∈ Mod(L), by Remark 3.2(ii), we have m1(m2(x ⇝ y)) ≤ m1(m2(x) ⇝
m2(y)), and so m1(m2(x ⇝ y)) ≤ m1(m2(x)) ⇝ m1(m2(y)). Thus (M3) holds. For proving
(M2), by assumption and (M2) we have

m1(m2(m1(m2(x))) = m1(m1(m2(m2(x))) = m1(m2(x)).

Therefore, m1m2 ∈ Mod(L).

Example 3.10. According to Example 3.8, we have

m1(m2(a)) = m1(a) = b 6= c = m2(b) = m2(m1(a)).

Thus, the condition m1m2 = m2m1 in Theorem 3.9 is necessary.

Definition 3.11. An L-algebra (L,⇝, 1) is called a positive L-algebra if for any x, y, z ∈ L
we have

x⇝ (y ⇝ z) = (x⇝ y)⇝ (x⇝ z). (P )
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Example 3.12. Let (L = {a, b, c, 1},≤) be a poset where a ≤ b, c ≤ 1. Then (L,⇝, 1) is an
L-algebra where the operation ⇝ is defined in Table 3:

⇝ a b c 1

a 1 1 1 1

b c 1 c 1

c b b 1 1

1 a b c 1

Table 3

Obviously, the condition (P ) holds, and so (L,⇝, 1) is a positive L-algebra.

In the following example we show that this is not true that every L-algebra is not a positive
L-algebra.

Example 3.13. Let (L = {a, b, c, 1},≤) be a poset where a, c ≤ b ≤ 1. Then (L,⇝, 1) is an
L-algebra where the operation ⇝ is defined in Table 4:

⇝ a b c 1

a 1 1 a 1

b a 1 c 1

c a 1 1 1

1 a b c 1

Table 4

Then (L,⇝, 1) is not a positive L-algebra, because

c⇝ (a⇝ c) = c⇝ a = a 6= 1 = a⇝ 1 = (c⇝ a)⇝ (c⇝ c).

Theorem 3.14. Every positive L-algebra is a CKL-algebra.

Proof. Consider L is a positive L-algebra. Then for any x, y, z ∈ L, we have

x⇝ (y ⇝ z) = (x⇝ y)⇝ (x⇝ z) by (P)

= (y ⇝ x)⇝ (y ⇝ z) by (L2)

= y ⇝ (x⇝ z). by (P)

Hence, L is a CKL-algebra.

Corollary 3.15. Every positive L-algebra is a KL-algebra.

In the following example we show that every CKL-algebra is not a positive L-algebra.
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Example 3.16. Let (L = {a, b, c, 1},≤) be a chain where a ≤ b ≤ c ≤ 1. Define the operation
⇝ on L in Table 5:

⇝ a b c 1

a 1 1 1 1

b c 1 1 1

c a b 1 1

1 a b c 1

Table 5

Then (L,⇝, 1) is a CKL-algebra (and also KL-algebra) but is not positive, because

c⇝ (b⇝ a) = c⇝ c = 1 6= c = b⇝ a = (c⇝ b)⇝ (c⇝ a).

Proposition 3.17. Let L be a CKL-algebra. Then for any x, y, z ∈ L, we have

(x⇝ y)⇝ (x⇝ z) ≤ x⇝ (y ⇝ z).

Proof. Assume x, y, z ∈ L. Then by Proposition 2.5(ii), y ≤ x⇝ y and by Proposition 2.5(v)
we have (x ⇝ y) ⇝ (x ⇝ z) ≤ y ⇝ (x ⇝ z) and by (C) we get (x ⇝ y) ⇝ (x ⇝ z) ≤ x ⇝
(y ⇝ z).

Next example shows that the converse of equation in Proposition 3.17 does not hold.

Example 3.18. According to Example 3.16, L is a CKL-algebra but

c⇝ (b⇝ a) = 1 ⊀ c = b⇝ a = (c⇝ b)⇝ (c⇝ a).

