Algebraic Structures and Their Applications

Algebraic Structures and Their Applications Vol. 10 No. 2 (2023) pp 107-125.

Research Paper

MODAL OPERATORS ON L-ALGEBRAS

MONA AALY KOLOGANI*

Abstract

The main goal of this paper is to introduce analogously modal operators on L-algebras and study their properties. To begin with, we introduce the notion of modal operators on L-algebras and investigate some important properties of this operator. In order for the kernel of modal operator to be ideal, we investigate what conditions are required. Relations between modal operator and endomorphism of L-algebras are investigated. Also, we define the concept of positive L-algebra and some characterizations of positive L-algebra are established. Finally, we introduce a map k_{a} and show that k_{a} is a modal operator and we prove that the set of all k_{a} on a positive L-algebra makes a dual BCK-algebra.

1. Introduction

L-algebras, which are related to algebraic logic and quantum structures, were introduced by Rump [12]. Many examples shown that L-algebras are very useful. Yang and Rump [14], characterized pseudo-MV-algebras and Bosbach's non-commutative bricks as L-algebras.

DOI: 10.22034/as.2023.3016
MSC(2010): Primary: 06B10, 06B99, 03G25.
Keywords: BCK-algebra, L-algebra, Modal operator, Positive L-algebra.
Received: 21 December 2022, Accepted: 11 March 2023.
*Corresponding author

Wu and Yang 16 proved that orthomodular lattices form a special class of L-algebras in different ways. It was shown that every lattice-ordered effect algebra has an underlying L algebra structure in Wu et al. [15]. Also, other mathematicians studied the relationship between basic algebras and L-algebras. They proved that a basic algebra which satisfies $(z \oplus \neg x) \oplus \neg(y \oplus \neg x)=(z \oplus \neg y) \oplus \neg(x \oplus \neg y)$ can be converted into an L-algebra. Conversely, if an L-algebra with the least element " 0 " and some conditions such that it is an involutive bounded lattice can be organized into a basic algebra, it must be a lattice-ordered effect algebra. We refer the reader to the following sources for further study in the field of L-algebras [3, 4, 5].

In 1981, modal operators (special cases of closure operators) on Heyting algebras were introduced and studied by Macnab [9]. Since then, properties of modal operators were considered on other algebraic structures such as MV-algebra [7], bounded commutative residuated $\mathrm{R} \ell$ monoids (simply called $\mathrm{R} \ell$-monoids) [11], commutative residuated lattices [8] and so on. The essence of modal operator is closure operator, and closure operator is an important part of the theoretical study of partial order sets.

In this paper, we introduce the notion of modal operator on L-algebras and investigate some important properties of this operator. In order for the kernel of modal operator to be ideal, we investigate what conditions are required. Relations between modal operator and endomorphism of L-algebras are investigated. Also, we define the concept of positive L-algebra and some characterizations of positive L-algebra are established. Finally, we introduce a map k_{a} and show that k_{a} is a modal operator and we prove that the set of all k_{a} on a positive L-algebra makes a dual BCK-algebra.

2. Preliminaries

This section lists the known default contents that will be used later.

Definition 2.1. [6] An L-algebra is an algebraic structure $(\mathcal{L} ; \rightsquigarrow, 1)$ of type $(2,0)$ satisfying (L1) $x \rightsquigarrow x=x \rightsquigarrow 1=1$ and $1 \rightsquigarrow x=x$,
$(L 2)(x \rightsquigarrow y) \rightsquigarrow(x \rightsquigarrow z)=(y \rightsquigarrow x) \rightsquigarrow(y \rightsquigarrow z)$,
(L3) if $x \rightsquigarrow y=y \rightsquigarrow x=1$, then $x=y$,
for any $x, y, z \in \mathcal{L}$. Condition ($L 1$) states that 1 is a logical unit, while ($L 2$) is related to the quantum Yang-Baxter equation. Note that a logical unit is always unique. In addition, easily it can be seen that the relation

$$
x \leq y \text { if and only if } x \rightsquigarrow y=1,
$$

defines a partial order for any L-algebra \mathcal{L}. If \mathcal{L} admits a smallest element 0 with respect to the ordering \leq, then it is called a bounded L-algebra.

We say that a bounded L-algebra \mathcal{L} has negation if the map $x \longmapsto x^{\prime}$ is bijective, where $x^{\prime}=x \rightsquigarrow 0$. The inverse map will then be denoted by $x \mapsto x^{\sim}$. If $x^{\sim}=x^{\prime}$, then L is called an L-algebra with double negation.

Proposition 2.2. 14] Let \mathcal{L} be an L-algebra. Then $x \leq y$ implies $z \rightsquigarrow x \leq z \rightsquigarrow y$, for any $x, y, z \in \mathcal{L}$.

Proposition 2.3. [14] For an L-algebra \mathcal{L}, the following are equivalent:
(i) $x \leq y \rightsquigarrow x$, (ii) if $x \leq z$, then $z \rightsquigarrow y \leq x \rightsquigarrow y$, (iii) $((x \rightsquigarrow y) \rightsquigarrow z) \rightsquigarrow z \leq((x \rightsquigarrow y) \rightsquigarrow z) \rightsquigarrow((y \rightsquigarrow x) \rightsquigarrow z)$,
for any $x, y, z \in \mathcal{L}$.
Definition 2.4. [13] An L-algebra \mathcal{L} which satisfies

$$
\begin{equation*}
x \rightsquigarrow(y \rightsquigarrow x)=1, \tag{K}
\end{equation*}
$$

for any $x, y \in \mathcal{L}$ is called a $K L$-algebra.
A $C K L$-algebra is an L-algebra which satisfies

$$
\begin{equation*}
x \rightsquigarrow(y \rightsquigarrow z)=y \rightsquigarrow(x \rightsquigarrow z), \tag{C}
\end{equation*}
$$

for any $x, y, z \in \mathcal{L}$ (see [13]).
Clearly, every $C K L$-algebra is a $K L$-algebra, since for any $x, y \in \mathcal{L}$, we have

$$
x \rightsquigarrow(y \rightsquigarrow x)=y \rightsquigarrow(x \rightsquigarrow x)=y \rightsquigarrow 1=1 .
$$

Proposition 2.5. 1] Assume $(\mathcal{L}, \rightsquigarrow, 1)$ is a CKL-algebra. Then for any $x, y, z \in \mathcal{L}$, the following properties hold:
(i) if $x \leq y$, then $z \rightsquigarrow x \leq z \rightsquigarrow y$,
(ii) $x \rightsquigarrow(y \rightsquigarrow x)=1$, i.e., $x \leq y \rightsquigarrow x$,
(iii) $x \leq(x \rightsquigarrow y) \rightsquigarrow y$,
(iv) $x \leq y \rightsquigarrow z$ if and only if $y \leq x \rightsquigarrow z$,
(v) if $x \leq y$, then $y \rightsquigarrow z \leq x \rightsquigarrow z$,
$(v i)((x \rightsquigarrow y) \rightsquigarrow z) \rightsquigarrow z \leq((x \rightsquigarrow y) \rightsquigarrow z) \rightsquigarrow((y \rightsquigarrow x) \rightsquigarrow z)$,
(vii) $z \rightsquigarrow y \leq(y \rightsquigarrow x) \rightsquigarrow(z \rightsquigarrow x)$,
(viii) $z \rightsquigarrow y \leq(x \rightsquigarrow z) \rightsquigarrow(x \rightsquigarrow y)$,

If \mathcal{L} has a least element as 0 , then
(ix) if $x \leq y$, then $y^{\prime} \leq x^{\prime}$, where $x^{\prime}=x \rightsquigarrow 0$,
(x) $x \leq x^{\prime \prime}$, and $x^{\prime}=x^{\prime \prime \prime}$,
(xi) $x^{\prime} \leq x \rightsquigarrow y$,
(xii) $((x \rightsquigarrow y) \rightsquigarrow y) \rightsquigarrow y=x \rightsquigarrow y$,
(xiii) If \mathcal{L} has double negation, then $x \rightsquigarrow y=y^{\prime} \rightsquigarrow x^{\prime}$.

Definition 2.6. [12] A subset \mathcal{I} of an L-algebra \mathcal{L} is called an ideal of \mathcal{L} if it satisfies the following conditions for all $x, y \in \mathcal{I}$,
($\left.I_{1}\right) 1 \in \mathcal{I}$,
$\left(I_{2}\right)$ if $x \in \mathcal{I}$ and $x \rightsquigarrow y \in \mathcal{I}$, then $y \in \mathcal{I}$,
$\left(I_{3}\right)$ if $x \in \mathcal{I}$, then $(x \rightsquigarrow y) \rightsquigarrow y \in \mathcal{I}$,
$\left(I_{4}\right)$ if $x \in \mathcal{I}$, then $y \rightsquigarrow x \in \mathcal{I}$ and $y \rightsquigarrow(x \rightsquigarrow y) \in \mathcal{I}$.

