Algebraic Structures and Their Applications

Algebraic Structures and Their Applications Vol． 10 No． 2 （2023）pp 99－105．

Research Paper

CHARACTERIZATION OF $\operatorname{Alt}(5) \times \mathbb{Z}_{p}$ ，WHERE $p \in\{17,23\}$ ，BY THEIR PRODUCT ELEMENT ORDERS

HAMIDEH RASHIDI＊AND MOHAMMAD ETEZADI

Abstract

We denote the integer $\prod_{g \in G} o(g)$ by $\psi^{\prime}(G)$ where $o(g)$ denotes the order of $g \in G$ and G is a finite group．In 14］，it was proved that some finite simple group can be uniquely determined by its product of element orders．In this paper，we characterize $\operatorname{Alt}(5) \times \mathbb{Z}_{p}$ ，where $p \in\{17,23\}$ ，by their product of element orders．

1．Introduction and Preliminary Results

Throughout this article all groups are finite．The function $\psi(G)=\sum_{g \in G} o(g)$ was introduced in［1］．It was proved that a cyclic group of order n can be uniquely determined by the value of ψ and the order n ．

In［13］，the authors proved that $\operatorname{Alt}(5)$ and $\operatorname{PSL}(2,7)$ are characterized by the above parameters．In［3］，M．Baniasad Azad and B．Khosravi showed that $\operatorname{PSL}(2, p)$ ，where

[^0]MSC（2010）：Primary：20D60．
Keywords：Finite group，Hall subgroup，Product of element orders，Solvable group．
Received： 19 May 2022，Accepted： 24 February 2023.
＊Corresponding author
$p \in\{11,13,17,19,23,29,37,61\}$, are determined by their orders and the sum of element orders. Interesting papers on the function $\psi(G)$ are [2, 4, 5, 6, 10]. We refer to [11] for details about element orders in a finite group.

In 16], Marius Tărnăuceanu introduced the function $\psi^{\prime}(G)=\prod_{g \in G} o(g)$. In [14], the following general question was proposed: What information about a group G can be obtained from $\psi^{\prime}(G)$? In $[8]$, it was shown that $\psi^{\prime}(G)<\psi^{\prime}\left(\mathbb{Z}_{n}\right)$, where G is a non-cyclic group of order n. In 14$]$, it was proved that $\operatorname{PSL}(2,7)$ and $\operatorname{PSL}(2,11)$ are determined by their product of element orders, and also it was proved that $\operatorname{Alt}(5)$ and $\operatorname{PSL}(2,13)$ are determined by the value of ψ^{\prime} and the order. In [15], it was proved that $\operatorname{Alt}(5) \times \mathbb{Z}_{2}$ is determined by its order product of element orders.

In this paper, we characterize $\operatorname{Alt}(5) \times \mathbb{Z}_{p}$, where $p \in\{17,23\}$, by their product of element orders.

Throughout this paper, we denote the set of all prime divisors of n by $\pi(n)$; the Euler totient function by $\varphi(n)$; the number of elements of order n by s_{n}; the set of element orders of G by $\omega(G)$ and the largest power of r that divides n by n_{r}, where r is a prime number.

By 14], we have the following equalities:

$$
\begin{align*}
\psi^{\prime}(G) & =\prod_{i \in \omega(G)} i^{s_{i}} \tag{1}\\
|G| & =\sum_{i \in \omega(G)} s_{i} . \tag{2}
\end{align*}
$$

Lemma 1.1. [7] Let G be a finite group and let m be a positive integer dividing $|G|$. If $L_{m}(G)=\left\{g \in G \mid g^{m}=1\right\}$, then $m\left|\left|L_{m}(G)\right|\right.$.

By the above lemma, if m is a divisor of $|G|$, then

$$
\begin{align*}
& \varphi(m) \mid s_{m} \tag{3}\\
& m \mid \sum_{d \mid m} s_{d} \tag{4}
\end{align*}
$$

Lemma 1.2. [8, Theorem 3] Let G be a finite group of order n. Then, $\psi^{\prime}(G) \leq \psi^{\prime}\left(\mathbb{Z}_{n}\right)$ with equality if and only if G is cyclic.

Lemma 1.3. [9] An integer $n=p_{1}{ }^{\alpha_{1}} \cdots p_{k}{ }^{\alpha_{k}}$ is a number of Sylow p-subgroups of a finite solvable group G if and only if $p_{i}{ }^{\alpha_{i}} \equiv 1(\bmod p)$ for $i=1, \cdots, k$.

Lemma 1.4. [12, Corollary 1.6] Let $H \leq G$ be a subgroup, where G is a finite group. Then, the total number of distinct conjugates of H in G, counting H itself, is $\left|G: N_{G}(H)\right|$.

Lemma 1.5. 14] If $H \leqslant G$, then $\psi^{\prime}(H) \mid \psi^{\prime}(G)$.