Note. According to Proposition 3.17, if L is a CKL-algebra, then L is positive if for any
x, y, z ∈ L we have

x⇝ (y ⇝ z) ≤ (x⇝ y)⇝ (x⇝ z).

Theorem 3.19. If L is a positive L-algebra and a ∈ L, then a mapping ga : L → L, where
for any x ∈ L, ga(x) = a⇝ x is a modal operator.

Proof. Let x, y ∈ L. Then by Theorem 3.14, L is a CKL-algebra, thus by Proposition 2.5(ii),
x ≤ a⇝ x = ga(x). So, x ≤ ga(x) and (M1) holds. Moreover, by assumption we have

ga(x⇝ y) = a⇝ (x⇝ y) = (a⇝ x)⇝ (a⇝ y) = ga(x)⇝ ga(y).

Thus (M3) holds. For proving (M2), by (P), we have

ga(ga(x)) = ga(a⇝ x) = a⇝ (a⇝ x) = (a⇝ a)⇝ (a⇝ x) = 1⇝ (a⇝ x) = a⇝ x = ga(x).

Hence, ga(x) ∈ Mod(L).
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In the following example we show that the condition positive L-algebra in Theorem 3.19 is
necessary.

Example 3.20. According to Example 3.18, clearly gc(b ⇝ a) ⊀ gc(b) ⇝ gc(a). Thus (M3)

does not hold, and so gc /∈ Mod(L). Hence, the condition positive L-algebra in Theorem 3.19
is necessary.

Remark 3.21. (i) Clearly, g1(x) = x, and so g1(x) = idL. Also, in a positive L-algebra, ga(x)
is a homomorphism on L.
(ii) In a positive L-algebra, for a ∈ L and n ∈ N, gna = ga, where gna (x) =

a⇝ (a⇝ · · · (a︸ ︷︷ ︸⇝ x) · · · )
n-times

and x ∈ L.

Proposition 3.22. Let L be an L-algebra and x ∈ L. Then for x, y ∈ L we have
(i) ga is isotone.
(ii) If L is a KL-algebra, then x ≤ ga(x) ≤ g2a(x) ≤ · · · .
(iii) If L is a CKL-algebra, then ga(x)⇝ ga(y) ≤ ga(x⇝ y).
(iv) If L is a CKL-algebra, then x⇝ y ≤ gna (x)⇝ gna (y), for any n ∈ N.
(v) Im(gna ) ⊆ Im(gn−1

a ) ⊆ · · · ⊆ Im(g2a) ⊆ Im(ga).
(vi) Fix(ga) ⊆ Fix(g2a) ⊆ · · · ⊆ Fix(gna ), where Fix(ga) := {x ∈ L | ga(x) = x}.
(vii) ker(ga) ⊆ ker(g2a) ⊆ · · · ⊆ ker(gna ), where ker(ga) := {x ∈ L | ga(x) = 1}.
(viii) Fix(gna ) ⊆ Im(gna ).
(ix) Fix(gna ) ∩ ker(gna ) = {1}.

Proof. (i) Assume x, y ∈ L such that x ≤ y. Then by Proposition 2.2, a⇝ x ≤ a⇝ y and so
ga(x) ≤ ga(y).
(ii) Since L is a KL-algebra, by Proposition 2.3(i), x ≤ a ⇝ x ≤ a ⇝ (a ⇝ x) ≤ · · · . Thus,
x ≤ ga(x) ≤ g2a(x) ≤ · · · .
(iii) By Proposition 3.17, the proof is clear.
(iv) By Proposition 2.5(viii), x ⇝ y ≤ (a ⇝ x) ⇝ (a ⇝ y) ≤ (a ⇝ (a ⇝ x)) ⇝ (a ⇝ (a ⇝
y)) ≤ · · · . Thus, x⇝ y ≤ ga(x)⇝ ga(y) ≤ g2a(x)⇝ g2a(y) ≤ · · · .
(v) The proof is straightforward.
(vi) Let x ∈ Fix(ga). Then ga(x) = a⇝ x = x. Also,

g2a(x) = a⇝ (a⇝ x) = a⇝ x = x since x ∈ Fix(ga)