If we consider the ideal of $C K L$-algebra, the conditions $\left(I_{3}\right)$ and $\left(I_{4}\right)$ can be dropped. In fact, for any $x \in \mathcal{I}$, by (C) and $\left(I_{1}\right)$ we have

$$
x \rightsquigarrow((x \rightsquigarrow y) \rightsquigarrow y)=(x \rightsquigarrow y) \rightsquigarrow(x \rightsquigarrow y)=1 \in \mathcal{I},
$$

for any $y \in \mathcal{L}$. It follows by $\left(I_{2}\right)$ that $(x \rightsquigarrow y) \rightsquigarrow y \in \mathcal{I}$. Thus $\left(I_{3}\right)$ holds. Furthermore, if $x \in \mathcal{I}$, then for any $y \in \mathcal{L}$, by (K) we have $x \rightsquigarrow(y \rightsquigarrow x)=1 \in \mathcal{I}$ and by $\left(I_{2}\right), y \rightsquigarrow x \in \mathcal{I}$.

For an L-algebra, a binary relation \sim is a congruence relation 12] on \mathcal{L} if it is an equivalence relation such that for any $x, y, z \in \mathcal{L}$,

$$
x \sim y \Leftrightarrow(z \rightsquigarrow x) \sim(z \rightsquigarrow y) \text { and }(x \rightsquigarrow z) \sim(y \rightsquigarrow z) .
$$

Theorem 2.7. 12] Let $(\mathcal{L}, \rightsquigarrow, 1)$ be an L-algebra. Then every ideal \mathcal{I} of \mathcal{L} defines a congruence relation on \mathcal{L}, for any $x, y \in \mathcal{L}$, where

$$
x \sim y \Leftrightarrow x \rightsquigarrow y, y \rightsquigarrow x \in \mathcal{I} .
$$

Conversely, every congruence relation \sim defines an ideal $\mathcal{I}=\{x \in \mathcal{L} \mid x \sim 1\}$.
Definition 2.8. 12 Let \mathcal{L} and \mathcal{H} be two L-algebras. Then a map $f: \mathcal{L} \rightarrow \mathcal{H}$ is called an L-homomorphism if for any $x, y \in \mathcal{L}$ we have $f\left(x \rightsquigarrow_{\mathcal{L}} y\right)=f(x) \rightsquigarrow_{\mathcal{H}} f(y)$.

If f is an injective, then f is called a monomorphism and if f is onto, then f is called an epimorphism. In addition, if f is a bijective function, then f is called an isomorphism.

Note. From now on, we let $(\mathcal{L}, \rightsquigarrow, 1)$ or \mathcal{L}, for short, be an L-algebra.

3. Modal operators on L-algebras

In this section, we introduce the notion of modal operators on L-algebras and investigate some important properties of this operator. In order for the kernel of modal operator to be ideal, we investigate what conditions are required.

Alg. Struc. Appl. Vol. 10 No. 2 (2023) 107-125.
Definition 3.1. A mapping $m: \mathcal{L} \rightarrow \mathcal{L}$ is called a modal operator on \mathcal{L} if for each $x, y \in \mathcal{L}$ we have:
$\left(M_{1}\right) x \leq m(x)$,
$\left(M_{2}\right) m(m(x))=m(x)$,
$\left(M_{3}\right) m(x \rightsquigarrow y) \leq m(x) \rightsquigarrow m(y)$.
The set of all modal operators on \mathcal{L} is denoted by $\operatorname{Mod}(\mathcal{L})$.
Remark 3.2. Assume $m \in \operatorname{Mod}(\mathcal{L})$. Then
(i) Since for any $x \in \mathcal{L}, x \leq m(x)$, we get $1 \leq m(1)$, and so $m(1)=1$.
(ii) If $x \leq y$, then $x \rightsquigarrow y=1$, and so $1=m(1)=m(x \rightsquigarrow y)$. Also, since $m \in \operatorname{Mod}(\mathcal{L})$, by $\left(M_{3}\right)$ we have

$$
1=m(1)=m(x \rightsquigarrow y) \leq m(x) \rightsquigarrow m(y),
$$

and so $m(x) \rightsquigarrow m(y)=1$. Hence, $m(x) \leq m(y)$. Therefore, every modal operator on \mathcal{L} is order preserving.

Example 3.3. (i) Clearly, $i d_{\mathcal{L}} \in \operatorname{Mod}(\mathcal{L})$.
(ii) Let $(\mathcal{L}=\{a, b, c, 1\}, \leq)$ be a chain where $a \leq b \leq c \leq 1$. Define the operation \rightsquigarrow on \mathcal{L} in Table 1:

\rightsquigarrow	a	b	c	1
a	1	1	1	1
b	a	1	1	1
c	a	b	1	1
1	a	b	c	1

Table 1
Then $(\mathcal{L}, \rightsquigarrow, 1)$ is an L-algebra. If we consider a map $m: \mathcal{L} \rightarrow \mathcal{L}$ as follows:

$$
m(1)=1, m(a)=m(b)=b, m(c)=c,
$$

it is easily to see that $m \in \operatorname{Mod}(\mathcal{L})$.
(iii) Let $(\mathcal{L}=\{a, b, c, 1\}, \leq)$ be a poset where $a, c \leq b \leq 1$. Then $(\mathcal{L}, \rightsquigarrow, 1)$ is an L-algebra where the operation \rightsquigarrow is defined in Table 2:

\rightsquigarrow	a	b	c	1
a	1	1	a	1
b	a	1	c	1
c	a	1	1	1
1	a	b	c	1

Table 2

If $m: \mathcal{L} \rightarrow \mathcal{L}$ is $m(a)=m(b)=m(c)=b$ and $m(1)=1$, then $m \in \mathcal{M o d}(\mathcal{L})$.
Proposition 3.4. Let $m \in \operatorname{Mod}(\mathcal{L})$. Then the following statements hold:
(i) $m(x) \rightsquigarrow m(y)=m(m(x) \rightsquigarrow m(y))$.
(ii) If \mathcal{L} is a KL-algebra, then $m(m(x) \rightsquigarrow m(y))=x \rightsquigarrow m(y)=m(x \rightsquigarrow m(y))$.
(iiii) If \mathcal{L} is a bounded CKL-algebra, then $m(x) \leq(m(x) \rightsquigarrow m(0)) \rightsquigarrow m(0)$.
(iv) If \mathcal{L} is bounded, then $m\left(x^{\prime}\right) \leq m(x) \rightsquigarrow m(0)$.

Proof. (i) Assume $x, y \in \mathcal{L}$. Then by $\left(M_{1}\right), m(x) \rightsquigarrow m(y) \leq m(m(x) \rightsquigarrow m(y))$. Conversely, since $m(x), m(y) \in \mathcal{L}$ and $m \in \mathcal{M o d}(\mathcal{L})$, by $\left(M_{3}\right)$ and $\left(M_{2}\right)$ we have

$$
m(m(x) \rightsquigarrow m(y)) \leq m(m(x)) \rightsquigarrow m(m(y))=m(x) \rightsquigarrow m(y) .
$$

Hence, $m(x) \rightsquigarrow m(y)=m(m(x) \rightsquigarrow m(y))$.
(ii) By $\left(M_{1}\right)$, for any $x \in \mathcal{L}, x \leq m(x)$. Since \mathcal{L} is a $K L$-algebra, by Proposition 2.3(ii), $m(x) \rightsquigarrow m(y) \leq x \rightsquigarrow m(y)$. Then by (i), $m(x) \rightsquigarrow m(y)=m(m(x) \rightsquigarrow m(y))$ and so $m(m(x) \rightsquigarrow m(y)) \leq x \rightsquigarrow m(y)$. Conversely, since $m \in \operatorname{Mod}(\mathcal{L})$, by $\left(M_{1}\right),\left(M_{3}\right)$ and $\left(M_{2}\right)$, respectively, we have

$$
x \rightsquigarrow m(y) \leq m(x \rightsquigarrow m(y)) \leq m(x) \rightsquigarrow m(m(y))=m(x) \rightsquigarrow m(y) \leq m(m(x) \rightsquigarrow m(y)) .
$$

So, $x \rightsquigarrow m(y) \leq m(m(x) \rightsquigarrow m(y))$. Hence, $m(m(x) \rightsquigarrow m(y))=x \rightsquigarrow m(y)$. Also, clearly, by $\left(M_{1}\right), x \rightsquigarrow m(y) \leq m(x \rightsquigarrow m(y))$. Also, by $\left(M_{1}\right)$, for any $x \in \mathcal{L}, x \leq m(x)$. Since \mathcal{L} is a $K L$-algebra, by Proposition $2.3($ ii $), m(x) \rightsquigarrow m(y) \leq x \rightsquigarrow m(y)$. Then by $\left(M_{3}\right)$ and $\left(M_{2}\right)$, $m(x \rightsquigarrow m(y)) \leq m(x) \rightsquigarrow m(m(y))=m(x) \rightsquigarrow m(y)$, and so $m(x \rightsquigarrow m(y)) \leq x \rightsquigarrow m(y)$. Therefore, $x \rightsquigarrow m(y)=m(x \rightsquigarrow m(y))$.
(iii) By assumption, \mathcal{L} is bounded, so $m(0)$ is well-known. Since $m(x) \rightsquigarrow m(0) \leq m(x) \rightsquigarrow$ $m(0)$, by Proposition 2.5 (iv) we have $m(x) \leq(m(x) \rightsquigarrow m(0)) \rightsquigarrow m(0)$.
(iv) By $\left(M_{1}\right)$, since \mathcal{L} is bounded, we obtain $0 \leq m(0)$, then by Proposition 2.5(i), $x \rightsquigarrow 0 \leq$ $x \rightsquigarrow m(0)$, and so $x^{\prime} \leq x \rightsquigarrow m(0)$. Thus, we have

$$
\begin{aligned}
m\left(x^{\prime}\right) & \leq m(x \rightsquigarrow m(0)) & & \text { by Remark } 3.2(\mathrm{ii}) \\
& \leq m(x) \rightsquigarrow m(m(0)) & & \text { by }\left(M_{3}\right) \\
& =m(x) \rightsquigarrow m(0) . & & \text { by }\left(M_{2}\right)
\end{aligned}
$$

Theorem 3.5. Let \mathcal{L} be a KL-algebra and $m: \mathcal{L} \rightarrow \mathcal{L}$ be a map. Then $m \in \mathcal{M o d}(\mathcal{L})$ if and only if m satisfies in the following conditions:
(1) $m(x \rightsquigarrow y) \leq m(x) \rightsquigarrow m(y)$,
(2) $m(x) \rightsquigarrow m(y)=x \rightsquigarrow m(y)$.

Proof. (\Rightarrow) By the definition of a modal operator and Proposition 3.4(i) and (ii), the proof is clear.
(\Leftarrow) Let $x \in \mathcal{L}$ and (1) and (2) hold. Clearly, $\left(M_{3}\right)$ holds. Since $m(x) \rightsquigarrow m(x)=1$, by (2) we have $1=m(x) \rightsquigarrow m(x)=x \rightsquigarrow m(x)$. Thus, $x \leq m(x)$, and so $\left(M_{1}\right)$ holds. Now, we prove $m(x)=m(m(x))$. For this, by $\left(M_{1}\right)$, obviously, $m(x) \leq m(m(x))$. On the other side, by $(2), m(m(x)) \rightsquigarrow m(x)=m(x) \rightsquigarrow m(x)=1$, and so $m(m(x)) \leq m(x)$. Thus, $\left(M_{2}\right)$ holds. Therefore, $m \in \operatorname{Mod}(\mathcal{L})$.

Corollary 3.6. If \mathcal{L} is a CKL-algebra and $m: \mathcal{L} \rightarrow \mathcal{L}$ is a map, then $m \in \mathcal{M o d}(\mathcal{L})$ if and only if for any $x, y \in \mathcal{L}, m(x) \rightsquigarrow m(y)=x \rightsquigarrow m(y)$.

Proof. Since every $C K L$-algebra is a $K L$-algebra, it follows from Theorem 3.5.
Conversely, by Theorem 3.5, it is enough to prove $\left(M_{3}\right)$. For this, let $x, y \in \mathcal{L}$. Then

$$
\begin{array}{rlrl}
m(x \rightsquigarrow y) \rightsquigarrow(m(x) \rightsquigarrow m(y)) & =m(x \rightsquigarrow y) \rightsquigarrow(x \rightsquigarrow m(y)) & & \text { by assumption } \\
& =x \rightsquigarrow(m(x \rightsquigarrow y) \rightsquigarrow m(y)) & & \text { by }(C) \\
& =x \rightsquigarrow((x \rightsquigarrow y) \rightsquigarrow m(y)) \quad & & \text { by assumption } \\
& =(x \rightsquigarrow y) \rightsquigarrow(x \rightsquigarrow m(y)) \quad & \text { by }(C) \\
& =1 . \quad & \quad \text { by }\left(M_{1}\right) \text { and Proposition } 2.5(\text { i })
\end{array}
$$

Hence, $m(x \rightsquigarrow y) \rightsquigarrow(m(x) \rightsquigarrow m(y))=1$ and so $m(x \rightsquigarrow y) \leq m(x) \rightsquigarrow m(y)$. Therefore, $\left(M_{3}\right)$ holds and so $m \in \operatorname{Mod}(\mathcal{L})$.

Note. For any $m_{1}, m_{2} \in \operatorname{Mod}(\mathcal{L}), m_{1} \leq m_{2}$ if and only if for any $x \in \mathcal{L}, m_{1}(x) \leq m_{2}(x)$.
Remark 3.7. Consider $m_{1}, m_{2} \in \mathcal{M o d}(\mathcal{L})$. Then the condition $\left(M_{1}\right)$ and $\left(M_{3}\right)$ hold for composition of m_{1} and m_{2}. Because if $x \in \mathcal{L}$, clearly, $m_{2}(x) \in \mathcal{L}$, then $x \leq m_{2}(x) \leq$ $m_{1}\left(m_{2}(x)\right)$. Also, since $m_{2} \in \operatorname{Mod}(\mathcal{L})$, we have $m_{2}(x \rightsquigarrow y) \leq m_{2}(x) \rightsquigarrow m_{2}(y)$. By Remark $3.2(\mathrm{ii})$,

$$
m_{1}\left(m_{2}(x \rightsquigarrow y)\right) \leq m_{1}\left(m_{2}(x) \rightsquigarrow m_{2}(y)\right) \leq m_{1}\left(m_{2}(x)\right) \rightsquigarrow m_{1}\left(m_{2}(y)\right) .
$$

In the next example we show that composition of two modal operators do not meet the condition (M_{2}).

Example 3.8. Consider $(\mathcal{L}, \rightsquigarrow, 1)$ and $m_{1}: \mathcal{L} \rightarrow \mathcal{L}$ as L-algebra and modal operator as in Example 3.3(ii). Define $m_{2}: \mathcal{L} \rightarrow \mathcal{L}$ as follows:

$$
m_{2}(1)=1, m_{2}(a)=a, m_{2}(b)=m_{2}(c)=c .
$$

Obviously, $m_{2} \in \operatorname{Mod}(\mathcal{L})$, but $m_{1} m_{2} \notin \operatorname{Mod}(\mathcal{L})$, because
$m_{1}\left(m_{2}\left(m_{1}\left(m_{2}(a)\right)\right)\right)=m_{1}\left(m_{2}\left(m_{1}(a)\right)\right)=m_{1}\left(m_{2}(b)\right)=m_{1}(c)=c \neq b=m_{1}(a)=m_{1}\left(m_{2}(a)\right)$.
Thus, $\left(M_{3}\right)$ does not hold.

Theorem 3.9. Consider $m_{1}, m_{2} \in \operatorname{Mod}(\mathcal{L})$. Then $m_{1} m_{2} \in \operatorname{Mod}(\mathcal{L})$ if and only if $m_{1} m_{2}=$ $m_{2} m_{1}$.

Proof. (\Rightarrow) Assume $m_{1} m_{2} \in \operatorname{Mod}(\mathcal{L})$. Since $m_{1}, m_{2} \in \operatorname{Mod}(\mathcal{L})$, by Remark 3.2(ii), they are order preserving, so $m_{1} m_{2}$ is order preserving, too. For proving $m_{1} m_{2}=m_{2} m_{1}$, we show that $m_{1} m_{2} \leq m_{2} m_{1}$. For this, since $m_{1} m_{2} \in \operatorname{Mod}(\mathcal{L})$, by $\left(M_{1}\right)$, for $x \in \mathcal{L}$, we have $x \leq$ $m_{1}\left(m_{2}(x)\right)$. In addition, by using Remark 3.2(ii) twice we get $m_{1}(x) \leq m_{1}\left(m_{1}\left(m_{2}(x)\right)\right)$, and so $m_{2}\left(m_{1}(x)\right) \leq m_{2}\left(m_{1}\left(m_{1}\left(m_{2}(x)\right)\right)\right)$. Since $m_{1} \in \mathcal{M o d}(\mathcal{L})$, by $\left(M_{2}\right)$ we have $m_{2}\left(m_{1}(x)\right) \leq$ $m_{2}\left(m_{1}\left(m_{2}(x)\right)\right)$. By $\left(M_{1}\right)$ for m_{1} we get $m_{2}\left(m_{1}(x)\right) \leq m_{2}\left(m_{1}\left(m_{2}(x)\right)\right) \leq m_{1}\left(m_{2}\left(m_{1}\left(m_{2}(x)\right)\right)\right)$. Since $m_{1} m_{2} \in \mathcal{M o d}(\mathcal{L})$, by $\left(M_{2}\right), m_{2}\left(m_{1}(x)\right) \leq m_{1}\left(m_{2}(x)\right)$. The proof of other side is similar. Hence, $m_{1} m_{2}=m_{2} m_{1}$.
(\Leftarrow) Suppose $m_{1}, m_{2} \in \mathcal{M o d}(\mathcal{L})$ such that $m_{1} m_{2}=m_{2} m_{1}$. By $\left(M_{1}\right)$, for $x \in \mathcal{L}, x \leq m_{2}(x)$, and so $x \leq m_{2}(x) \leq m_{1}\left(m_{2}(x)\right)$. Thus $\left(M_{1}\right)$ holds. Also, by $\left(M_{3}\right)$ we have $m_{2}(x \rightsquigarrow y) \leq m_{2}(x) \rightsquigarrow$ $m_{2}(y)$. Since $m_{1} \in \operatorname{Mod}(\mathcal{L})$, by Remark 3.2(ii), we have $m_{1}\left(m_{2}(x \rightsquigarrow y)\right) \leq m_{1}\left(m_{2}(x) \rightsquigarrow\right.$ $\left.m_{2}(y)\right)$, and so $m_{1}\left(m_{2}(x \rightsquigarrow y)\right) \leq m_{1}\left(m_{2}(x)\right) \rightsquigarrow m_{1}\left(m_{2}(y)\right)$. Thus $\left(M_{3}\right)$ holds. For proving $\left(M_{2}\right)$, by assumption and $\left(M_{2}\right)$ we have

$$
m_{1}\left(m_{2}\left(m_{1}\left(m_{2}(x)\right)\right)=m_{1}\left(m_{1}\left(m_{2}\left(m_{2}(x)\right)\right)=m_{1}\left(m_{2}(x)\right) .\right.\right.
$$

Therefore, $m_{1} m_{2} \in \operatorname{Mod}(\mathcal{L})$.