So, Fix(ga) ⊆ Fix(g2a).
(vii) Let x ∈ ker(ga). Then ga(x) = a⇝ x = 1. Also,

g2a(x) = a⇝ (a⇝ x) = a⇝ 1 = 1 by (L1) and since x ∈ ker(ga)
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So, ker(ga) ⊆ ker(g2a).
(viii) The proof is straightforward.
(ix) Clearly, {1} ⊆ Fix(gna ) ∩ ker(gna ). Assume x ∈ Fix(gna ) ∩ ker(gna ). Then gna (x) = x and
gna (x) = 1. Thus x = 1, and so Fix(gna ) ∩ ker(gna ) ⊆ {1}.

Proposition 3.23. Let m ∈ Mod(L). Then Fix(m) = Im(m).

Proof. If x ∈ Fix(m), then x = m(x) ∈ Im(m), whence Fix(m) ⊆ Im(m). Conversely, suppose
y ∈ Im(m). Then there exists x ∈ L such that m(x) = y. Since m ∈ Mod(L), by (M2) we
have m(y) = m(m(x)) = m(x) = y. Thus y ∈ Fix(m). Hence, Fix(m) = Im(m).

Theorem 3.24. If m ∈ Mod(L), then Fix(m) is closed under the operation ⇝ and so
〈Fix(m),⇝, 1〉 is an L-algebra.

Proof. Consider x, y ∈ Fix(m). Then m(x) = x and m(y) = y. Since m ∈ Mod(L), by (M1),

x⇝ y ≤ m(x⇝ y) ≤ m(x)⇝ m(y) = x⇝ y.

Thus, m(x ⇝ y) = m(x) ⇝ m(y) = x ⇝ y. So, x ⇝ y ∈ Fix(m). Hence, Fix(m) is closed
under the operation ⇝. It is straightforward to prove 〈Fix(m),⇝, 1〉 is an L-algebra.

In the following example we show that Fix(ga) and ker(ga) are not ideal of L, in general.

Example 3.25. Let (L = {a, b, c, 1},≤) be a poset where a, b, c ≤ 1. Define the operation ⇝
on L in Table 6:

⇝ a b c 1

a 1 b a 1

b a 1 c 1

c a b 1 1

1 a b c 1

Table 6

Then (L,⇝, 1) is an L-algebra. Then Fix(ga) = {b, 1} is an ideal of L but Fix(gc) = {a, b, 1}
is not an ideal of L since a ∈ Fix(gc) and a ⇝ c = a ∈ Fix(gc), but c /∈ Fix(gc). So (I2) does
not hold.

In addition, ker(gc) = {c, 1} which is not an ideal of L, since c ⊀ a ⇝ c = a and so (I4)

does not hold.

Proposition 3.26. If L is a positive L-algebra, then ker(ga) is an ideal of L.
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Proof. By Theorem 3.14, L is a CKL-algebra and so for proving that ker(ga) is an ideal of L,
it is enough to show (I1) and (I2) hold. For this, clearly, ga(1) = a ⇝ 1 = 1, by (L1). Thus
1 ∈ ker(ga). Assume x, x⇝ y ∈ ker(ga). Then ga(x) = ga(x⇝ y) = 1. Since L is positive, by
(L1) we have

1 = ga(x⇝ y) = a⇝ (x⇝ y) = (a⇝ x)⇝ (a⇝ y) = 1⇝ (a⇝ y) = a⇝ y.

Hence, ga(y) = 1 and so y ∈ ker(ga). Therefore, ker(ga) is an ideal of L.

Proposition 3.27. If L is a positive L-algebra, then Im(ga), Fix(ga) and ker(ga) are closed
under ⇝.