Example 3.10. According to Example 3.8, we have

$$
m_{1}\left(m_{2}(a)\right)=m_{1}(a)=b \neq c=m_{2}(b)=m_{2}\left(m_{1}(a)\right) .
$$

Thus, the condition $m_{1} m_{2}=m_{2} m_{1}$ in Theorem 3.9 is necessary.
Definition 3.11. An L-algebra $(\mathcal{L}, \rightsquigarrow, 1)$ is called a positive L-algebra if for any $x, y, z \in \mathcal{L}$ we have

$$
\begin{equation*}
x \rightsquigarrow(y \rightsquigarrow z)=(x \rightsquigarrow y) \rightsquigarrow(x \rightsquigarrow z) . \tag{P}
\end{equation*}
$$

Example 3.12. Let $(\mathcal{L}=\{a, b, c, 1\}, \leq)$ be a poset where $a \leq b, c \leq 1$. Then $(\mathcal{L}, \rightsquigarrow, 1)$ is an L-algebra where the operation \rightsquigarrow is defined in Table 3:

\rightsquigarrow	a	b	c	1
a	1	1	1	1
b	c	1	c	1
c	b	b	1	1
1	a	b	c	1

Table 3
Obviously, the condition (P) holds, and so $(\mathcal{L}, \rightsquigarrow, 1)$ is a positive L-algebra.
In the following example we show that this is not true that every L-algebra is not a positive L-algebra.

Example 3.13. Let $(\mathcal{L}=\{a, b, c, 1\}, \leq)$ be a poset where $a, c \leq b \leq 1$. Then $(\mathcal{L}, \rightsquigarrow, 1)$ is an L-algebra where the operation \rightsquigarrow is defined in Table 4:

\rightsquigarrow	a	b	c	1
a	1	1	a	1
b	a	1	c	1
c	a	1	1	1
1	a	b	c	1

Table 4
Then $(\mathcal{L}, \rightsquigarrow, 1)$ is not a positive L-algebra, because

$$
c \rightsquigarrow(a \rightsquigarrow c)=c \rightsquigarrow a=a \neq 1=a \rightsquigarrow 1=(c \rightsquigarrow a) \rightsquigarrow(c \rightsquigarrow c) .
$$

Theorem 3.14. Every positive L-algebra is a CKL-algebra.
Proof. Consider L is a positive L-algebra. Then for any $x, y, z \in \mathcal{L}$, we have

$$
\begin{aligned}
x \rightsquigarrow(y \rightsquigarrow z) & =(x \rightsquigarrow y) \rightsquigarrow(x \rightsquigarrow z) & & \text { by }(\mathrm{P}) \\
& =(y \rightsquigarrow x) \rightsquigarrow(y \rightsquigarrow z) & & \text { by }(\mathrm{L} 2) \\
& =y \rightsquigarrow(x \rightsquigarrow z) . & & \text { by }(\mathrm{P})
\end{aligned}
$$

Hence, L is a $C K L$-algebra.

Corollary 3.15. Every positive L-algebra is a $K L$-algebra.
In the following example we show that every $C K L$-algebra is not a positive L-algebra.

Example 3.16. Let $(\mathcal{L}=\{a, b, c, 1\}, \leq)$ be a chain where $a \leq b \leq c \leq 1$. Define the operation \rightsquigarrow on \mathcal{L} in Table 5:

\rightsquigarrow	a	b	c	1
a	1	1	1	1
b	c	1	1	1
c	a	b	1	1
1	a	b	c	1

Table 5
Then $(\mathcal{L}, \rightsquigarrow, 1)$ is a $C K L$-algebra (and also $K L$-algebra) but is not positive, because

$$
c \rightsquigarrow(b \rightsquigarrow a)=c \rightsquigarrow c=1 \neq c=b \rightsquigarrow a=(c \rightsquigarrow b) \rightsquigarrow(c \rightsquigarrow a) .
$$

Proposition 3.17. Let \mathcal{L} be a $C K L$-algebra. Then for any $x, y, z \in \mathcal{L}$, we have

$$
(x \rightsquigarrow y) \rightsquigarrow(x \rightsquigarrow z) \leq x \rightsquigarrow(y \rightsquigarrow z) .
$$

Proof. Assume $x, y, z \in \mathcal{L}$. Then by Proposition 2.5(ii), $y \leq x \rightsquigarrow y$ and by Proposition 2.5(v) we have $(x \rightsquigarrow y) \rightsquigarrow(x \rightsquigarrow z) \leq y \rightsquigarrow(x \rightsquigarrow z)$ and by (C) we get $(x \rightsquigarrow y) \rightsquigarrow(x \rightsquigarrow z) \leq x \rightsquigarrow$ $(y \rightsquigarrow z)$.

Next example shows that the converse of equation in Proposition 3.17 does not hold.
Example 3.18. According to Example 3.16, \mathcal{L} is a $C K L$-algebra but

$$
c \rightsquigarrow(b \rightsquigarrow a)=1 \nprec c=b \rightsquigarrow a=(c \rightsquigarrow b) \rightsquigarrow(c \rightsquigarrow a) .
$$

Note. According to Proposition 3.17, if \mathcal{L} is a $C K L$-algebra, then \mathcal{L} is positive if for any $x, y, z \in \mathcal{L}$ we have

$$
x \rightsquigarrow(y \rightsquigarrow z) \leq(x \rightsquigarrow y) \rightsquigarrow(x \rightsquigarrow z) .
$$

Theorem 3.19. If \mathcal{L} is a positive L-algebra and $a \in \mathcal{L}$, then a mapping $g_{a}: \mathcal{L} \rightarrow \mathcal{L}$, where for any $x \in \mathcal{L}, g_{a}(x)=a \rightsquigarrow x$ is a modal operator.

Proof. Let $x, y \in \mathcal{L}$. Then by Theorem 3.14, \mathcal{L} is a $C K L$-algebra, thus by Proposition 2.5 (ii), $x \leq a \rightsquigarrow x=g_{a}(x)$. So, $x \leq g_{a}(x)$ and $\left(M_{1}\right)$ holds. Moreover, by assumption we have

$$
g_{a}(x \rightsquigarrow y)=a \rightsquigarrow(x \rightsquigarrow y)=(a \rightsquigarrow x) \rightsquigarrow(a \rightsquigarrow y)=g_{a}(x) \rightsquigarrow g_{a}(y) .
$$

Thus $\left(M_{3}\right)$ holds. For proving $\left(M_{2}\right)$, by (P), we have
$g_{a}\left(g_{a}(x)\right)=g_{a}(a \rightsquigarrow x)=a \rightsquigarrow(a \rightsquigarrow x)=(a \rightsquigarrow a) \rightsquigarrow(a \rightsquigarrow x)=1 \rightsquigarrow(a \rightsquigarrow x)=a \rightsquigarrow x=g_{a}(x)$.
Hence, $g_{a}(x) \in \operatorname{Mod}(\mathcal{L})$.

In the following example we show that the condition positive L-algebra in Theorem 3.19 is necessary.

Example 3.20. According to Example 3.18, clearly $g_{c}(b \rightsquigarrow a) \nprec g_{c}(b) \rightsquigarrow g_{c}(a)$. Thus $\left(M_{3}\right)$ does not hold, and so $g_{c} \notin \operatorname{Mod}(\mathcal{L})$. Hence, the condition positive L-algebra in Theorem 3.19 is necessary.

Remark 3.21. (i) Clearly, $g_{1}(x)=x$, and so $g_{1}(x)=i d_{\mathcal{L}}$. Also, in a positive L-algebra, $g_{a}(x)$ is a homomorphism on \mathcal{L}.
(ii) In a positive L-algebra, for $a \in \mathcal{L}$ and $n \in \mathbb{N}, g_{a}^{n}=g_{a}$, where $g_{a}^{n}(x)=$ $\underbrace{a \rightsquigarrow(a \rightsquigarrow \cdots(a}_{\text {n-times }} \rightsquigarrow x) \cdots)$ and $x \in \mathcal{L}$.

Proposition 3.22. Let \mathcal{L} be an L-algebra and $x \in \mathcal{L}$. Then for $x, y \in \mathcal{L}$ we have
(i) g_{a} is isotone.
(ii) If \mathcal{L} is a KL-algebra, then $x \leq g_{a}(x) \leq g_{a}^{2}(x) \leq \cdots$.
(iii) If \mathcal{L} is a CKL-algebra, then $g_{a}(x) \rightsquigarrow g_{a}(y) \leq g_{a}(x \rightsquigarrow y)$.
(iv) If \mathcal{L} is a CKL-algebra, then $x \rightsquigarrow y \leq g_{a}^{n}(x) \rightsquigarrow g_{a}^{n}(y)$, for any $n \in \mathbb{N}$.
(v) $\operatorname{Im}\left(g_{a}^{n}\right) \subseteq \operatorname{Im}\left(g_{a}^{n-1}\right) \subseteq \cdots \subseteq \operatorname{Im}\left(g_{a}^{2}\right) \subseteq \operatorname{Im}\left(g_{a}\right)$.
(vi) Fix $\left(g_{a}\right) \subseteq \operatorname{Fix}\left(g_{a}^{2}\right) \subseteq \cdots \subseteq \operatorname{Fix}\left(g_{a}^{n}\right)$, where Fix $\left(g_{a}\right):=\left\{x \in \mathcal{L} \mid g_{a}(x)=x\right\}$.
(vii) $\operatorname{ker}\left(g_{a}\right) \subseteq \operatorname{ker}\left(g_{a}^{2}\right) \subseteq \cdots \subseteq \operatorname{ker}\left(g_{a}^{n}\right)$, where $\operatorname{ker}\left(g_{a}\right):=\left\{x \in \mathcal{L} \mid g_{a}(x)=1\right\}$.
(viii) Fix $\left(g_{a}^{n}\right) \subseteq \operatorname{Im}\left(g_{a}^{n}\right)$.
(ix) Fix $\left(g_{a}^{n}\right) \cap \operatorname{ker}\left(g_{a}^{n}\right)=\{1\}$.

Proof. (i) Assume $x, y \in \mathcal{L}$ such that $x \leq y$. Then by Proposition 2.2, $a \rightsquigarrow x \leq a \rightsquigarrow y$ and so $g_{a}(x) \leq g_{a}(y)$.
(ii) Since \mathcal{L} is a $K L$-algebra, by Proposition 2.3 (i), $x \leq a \rightsquigarrow x \leq a \rightsquigarrow(a \rightsquigarrow x) \leq \cdots$. Thus, $x \leq g_{a}(x) \leq g_{a}^{2}(x) \leq \cdots$.
(iii) By Proposition 3.17, the proof is clear.
(iv) By Proposition 2.5(viii), $x \rightsquigarrow y \leq(a \rightsquigarrow x) \rightsquigarrow(a \rightsquigarrow y) \leq(a \rightsquigarrow(a \rightsquigarrow x)) \rightsquigarrow(a \rightsquigarrow(a \rightsquigarrow$
$y)$) $\leq \cdots$. Thus, $x \rightsquigarrow y \leq g_{a}(x) \rightsquigarrow g_{a}(y) \leq g_{a}^{2}(x) \rightsquigarrow g_{a}^{2}(y) \leq \cdots$.
(v) The proof is straightforward.
(vi) Let $x \in \operatorname{Fix}\left(g_{a}\right)$. Then $g_{a}(x)=a \rightsquigarrow x=x$. Also,

$$
g_{a}^{2}(x)=a \rightsquigarrow(a \rightsquigarrow x)=a \rightsquigarrow x=x \quad \text { since } x \in \operatorname{Fix}\left(g_{a}\right)
$$

So, $\operatorname{Fix}\left(g_{a}\right) \subseteq \operatorname{Fix}\left(g_{a}^{2}\right)$.
(vii) Let $x \in \operatorname{ker}\left(g_{a}\right)$. Then $g_{a}(x)=a \rightsquigarrow x=1$. Also,

$$
g_{a}^{2}(x)=a \rightsquigarrow(a \rightsquigarrow x)=a \rightsquigarrow 1=1 \quad \text { by }(\mathrm{L} 1) \text { and since } x \in \operatorname{ker}\left(g_{a}\right)
$$

So, $\operatorname{ker}\left(g_{a}\right) \subseteq \operatorname{ker}\left(g_{a}^{2}\right)$.
(viii) The proof is straightforward.
(ix) Clearly, $\{1\} \subseteq \operatorname{Fix}\left(g_{a}^{n}\right) \cap \operatorname{ker}\left(g_{a}^{n}\right)$. Assume $x \in \operatorname{Fix}\left(g_{a}^{n}\right) \cap \operatorname{ker}\left(g_{a}^{n}\right)$. Then $g_{a}^{n}(x)=x$ and $g_{a}^{n}(x)=1$. Thus $x=1$, and so $\operatorname{Fix}\left(g_{a}^{n}\right) \cap \operatorname{ker}\left(g_{a}^{n}\right) \subseteq\{1\}$.

Proposition 3.23. Let $m \in \operatorname{Mod}(\mathcal{L})$. Then $\operatorname{Fix}(m)=\operatorname{Im}(m)$.
Proof. If $x \in \operatorname{Fix}(m)$, then $x=m(x) \in \operatorname{Im}(m)$, whence $\operatorname{Fix}(m) \subseteq \operatorname{Im}(m)$. Conversely, suppose $y \in \operatorname{Im}(m)$. Then there exists $x \in \mathcal{L}$ such that $m(x)=y$. Since $m \in \mathcal{M o d}(\mathcal{L})$, by $\left(M_{2}\right)$ we have $m(y)=m(m(x))=m(x)=y$. Thus $y \in \operatorname{Fix}(m)$. Hence, $\operatorname{Fix}(m)=\operatorname{Im}(m)$.

Theorem 3.24. If $m \in \operatorname{Mod}(\mathcal{L})$, then $\operatorname{Fix}(m)$ is closed under the operation \rightsquigarrow and so \langle Fix $(m), \rightsquigarrow, 1\rangle$ is an L-algebra.

Proof. Consider $x, y \in \operatorname{Fix}(m)$. Then $m(x)=x$ and $m(y)=y$. Since $m \in \operatorname{Mod}(\mathcal{L})$, by $\left(M_{1}\right)$,

$$
x \rightsquigarrow y \leq m(x \rightsquigarrow y) \leq m(x) \rightsquigarrow m(y)=x \rightsquigarrow y .
$$

Thus, $m(x \rightsquigarrow y)=m(x) \rightsquigarrow m(y)=x \rightsquigarrow y$. So, $x \rightsquigarrow y \in \operatorname{Fix}(m)$. Hence, $\operatorname{Fix}(m)$ is closed under the operation \rightsquigarrow. It is straightforward to $\operatorname{prove}\langle\operatorname{Fix}(m), \rightsquigarrow, 1\rangle$ is an L-algebra.

In the following example we show that $\operatorname{Fix}\left(g_{a}\right)$ and $\operatorname{ker}\left(g_{a}\right)$ are not ideal of \mathcal{L}, in general.
Example 3.25. Let $(\mathcal{L}=\{a, b, c, 1\}, \leq)$ be a poset where $a, b, c \leq 1$. Define the operation \rightsquigarrow on \mathcal{L} in Table 6:

\rightsquigarrow	a	b	c	1
a	1	b	a	1
b	a	1	c	1
c	a	b	1	1
1	a	b	c	1

Table 6
Then $(\mathcal{L}, \rightsquigarrow, 1)$ is an L-algebra. Then $\operatorname{Fix}\left(g_{a}\right)=\{b, 1\}$ is an ideal of \mathcal{L} but $\operatorname{Fix}\left(g_{c}\right)=\{a, b, 1\}$ is not an ideal of \mathcal{L} since $a \in \operatorname{Fix}\left(g_{c}\right)$ and $a \rightsquigarrow c=a \in \operatorname{Fix}\left(g_{c}\right)$, but $c \notin \operatorname{Fix}\left(g_{c}\right)$. So (I_{2}) does not hold.

In addition, $\operatorname{ker}\left(g_{c}\right)=\{c, 1\}$ which is not an ideal of \mathcal{L}, since $c \nprec a \rightsquigarrow c=a$ and so $\left(I_{4}\right)$ does not hold.

Proposition 3.26. If \mathcal{L} is a positive L-algebra, then $\operatorname{ker}\left(g_{a}\right)$ is an ideal of \mathcal{L}.

Proof. By Theorem 3.14, \mathcal{L} is a $C K L$-algebra and so for proving that $\operatorname{ker}\left(g_{a}\right)$ is an ideal of \mathcal{L}, it is enough to show $\left(I_{1}\right)$ and $\left(I_{2}\right)$ hold. For this, clearly, $g_{a}(1)=a \rightsquigarrow 1=1$, by ($L 1$). Thus $1 \in \operatorname{ker}\left(g_{a}\right)$. Assume $x, x \rightsquigarrow y \in \operatorname{ker}\left(g_{a}\right)$. Then $g_{a}(x)=g_{a}(x \rightsquigarrow y)=1$. Since \mathcal{L} is positive, by (L1) we have

$$
1=g_{a}(x \rightsquigarrow y)=a \rightsquigarrow(x \rightsquigarrow y)=(a \rightsquigarrow x) \rightsquigarrow(a \rightsquigarrow y)=1 \rightsquigarrow(a \rightsquigarrow y)=a \rightsquigarrow y .
$$

Hence, $g_{a}(y)=1$ and so $y \in \operatorname{ker}\left(g_{a}\right)$. Therefore, $\operatorname{ker}\left(g_{a}\right)$ is an ideal of \mathcal{L}. \square

Proposition 3.27. If \mathcal{L} is a positive L-algebra, then $\operatorname{Im}\left(g_{a}\right)$, Fix $\left(g_{a}\right)$ and $\operatorname{ker}\left(g_{a}\right)$ are closed under \rightsquigarrow.