Proof. Assume x, y ∈ Im(ga). Then there are b, c ∈ L such that ga(b) = x and ga(c) = y. Then
by (P ), we have

x⇝ y = ga(b)⇝ ga(c) = (a⇝ b)⇝ (a⇝ c) = a⇝ (b⇝ c) = ga(b⇝ c).

Hence, x ⇝ y ∈ Im(ga). Also, suppose x, y ∈ Fix(ga). Then ga(x) = x and ga(y) = y. Thus
by (P ), we get

x⇝ y = ga(x)⇝ ga(y) = (a⇝ x)⇝ (a⇝ y) = a⇝ (x⇝ y) = ga(x⇝ y).

Hence, x⇝ y ∈ Fix(ga). In addition, if x, y ∈ ker(ga), then by (P ) and (L1) we have

ga(x⇝ y) = a⇝ (x⇝ y) = (a⇝ x)⇝ (a⇝ y) = ga(x)⇝ ga(y) = 1⇝ 1 = 1.

Hence, x⇝ y ∈ ker(ga).

Proposition 3.28. If L is a positive L-algebra, then for any a, b ∈ L we have
(i) ga ◦ gb = gb ◦ ga,
(ii) ga ◦ ga = ga,
(iii) g1 ◦ ga = ga = ga ◦ g1,
(iv) if a ≤ b, then gb ≤ ga and ga ◦ gb = ga, where gb(x) ≤ ga(x), for any x ∈ L.

Proof. (i) Let x ∈ L. Then by Theorem 3.14 and (C), we have

(ga ◦ gb)(x) = ga(gb(x)) = ga(b⇝ x) = a⇝ (b⇝ x) = b⇝ (a⇝ x) = gb(ga(x)).

(ii) Let x ∈ L. Then by Theorem 3.14, (C) and (L1), we have

(ga◦ga)(x) = ga(a⇝ x) = a⇝ (a⇝ x) = (a⇝ a)⇝ (a⇝ x) = 1⇝ (a⇝ x) = a⇝ x = ga(x).

(iii) Assume x ∈ L. Then by (L1), we have

(g1 ◦ ga)(x) = 1⇝ (a⇝ x) = a⇝ x = ga(x).
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(iv) Consider a ≤ b. Then by Theorem 3.14 and Proposition 2.5(v) we have b ⇝ x ≤ a ⇝ x,
and so gb(x) ≤ ga(x). Also, for x ∈ L, if a ≤ b, then a⇝ b = 1 and by (P ) and (L1) we have

(ga ◦ gb)(x) = a⇝ (b⇝ x) = (a⇝ b)⇝ (a⇝ x) = 1⇝ (a⇝ x) = a⇝ x = ga(x).

Corollary 3.29. Assume L is a chain positive L-algebra. Then G = {ga | a ∈ L} is a
commutative monoid under the composition of mapping with zero element g1.

Proof. By Proposition 3.28, clearly, the composition is commutative, idempotent and has g1

as a neutral element. Now, we prove g1 is unique. For this, assume there exists x ∈ L such
that gx ◦ ga = ga, for all a ∈ L. Then by Proposition 3.28(iii) we have

g1 = g1 ◦ gx = gx ◦ g1 = gx.

So, g1 is unique. Now, we prove that the composition is associative. Suppose a, b, c ∈ L. Since
L is a chain, assume b ≤ c. Then by Proposition 3.28(iv), gb◦gc = gb, and so ga◦(gb◦gc) = ga◦gb.
We have the following cases:
Case 1. If a ≤ b, then by Proposition 3.28(iv), ga ◦ gb = ga. On the other side, we have

(ga ◦ gb) ◦ gc = ga ◦ gc = gc,

since a ≤ b ≤ c. So, associativity holds in this case.
Case 2. If b ≤ a, then by Proposition 3.28(iv), ga ◦ gb = gb. On the other side, we have

(ga ◦ gb) ◦ gc = gb ◦ gc = gb,

since b ≤ a, c. So, associativity holds in this case. Hence, in these cases associativity holds.
The proof of other case is similar. Therefore, G is a commutative monoid.

For a ∈ L, consider a mapping ka : L → L, where for any x ∈ L, ka(x) = x⇝ a.

Proposition 3.30. The following statements hold:
(i) ka(1) = a and ka(a) = 1, for a ∈ L.
(ii) If L is bounded, then ka(0) = 1 and k0(a) = a′,
(iii) k1(x) = 1, for any x ∈ L,
(iv) if a ≤ b, then ka ≤ kb,
(v) if L is a KL-algebra and x ≤ y, then ka(y) ≤ ka(x), and so ka(1) ≤ ka(b), for any a, b ∈ L.

Proof. The proof is straightforward.
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Proposition 3.31. Assume L is a CKL-algebra and a, x, y ∈ L. Then the following state-
ments hold:
(i) For any natural number n ∈ N, and a ∈ L, we have

kna =

 ka n is odd

k2a n is even

where kna (x) = (((x⇝ a)⇝ a) · · · a︸ ︷︷ ︸
n−times

).

(ii) k2a(x)⇝ ka(y) = x⇝ ka(y),
(iii) y ⇝ k2a(x) = ka(x)⇝ ka(y) and k2a(x)⇝ k2a(y) = x⇝ k2a(y),
(iv) the mapping k2a is isotone.

Proof. By Proposition 2.5, the proof is straightforward.

Theorem 3.32. Consider L is a CKL-algebra, h ∈ Mod(L) and a ∈ L. Then h ≤ k2a if and
only if h(a) = a.

Proof. Assume h ≤ k2a. Then for any x ∈ L, h(x) ≤ k2a(x), and so h(x) ≤ (x⇝ a)⇝ a. Since
a ∈ L, we have h(a) ≤ (a ⇝ a) ⇝ a, and so by (L1), h(a) ≤ a. Also, since h ∈ Mod(L), by
(M1), a ≤ h(a). Hence, h(a) = a.

Conversely, by Proposition 2.5(iii), x ≤ (x⇝ a)⇝ a and since h ∈ Mod(L), we get

x ≤ (x⇝ a)⇝ a ⇒ h(x) ≤ h((x⇝ a)⇝ a) by Proposition 2.5(iii) and Remark 3.2(ii)

⇒ h(x) ≤ h(h(x⇝ a)⇝ h(a)) by (M3) and by Proposition 3.4(i)

⇒ h(x) ≤ (x⇝ a)⇝ h(a) by Proposition 3.4(ii)

⇒ h(x) ≤ (x⇝ a)⇝ a since h(a) = a

Hence, for any x ∈ L, h(x) ≤ k2a(x), and so h ≤ k2a.

Theorem 3.33. Let a ∈ L where L is a CKL-algebra. Then the following statements are
equivalent:
(i) k2a is an identity map.
(ii) ka is an injective map.
(iii) ka is a surjective map.

Proof. (i) ⇒ (ii). Let k2a be an identity map. Let x, y ∈ L such that ka(x) = ka(y). Then
x⇝ a = y ⇝ a, and so

x = k2a(x) = (x⇝ a)⇝ a = (y ⇝ a)⇝ a = k2a(y) = y.
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Hence, ka is an injective map on L.
(ii) ⇒ (iii). For any x, y ∈ L, we have ka((x ⇝ a) ⇝ a) = ka(x) by Proposition 2.5(xii).
Since ka is an injective map on L, it follows that (x ⇝ a) ⇝ a = x. Moreover, we know that
Im(ka) ⊆ L. Let y ∈ L. Then ka(y ⇝ a) = (y ⇝ a) ⇝ a = y and so y ∈ Im(ka). Hence,
L = Im(ka). Therefore, ka is a surjective map on L.
(iii) ⇒ (i). Using Proposition 2.5(iii), we have x ≤ (x⇝ a)⇝ a = k2a(x) for any x ∈ L. Since
ka is a surjective map, for any y ∈ L, there exists x ∈ L such that ka(x) = y, i.e., x⇝ a = y.
It follows from (C), Proposition 2.5(xii) and (L1) that

k2a(y)⇝ y = ((y ⇝ a)⇝ a)⇝ (x⇝ a) = x⇝ (((y ⇝ a)⇝ a)⇝ a)