Proof. Assume $x, y \in \operatorname{Im}\left(g_{a}\right)$. Then there are $b, c \in \mathcal{L}$ such that $g_{a}(b)=x$ and $g_{a}(c)=y$. Then by (P), we have

$$
x \rightsquigarrow y=g_{a}(b) \rightsquigarrow g_{a}(c)=(a \rightsquigarrow b) \rightsquigarrow(a \rightsquigarrow c)=a \rightsquigarrow(b \rightsquigarrow c)=g_{a}(b \rightsquigarrow c) .
$$

Hence, $x \rightsquigarrow y \in \operatorname{Im}\left(g_{a}\right)$. Also, suppose $x, y \in \operatorname{Fix}\left(g_{a}\right)$. Then $g_{a}(x)=x$ and $g_{a}(y)=y$. Thus by (P), we get

$$
x \rightsquigarrow y=g_{a}(x) \rightsquigarrow g_{a}(y)=(a \rightsquigarrow x) \rightsquigarrow(a \rightsquigarrow y)=a \rightsquigarrow(x \rightsquigarrow y)=g_{a}(x \rightsquigarrow y) .
$$

Hence, $x \rightsquigarrow y \in \operatorname{Fix}\left(g_{a}\right)$. In addition, if $x, y \in \operatorname{ker}\left(g_{a}\right)$, then by (P) and ($L 1$) we have

$$
g_{a}(x \rightsquigarrow y)=a \rightsquigarrow(x \rightsquigarrow y)=(a \rightsquigarrow x) \rightsquigarrow(a \rightsquigarrow y)=g_{a}(x) \rightsquigarrow g_{a}(y)=1 \rightsquigarrow 1=1 .
$$

Hence, $x \rightsquigarrow y \in \operatorname{ker}\left(g_{a}\right)$.

Proposition 3.28. If \mathcal{L} is a positive L-algebra, then for any $a, b \in \mathcal{L}$ we have
(i) $g_{a} \circ g_{b}=g_{b} \circ g_{a}$,
(ii) $g_{a} \circ g_{a}=g_{a}$,
(iii) $g_{1} \circ g_{a}=g_{a}=g_{a} \circ g_{1}$,
(iv) if $a \leq b$, then $g_{b} \leq g_{a}$ and $g_{a} \circ g_{b}=g_{a}$, where $g_{b}(x) \leq g_{a}(x)$, for any $x \in \mathcal{L}$.

Proof. (i) Let $x \in \mathcal{L}$. Then by Theorem 3.14 and (C), we have

$$
\left(g_{a} \circ g_{b}\right)(x)=g_{a}\left(g_{b}(x)\right)=g_{a}(b \rightsquigarrow x)=a \rightsquigarrow(b \rightsquigarrow x)=b \rightsquigarrow(a \rightsquigarrow x)=g_{b}\left(g_{a}(x)\right) .
$$

(ii) Let $x \in \mathcal{L}$. Then by Theorem 3.14, (C) and (L1), we have
$\left(g_{a} \circ g_{a}\right)(x)=g_{a}(a \rightsquigarrow x)=a \rightsquigarrow(a \rightsquigarrow x)=(a \rightsquigarrow a) \rightsquigarrow(a \rightsquigarrow x)=1 \rightsquigarrow(a \rightsquigarrow x)=a \rightsquigarrow x=g_{a}(x)$.
(iii) Assume $x \in \mathcal{L}$. Then by ($L 1$), we have

$$
\left(g_{1} \circ g_{a}\right)(x)=1 \rightsquigarrow(a \rightsquigarrow x)=a \rightsquigarrow x=g_{a}(x) .
$$

(iv) Consider $a \leq b$. Then by Theorem 3.14 and Proposition 2.5(v) we have $b \rightsquigarrow x \leq a \rightsquigarrow x$, and so $g_{b}(x) \leq g_{a}(x)$. Also, for $x \in \mathcal{L}$, if $a \leq b$, then $a \rightsquigarrow b=1$ and by (P) and ($L 1$) we have

$$
\left(g_{a} \circ g_{b}\right)(x)=a \rightsquigarrow(b \rightsquigarrow x)=(a \rightsquigarrow b) \rightsquigarrow(a \rightsquigarrow x)=1 \rightsquigarrow(a \rightsquigarrow x)=a \rightsquigarrow x=g_{a}(x) .
$$

Corollary 3.29. Assume \mathcal{L} is a chain positive L-algebra. Then $\mathcal{G}=\left\{g_{a} \mid a \in \mathcal{L}\right\}$ is a commutative monoid under the composition of mapping with zero element g_{1}.

Proof. By Proposition 3.28, clearly, the composition is commutative, idempotent and has g_{1} as a neutral element. Now, we prove g_{1} is unique. For this, assume there exists $x \in \mathcal{L}$ such that $g_{x} \circ g_{a}=g_{a}$, for all $a \in \mathcal{L}$. Then by Proposition 3.28 (iii) we have

$$
g_{1}=g_{1} \circ g_{x}=g_{x} \circ g_{1}=g_{x} .
$$

So, g_{1} is unique. Now, we prove that the composition is associative. Suppose $a, b, c \in \mathcal{L}$. Since \mathcal{L} is a chain, assume $b \leq c$. Then by Proposition 3.28(iv), $g_{b} \circ g_{c}=g_{b}$, and so $g_{a} \circ\left(g_{b} \circ g_{c}\right)=g_{a} \circ g_{b}$. We have the following cases:
Case 1. If $a \leq b$, then by Proposition 3.28(iv), $g_{a} \circ g_{b}=g_{a}$. On the other side, we have

$$
\left(g_{a} \circ g_{b}\right) \circ g_{c}=g_{a} \circ g_{c}=g_{c},
$$

since $a \leq b \leq c$. So, associativity holds in this case.
Case 2. If $b \leq a$, then by Proposition 3.28(iv), $g_{a} \circ g_{b}=g_{b}$. On the other side, we have

$$
\left(g_{a} \circ g_{b}\right) \circ g_{c}=g_{b} \circ g_{c}=g_{b},
$$

since $b \leq a, c$. So, associativity holds in this case. Hence, in these cases associativity holds. The proof of other case is similar. Therefore, \mathcal{G} is a commutative monoid.

For $a \in \mathcal{L}$, consider a mapping $k_{a}: \mathcal{L} \rightarrow \mathcal{L}$, where for any $x \in \mathcal{L}, k_{a}(x)=x \rightsquigarrow a$.
Proposition 3.30. The following statements hold:
(i) $k_{a}(1)=a$ and $k_{a}(a)=1$, for $a \in \mathcal{L}$.
(ii) If \mathcal{L} is bounded, then $k_{a}(0)=1$ and $k_{0}(a)=a^{\prime}$,
(iii) $k_{1}(x)=1$, for any $x \in \mathcal{L}$,
(iv) if $a \leq b$, then $k_{a} \leq k_{b}$,
(v) if \mathcal{L} is a KL-algebra and $x \leq y$, then $k_{a}(y) \leq k_{a}(x)$, and so $k_{a}(1) \leq k_{a}(b)$, for any $a, b \in \mathcal{L}$.

Proof. The proof is straightforward.

Proposition 3.31. Assume \mathcal{L} is a $C K L$-algebra and $a, x, y \in \mathcal{L}$. Then the following statements hold:
(i) For any natural number $n \in \mathbb{N}$, and $a \in \mathcal{L}$, we have

$$
k_{a}^{n}= \begin{cases}k_{a} & n \text { is odd } \\ k_{a}^{2} & n \text { is even }\end{cases}
$$

where $k_{a}^{n}(x)=(((x \rightsquigarrow \underbrace{a) \rightsquigarrow a) \cdots a}_{n \text {-times }})$.
(ii) $k_{a}^{2}(x) \rightsquigarrow k_{a}(y)=x \rightsquigarrow k_{a}(y)$,
(iii) $y \rightsquigarrow k_{a}^{2}(x)=k_{a}(x) \rightsquigarrow k_{a}(y)$ and $k_{a}^{2}(x) \rightsquigarrow k_{a}^{2}(y)=x \rightsquigarrow k_{a}^{2}(y)$,
(iv) the mapping k_{a}^{2} is isotone.

Proof. By Proposition 2.5, the proof is straightforward.

Theorem 3.32. Consider \mathcal{L} is a $C K L$-algebra, $h \in \mathcal{M o d}(\mathcal{L})$ and $a \in \mathcal{L}$. Then $h \leq k_{a}^{2}$ if and only if $h(a)=a$.

Proof. Assume $h \leq k_{a}^{2}$. Then for any $x \in \mathcal{L}, h(x) \leq k_{a}^{2}(x)$, and so $h(x) \leq(x \rightsquigarrow a) \rightsquigarrow a$. Since $a \in \mathcal{L}$, we have $h(a) \leq(a \rightsquigarrow a) \rightsquigarrow a$, and so by $(L 1), h(a) \leq a$. Also, since $h \in \mathcal{M o d}(\mathcal{L})$, by $\left(M_{1}\right), a \leq h(a)$. Hence, $h(a)=a$.

Conversely, by Proposition 2.5(iii), $x \leq(x \rightsquigarrow a) \rightsquigarrow a$ and since $h \in \operatorname{Mod}(\mathcal{L})$, we get

$$
x \leq(x \rightsquigarrow a) \rightsquigarrow a \Rightarrow h(x) \leq h((x \rightsquigarrow a) \rightsquigarrow a) \quad \text { by Proposition 2.5(iii) and Remark } 3.2 \text { (ii) }
$$

$$
\Rightarrow h(x) \leq h(h(x \rightsquigarrow a) \rightsquigarrow h(a)) \quad \text { by }\left(M_{3}\right) \text { and by Proposition 3.4(i) }
$$

$$
\Rightarrow h(x) \leq(x \rightsquigarrow a) \rightsquigarrow h(a) \quad \text { by Proposition 3.4(ii) }
$$

$$
\Rightarrow h(x) \leq(x \rightsquigarrow a) \rightsquigarrow a \quad \text { since } h(a)=a
$$

Hence, for any $x \in \mathcal{L}, h(x) \leq k_{a}^{2}(x)$, and so $h \leq k_{a}^{2}$.

Theorem 3.33. Let $a \in \mathcal{L}$ where \mathcal{L} is a CKL-algebra. Then the following statements are equivalent:
(i) k_{a}^{2} is an identity map.
(ii) k_{a} is an injective map.
(iii) k_{a} is a surjective map.

Proof. $(i) \Rightarrow(i i)$. Let k_{a}^{2} be an identity map. Let $x, y \in \mathcal{L}$ such that $k_{a}(x)=k_{a}(y)$. Then $x \rightsquigarrow a=y \rightsquigarrow a$, and so

$$
x=k_{a}^{2}(x)=(x \rightsquigarrow a) \rightsquigarrow a=(y \rightsquigarrow a) \rightsquigarrow a=k_{a}^{2}(y)=y .
$$

Hence, k_{a} is an injective map on \mathcal{L}.
(ii) $\Rightarrow($ iii $)$. For any $x, y \in \mathcal{L}$, we have $k_{a}((x \rightsquigarrow a) \rightsquigarrow a)=k_{a}(x)$ by Proposition 2.5 (xii). Since k_{a} is an injective map on \mathcal{L}, it follows that $(x \rightsquigarrow a) \rightsquigarrow a=x$. Moreover, we know that $\operatorname{Im}\left(k_{a}\right) \subseteq \mathcal{L}$. Let $y \in \mathcal{L}$. Then $k_{a}(y \rightsquigarrow a)=(y \rightsquigarrow a) \rightsquigarrow a=y$ and so $y \in \operatorname{Im}\left(k_{a}\right)$. Hence, $\mathcal{L}=\operatorname{Im}\left(k_{a}\right)$. Therefore, k_{a} is a surjective map on \mathcal{L}.
(iii) $\Rightarrow(i)$. Using Proposition 2.5(iii), we have $x \leq(x \rightsquigarrow a) \rightsquigarrow a=k_{a}^{2}(x)$ for any $x \in \mathcal{L}$. Since k_{a} is a surjective map, for any $y \in \mathcal{L}$, there exists $x \in \mathcal{L}$ such that $k_{a}(x)=y$, i.e., $x \rightsquigarrow a=y$. It follows from (C), Proposition 2.5 (xii) and (L1) that

$$
\begin{aligned}
k_{a}^{2}(y) \rightsquigarrow y & =((y \rightsquigarrow a) \rightsquigarrow a) \rightsquigarrow(x \rightsquigarrow a)=x \rightsquigarrow(((y \rightsquigarrow a) \rightsquigarrow a) \rightsquigarrow a) \\
& =x \rightsquigarrow(y \rightsquigarrow a)=y \rightsquigarrow(x \rightsquigarrow a)=y \rightsquigarrow y=1,
\end{aligned}
$$

that is, $k_{a}^{2}(y) \leq y$ for all $y \in \mathcal{L}$. Hence, $k_{a}^{2}(y)=y$ for all $y \in \mathcal{L}$. Therefore, k_{a}^{2} is an identity map.

Theorem 3.34. Assume \mathcal{L} is a CKL-algebra. Then k_{a}^{2} is a modal operator.
Proof. Let $a \in \mathcal{L}$. Then by Proposition 2.5(iii), we have $x \leq(x \rightsquigarrow a) \rightsquigarrow a=k_{a}^{2}(x)$, and so (M_{1}) holds. Also, by Proposition 2.5 (xii) we have

$$
k_{a}^{2}\left(k_{a}^{2}(x)\right)=k_{a}^{2}((x \rightsquigarrow a) \rightsquigarrow a)=(((x \rightsquigarrow a) \rightsquigarrow a) \rightsquigarrow a) \rightsquigarrow a=(x \rightsquigarrow a) \rightsquigarrow a=k_{a}^{2}(x) .
$$

Thus, $\left(M_{2}\right)$ holds. Finally for proving $\left(M_{3}\right)$ we have

$$
\begin{aligned}
& {[((x \rightsquigarrow y) \rightsquigarrow a) \rightsquigarrow a] \rightsquigarrow[((x \rightsquigarrow a) \rightsquigarrow a) \rightsquigarrow((y \rightsquigarrow a) \rightsquigarrow a)] } \\
= & ((x \rightsquigarrow a) \rightsquigarrow a) \rightsquigarrow[(((x \rightsquigarrow y) \rightsquigarrow a) \rightsquigarrow a) \rightsquigarrow((y \rightsquigarrow a) \rightsquigarrow a)] \quad \text { by }(C) \\
= & ((x \rightsquigarrow a) \rightsquigarrow a) \rightsquigarrow[(y \rightsquigarrow a) \rightsquigarrow((((x \rightsquigarrow y) \rightsquigarrow a) \rightsquigarrow a) \rightsquigarrow a)] \quad \text { by }(C) \\
= & ((x \rightsquigarrow a) \rightsquigarrow a) \rightsquigarrow[(y \rightsquigarrow a) \rightsquigarrow((x \rightsquigarrow y) \rightsquigarrow a)] \quad \text { by Proposition 2.5(xii) } \\
= & (y \rightsquigarrow a) \rightsquigarrow[((x \rightsquigarrow a) \rightsquigarrow a) \rightsquigarrow((x \rightsquigarrow y) \rightsquigarrow a)] \quad \text { by }(C) \\
= & (y \rightsquigarrow a) \rightsquigarrow[(x \rightsquigarrow y) \rightsquigarrow(((x \rightsquigarrow a) \rightsquigarrow a) \rightsquigarrow a)] \quad \text { by }(\mathrm{C}) \\
= & (y \rightsquigarrow a) \rightsquigarrow[(x \rightsquigarrow y) \rightsquigarrow(x \rightsquigarrow a)] \quad \text { by Proposition 2.5(xii) } \\
= & (y \rightsquigarrow a) \rightsquigarrow[(y \rightsquigarrow x) \rightsquigarrow(y \rightsquigarrow a)] \quad \text { by (L2) } \\
= & (y \rightsquigarrow x) \rightsquigarrow[(y \rightsquigarrow a) \rightsquigarrow(y \rightsquigarrow a)] \quad \text { by }(\mathrm{C}) \\
= & (y \rightsquigarrow x) \rightsquigarrow 1 \quad \text { by }(\mathrm{L} 1) \\
= & 1 . \quad \text { by }(\mathrm{L} 1)
\end{aligned}
$$

Hence, $((x \rightsquigarrow y) \rightsquigarrow a) \rightsquigarrow a \leq((x \rightsquigarrow a) \rightsquigarrow a) \rightsquigarrow((y \rightsquigarrow a) \rightsquigarrow a)$. Then

$$
k_{a}^{2}(x \rightsquigarrow y)=((x \rightsquigarrow y) \rightsquigarrow a) \rightsquigarrow a \leq((x \rightsquigarrow a) \rightsquigarrow a) \rightsquigarrow((y \rightsquigarrow a) \rightsquigarrow a)=k_{a}^{2}(x) \rightsquigarrow k_{a}^{2}(y) .
$$

Therefore, $k_{a}^{2}(x) \in \operatorname{Mod}(\mathcal{L})$.