= x⇝ (y ⇝ a) = y ⇝ (x⇝ a) = y ⇝ y = 1,

that is, k2a(y) ≤ y for all y ∈ L. Hence, k2a(y) = y for all y ∈ L. Therefore, k2a is an identity
map.

Theorem 3.34. Assume L is a CKL-algebra. Then k2a is a modal operator.

Proof. Let a ∈ L. Then by Proposition 2.5(iii), we have x ≤ (x ⇝ a) ⇝ a = k2a(x), and so
(M1) holds. Also, by Proposition 2.5(xii) we have

k2a(k
2
a(x)) = k2a((x⇝ a)⇝ a) = (((x⇝ a)⇝ a)⇝ a)⇝ a = (x⇝ a)⇝ a = k2a(x).

Thus, (M2) holds. Finally for proving (M3) we have

[((x⇝ y)⇝ a)⇝ a]⇝ [((x⇝ a)⇝ a)⇝ ((y ⇝ a)⇝ a)]

= ((x⇝ a)⇝ a)⇝ [(((x⇝ y)⇝ a)⇝ a)⇝ ((y ⇝ a)⇝ a)] by (C)

= ((x⇝ a)⇝ a)⇝ [(y ⇝ a)⇝ ((((x⇝ y)⇝ a)⇝ a)⇝ a)] by (C)

= ((x⇝ a)⇝ a)⇝ [(y ⇝ a)⇝ ((x⇝ y)⇝ a)] by Proposition 2.5(xii)

= (y ⇝ a)⇝ [((x⇝ a)⇝ a)⇝ ((x⇝ y)⇝ a)] by (C)

= (y ⇝ a)⇝ [(x⇝ y)⇝ (((x⇝ a)⇝ a)⇝ a)] by (C)

= (y ⇝ a)⇝ [(x⇝ y)⇝ (x⇝ a)] by Proposition 2.5(xii)

= (y ⇝ a)⇝ [(y ⇝ x)⇝ (y ⇝ a)] by (L2)

= (y ⇝ x)⇝ [(y ⇝ a)⇝ (y ⇝ a)] by (C)

= (y ⇝ x)⇝ 1 by (L1)

= 1. by (L1)(1)
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Hence, ((x⇝ y)⇝ a)⇝ a ≤ ((x⇝ a)⇝ a)⇝ ((y ⇝ a)⇝ a). Then

k2a(x⇝ y) = ((x⇝ y)⇝ a)⇝ a ≤ ((x⇝ a)⇝ a)⇝ ((y ⇝ a)⇝ a) = k2a(x)⇝ k2a(y).

Therefore, k2a(x) ∈ Mod(L).

Theorem 3.35. Let L be a CKL-algebra. Then ker(k2a) is an ideal of L.

Proof. Clearly, by (L1), we have

k2a(1) = (1⇝ a)⇝ a = a⇝ a = 1,

thus, 1 ∈ ker(k2a). Assume x, x⇝ y ∈ ker(k2a). Then

(y ⇝ a)⇝ a = 1⇝ ((y ⇝ a)⇝ a) by (L1)

= (((x⇝ y)⇝ a)⇝ a)⇝ ((y ⇝ a)⇝ a) since x⇝ y ∈ ker(k2a)

= (y ⇝ a)⇝ [(((x⇝ y)⇝ a)⇝ a)⇝ a] by (C)

= (y ⇝ a)⇝ ((x⇝ y)⇝ a) Proposition 2.5(xii)

= (y ⇝ a)⇝ [1⇝ ((x⇝ y)⇝ a)] by (L1)

= (y ⇝ a)⇝ [((x⇝ a)⇝ a)⇝ ((x⇝ y)⇝ a)] since x ∈ ker(k2a)

= (y ⇝ a)⇝ [(x⇝ y)⇝ (((x⇝ a)⇝ a)⇝ a)] by (C)

= (y ⇝ a)⇝ [(x⇝ y)⇝ (x⇝ a)] Proposition 2.5(xii)

= (x⇝ y)⇝ [(y ⇝ a)⇝ (x⇝ a)] by (C)

= 1. Proposition 2.5(vii)

Hence, k2a(y) = (y ⇝ a)⇝ a = 1, and so y ∈ ker(k2a). Therefore, ker(k2a) is an ideal of L.

Proposition 3.36. Assume L is a KL-algebra. If I and J are two ideals of L such that
I ∩ J = {1}, then k2x(y) = k2y(x) = 1 for all x ∈ I and y ∈ J .

Proof. Let I and J be two ideals of L such that I ∩ J = {1}. Suppose x ∈ I and y ∈ J .
By (I3), we have (x ⇝ y) ⇝ y ∈ I and by Proposition 2.3, y ≤ (x ⇝ y) ⇝ y, and so
(x ⇝ y) ⇝ y ∈ J . Then (x ⇝ y) ⇝ y ∈ I ∩ J = {1}, and so k2y(x) = 1. By the similar way
we can prove that k2x(y) = 1.
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We define the implication → on R(L) = {ka | a ∈ L} as follows:

→: R(L)×R(L) → R(L), → (ka, kb) 7→ ka(x)⇝ kb(x).

If L is a positive L-algebra, then, we have

(ka → kb)(x) = ka(x)⇝ kb(x) = (x⇝ a)⇝ (x⇝ b) = x⇝ (a⇝ b) = ka⇝b(x).

Hence, ka → kb ∈ R(L).
Note. Define an order ”⋖ ” on R(L) as follows:

For any ka, kb ∈ R(L)

ka ≤ kb ⇔ (ka → kb)(x) = k1(x),

for all x ∈ L.
Obviously, if L is a positive L-algebra, then (R(L),≤) is a partially ordered set. Since

(ka → ka)(x) = ka(x)⇝ ka(x) = (x⇝ a)⇝ (x⇝ a) = 1 = x⇝ 1 = k1(x).

So, ≤ is reflexive. Also, if ka ≤ kb and kb ≤ ka, then

ka(a) ≤ kb(a) ⇒ a⇝ a = 1 ≤ a⇝ b ⇒ a⇝ b = 1 ⇒ a ≤ b,

kb(b) ≤ ka(b) ⇒ b⇝ b = 1 ≤ b⇝ a ⇒ b⇝ a = 1 ⇒ b ≤ a,

and so a = b. Thus, ka = kb. Now, if ka ≤ kb and kb ≤ kc, then for any x ∈ L we have
x ⇝ a ≤ x ⇝ b and x ⇝ b ≤ x ⇝ c. Thus x ⇝ a ≤ x ⇝ c. Hence, ka ≤ kc. Therefore,
(R(L),≤) is a partially ordered set.

Theorem 3.37. If L is a positive L-algebra, then (R(L),→, k1) is a dual BCK-algebra.

Proof. The proof is clear, see [10].

Conclusion

In this paper, the notion of modal operators on L-algebras is introduced and some important
properties of this operator are investigated. In order for the kernel of modal operator to be
ideal, what conditions are required, is investigated. Relations between modal operator and
endomorphism of L-algebras are studied. Also, notion of positive L-algebra is defined and
a characterization of positive L-algebra is established. Finally, it is shown a map ka is a
modal operator and it was proved that the set of all ka on a positive L-algebra makes a dual
BCK-algebra.
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