Theorem 3.35. Let \mathcal{L} be a CKL-algebra. Then $\operatorname{ker}\left(k_{a}^{2}\right)$ is an ideal of \mathcal{L}.
Proof. Clearly, by ($L 1$), we have

$$
k_{a}^{2}(1)=(1 \rightsquigarrow a) \rightsquigarrow a=a \rightsquigarrow a=1,
$$

thus, $1 \in \operatorname{ker}\left(k_{a}^{2}\right)$. Assume $x, x \rightsquigarrow y \in \operatorname{ker}\left(k_{a}^{2}\right)$. Then

$$
\begin{aligned}
(y \rightsquigarrow a) \rightsquigarrow a & =1 \rightsquigarrow((y \rightsquigarrow a) \rightsquigarrow a) \quad \text { by }(\mathrm{L} 1) \\
& =(((x \rightsquigarrow y) \rightsquigarrow a) \rightsquigarrow a) \rightsquigarrow((y \rightsquigarrow a) \rightsquigarrow a) \quad \text { since } x \rightsquigarrow y \in \operatorname{ker}\left(k_{a}^{2}\right) \\
& =(y \rightsquigarrow a) \rightsquigarrow[(((x \rightsquigarrow y) \rightsquigarrow a) \rightsquigarrow a) \rightsquigarrow a] \quad \text { by }(\mathrm{C}) \\
& =(y \rightsquigarrow a) \rightsquigarrow((x \rightsquigarrow y) \rightsquigarrow a) \quad \text { Proposition 2.5 (xii) } \\
& =(y \rightsquigarrow a) \rightsquigarrow[1 \rightsquigarrow((x \rightsquigarrow y) \rightsquigarrow a)] \quad \text { by }(\text { L1 }) \\
& =(y \rightsquigarrow a) \rightsquigarrow[((x \rightsquigarrow a) \rightsquigarrow a) \rightsquigarrow((x \rightsquigarrow y) \rightsquigarrow a)] \quad \text { since } x \in \operatorname{ker}\left(k_{a}^{2}\right) \\
& =(y \rightsquigarrow a) \rightsquigarrow[(x \rightsquigarrow y) \rightsquigarrow(((x \rightsquigarrow a) \rightsquigarrow a) \rightsquigarrow a)] \quad \text { by }(\mathrm{C}) \\
& =(y \rightsquigarrow a) \rightsquigarrow[(x \rightsquigarrow y) \rightsquigarrow(x \rightsquigarrow a)] \quad \text { Proposition 2.5(xii) } \\
& =(x \rightsquigarrow y) \rightsquigarrow[(y \rightsquigarrow a) \rightsquigarrow(x \rightsquigarrow a)] \quad \text { by }(\text { C }) \\
& =1 . \quad \operatorname{Proposition~2.5(vii)~}
\end{aligned}
$$

Hence, $k_{a}^{2}(y)=(y \rightsquigarrow a) \rightsquigarrow a=1$, and so $y \in \operatorname{ker}\left(k_{a}^{2}\right)$. Therefore, $\operatorname{ker}\left(k_{a}^{2}\right)$ is an ideal of \mathcal{L}.

Proposition 3.36. Assume \mathcal{L} is a $K L$-algebra. If \mathcal{I} and \mathcal{J} are two ideals of \mathcal{L} such that $\mathcal{I} \cap \mathcal{J}=\{1\}$, then $k_{x}^{2}(y)=k_{y}^{2}(x)=1$ for all $x \in \mathcal{I}$ and $y \in \mathcal{J}$.

Proof. Let \mathcal{I} and \mathcal{J} be two ideals of \mathcal{L} such that $\mathcal{I} \cap \mathcal{J}=\{1\}$. Suppose $x \in \mathcal{I}$ and $y \in \mathcal{J}$. By $\left(I_{3}\right)$, we have $(x \rightsquigarrow y) \rightsquigarrow y \in \mathcal{I}$ and by Proposition 2.3, $y \leq(x \rightsquigarrow y) \rightsquigarrow y$, and so $(x \rightsquigarrow y) \rightsquigarrow y \in \mathcal{J}$. Then $(x \rightsquigarrow y) \rightsquigarrow y \in \mathcal{I} \cap \mathcal{J}=\{1\}$, and so $k_{y}^{2}(x)=1$. By the similar way we can prove that $k_{x}^{2}(y)=1$.

We define the implication \rightarrow on $\mathcal{R}(\mathcal{L})=\left\{k_{a} \mid a \in \mathcal{L}\right\}$ as follows:

$$
\rightarrow: \mathcal{R}(\mathcal{L}) \times \mathcal{R}(\mathcal{L}) \rightarrow \mathcal{R}(\mathcal{L}), \quad \rightarrow\left(k_{a}, k_{b}\right) \mapsto k_{a}(x) \rightsquigarrow k_{b}(x) .
$$

If \mathcal{L} is a positive L-algebra, then, we have

$$
\left(k_{a} \rightarrow k_{b}\right)(x)=k_{a}(x) \rightsquigarrow k_{b}(x)=(x \rightsquigarrow a) \rightsquigarrow(x \rightsquigarrow b)=x \rightsquigarrow(a \rightsquigarrow b)=k_{a \rightsquigarrow b}(x) .
$$

Hence, $k_{a} \rightarrow k_{b} \in \mathcal{R}(\mathcal{L})$.
Note. Define an order " \lessdot " on $\mathcal{R}(\mathcal{L})$ as follows:
For any $k_{a}, k_{b} \in \mathcal{R}(\mathcal{L})$

$$
k_{a} \leq k_{b} \Leftrightarrow\left(k_{a} \rightarrow k_{b}\right)(x)=k_{1}(x),
$$

for all $x \in \mathcal{L}$.
Obviously, if \mathcal{L} is a positive L-algebra, then $(\mathcal{R}(\mathcal{L}), \leq)$ is a partially ordered set. Since

$$
\left(k_{a} \rightarrow k_{a}\right)(x)=k_{a}(x) \rightsquigarrow k_{a}(x)=(x \rightsquigarrow a) \rightsquigarrow(x \rightsquigarrow a)=1=x \rightsquigarrow 1=k_{1}(x) .
$$

So, \leq is reflexive. Also, if $k_{a} \leq k_{b}$ and $k_{b} \leq k_{a}$, then

$$
\begin{aligned}
& k_{a}(a) \leq k_{b}(a) \Rightarrow a \rightsquigarrow a=1 \leq a \rightsquigarrow b \Rightarrow a \rightsquigarrow b=1 \Rightarrow a \leq b, \\
& k_{b}(b) \leq k_{a}(b) \Rightarrow b \rightsquigarrow b=1 \leq b \rightsquigarrow a \Rightarrow b \rightsquigarrow a=1 \Rightarrow b \leq a,
\end{aligned}
$$

and so $a=b$. Thus, $k_{a}=k_{b}$. Now, if $k_{a} \leq k_{b}$ and $k_{b} \leq k_{c}$, then for any $x \in \mathcal{L}$ we have $x \rightsquigarrow a \leq x \rightsquigarrow b$ and $x \rightsquigarrow b \leq x \rightsquigarrow c$. Thus $x \rightsquigarrow a \leq x \rightsquigarrow c$. Hence, $k_{a} \leq k_{c}$. Therefore, $(\mathcal{R}(\mathcal{L}), \leq)$ is a partially ordered set.

Theorem 3.37. If \mathcal{L} is a positive L-algebra, then $\left(\mathcal{R}(\mathcal{L}), \rightarrow, k_{1}\right)$ is a dual BCK-algebra.
Proof. The proof is clear, see [10].

Conclusion

In this paper, the notion of modal operators on L-algebras is introduced and some important properties of this operator are investigated. In order for the kernel of modal operator to be ideal, what conditions are required, is investigated. Relations between modal operator and endomorphism of L-algebras are studied. Also, notion of positive L-algebra is defined and a characterization of positive L-algebra is established. Finally, it is shown a map k_{a} is a modal operator and it was proved that the set of all k_{a} on a positive L-algebra makes a dual BCK-algebra.

4. Acknowledgments

The authors are very indebted to the editor and anonymous referees for their careful reading and valuable suggestions which helped to improve the readability of the paper.

References

[1] M. Aaly Kologani, Some results on L-algebars, Soft Comput., to appear.
[2] R. A. Borzooei and S. Khosravi Shoar, Impliation algebras are equivalent to the dual implicative BCKalgebras, Sci. Math. Jpn., 63 No. 3 (2006) 371-373.
[3] L. C. Ciungu, Results in L-algebras, Algebra Univers., 82 No. 7 (2021) 1-18.
[4] L. C. Ciungu, The Category of L-algebras, TFSS, 1 No. 2, (2022) 142-159.
[5] L. C. Ciungu, Quantifiers on L-algebras, Math. Slovaca., 72 No. 6 (2022) 1403-1428.
[6] V. G. Drinfeld, On Some Unsolved Problems in Quantum Group Theory, In: P.P. Kulish (Ed.), Quantum Groups (Leningrad, 1990), Lecture Notes in Mathematics, Vol. 1510, Springer, Berlin, 1992.
[7] M. Harlenderová and J. Rachůnek, Modal operators on MV-algebras, Math. Bohem., 131 (2006) 39-48.
[8] M. Kondo, Modal operators on commutative residuated lattices, Math. Slovaca., 61 (2011) 1-14.
[9] D. S. Macnab, Modal operators on Heyting algebras, Algebra Univers., 12 (1981) 5-29.
[10] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa Co, Seoul, Korea, 1994.
[11] J. Rachůnek and D. Salounová, Modal operators on bounded commutative residuated Rl-monoids, Math. Slovaca., 57 (2007) 321-332.
[12] W. Rump, L-algebras, self-similarity, and ℓ-groups, J. Algebra, 320 (2008) 2328-2348.
[13] W. Rump, A general Glivenko theorem, Algebra Univers., 61 (2009) 455-473.
[14] W. Rump and Y. Yang, Interval in ℓ-groups as L-algebras, Algebra Univers., 67 No. 2 (2012) 121-130.
[15] Y. L. Wu, J. Wang and Y. C. Yang, Lattice-ordered effect algebras and L-algebras, Fuzzy Sets Syst., 369 (2019) 103-113.
[16] Y. L. Wu and Y. C. Yang, Orthomodular lattices as L-algebras, Soft Comput., 24 (2020) 14391-14400.

Mona Aaly Kologani

Hatef Higher Education Institute,
Zahedan, Iran.
mona4011@gmail.com