Lemma 1.6. 14 , Lemma 7] If $\psi^{\prime}(G)=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \cdots p_{k}{ }^{\alpha_{k}}$, where $k \in \mathbb{N}$, then
(1) $\pi(G)=\left\{p_{1}, p_{2}, \cdots, p_{k}\right\}$,
(2) $|G| \leq 1+\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}$, with equality if and only if G is a group having only elements of prime order.

Lemma 1.7. 16, Proposition 1.1] Let $G_{1}, G_{2}, \ldots, G_{k}$ be finite groups having coprime orders. Then,

$$
\psi^{\prime}\left(G_{1} \times G_{2} \times \cdots \times G_{k}\right)=\prod_{i=1}^{k} \psi^{\prime}\left(G_{i}\right)^{n_{i}}, \quad \text { where } \quad n_{i}=\prod_{\substack{j=1 \\ j \neq i}}^{k}\left|G_{i}\right|, i=1,2, \ldots, k
$$

Lemma 1.8. 17, Lemma 1] Let G be a non-solvable group. Then G has a normal series $1 \unlhd H \unlhd K \unlhd G$ such that K / H is a direct product of isomorphic non-abelian simple groups and $|G / K|||\operatorname{Out}(K / H)|$.

2. The Main Results

Theorem 2.1. If G is a group such that $|G|=1020=2^{2} \cdot 3 \cdot 5 \cdot 17$ and $\psi^{\prime}(G)=2^{255} \cdot 3^{340}$. $5^{408} \cdot 17^{960}$, then $G \cong \mathbb{Z}_{17} \times \operatorname{Alt}(5)$.

Proof. First, we show that G is a non-solvable group. On the contrary, let G be a solvable group. Therefore, G has a Hall subgroup H of order $3 \cdot 5 \cdot 17=255$. Since $(\varphi(|H|),|H|)=1$, we conclude that the subgroup H is cyclic. Thus, $s_{3 \cdot 5 \cdot 17} \neq 0$, and $s_{3 \cdot 5 \cdot 17}=\varphi(3 \cdot 5 \cdot 17) k=128 k$, where $k \in \mathbb{N}$. If $k>2$, then we have the number

$$
\underbrace{3^{170} \cdot 5^{204} \cdot 17^{240}}_{\psi^{\prime}\left(\mathbb{Z}_{255}\right)} 255^{256}
$$

must divide $\psi^{\prime}(G)$. Therefore, $3^{170+256}$ divides 3^{340}, which is a contradiction. Hence, $k \leq 2$, and so $\left|G: N_{G}(H)\right| \leq 2$. We have $H \unlhd G$. Let $P_{3} \in \operatorname{Syl}_{3}(H), P_{5} \in \operatorname{Syl}_{5}(H)$ and $P_{17} \in \operatorname{Syl}_{17}(H)$. Since H is a cyclic subgroup, we have P_{3} ch G, P_{5} ch G and P_{17} ch G, and so $s_{3}=2, s_{5}=4$ and $s_{17}=16$. Using (3) and (4) , we have

$$
\begin{aligned}
& 15 \mid 1+s_{3}+s_{5}+s_{15} \\
& 51 \mid 1+s_{3}+s_{17}+s_{51} \\
& 85 \mid 1+s_{5}+s_{17}+s_{85} \\
& 255 \mid 1+s_{3}+s_{5}+s_{17}+s_{15}+s_{51}+s_{85}+s_{255}
\end{aligned}
$$

Therefore, we obtain that $s_{3}=2, s_{5}=4, s_{17}=16, s_{15}=8, s_{51}=32, s_{85}=64$ and $s_{255}=128$.

By Lemma 1.2, we have $s_{1020}=0$. Since $\psi^{\prime}\left(\mathbb{Z}_{510}\right)=2^{255} \cdot 3^{340} \cdot 5^{408} \cdot 17^{480}$, we obtain that $s_{510}=0$. If $s_{340} \neq 0$, then $\psi^{\prime}\left(\mathbb{Z}_{340}\right)=2^{425} \cdot 5^{272} \cdot 17^{320}$, which is a contradiction since $\psi^{\prime}\left(\mathbb{Z}_{340}\right)_{2}>\psi^{\prime}(G)_{2}$. On the other hand, we have

$$
408=s_{5}+s_{10}+s_{15}+s_{20}+s_{30}+s_{60}+s_{85}+s_{170}+s_{255} .
$$

Therefore,

$$
s_{10}+s_{20}+s_{30}+s_{60}+s_{170}=480-4-8-64-128=276 .
$$

Finally, the number $2^{s_{10}+s_{20}+s_{30}+s_{60}+s_{170}}=2^{276}$ must divide 2^{255}, which ia a contradiction. We conclude that G in not solvable.

Therefore, G is not solvable and, by Lemma 1.8, G has a normal series $1 \unlhd A_{1} \unlhd A_{2} \unlhd G$ such that $A_{2} / A_{1} \cong \operatorname{Alt}(5)$ and $\left|G / A_{2}\right|\left|\left|\operatorname{Out}\left(A_{2} / A_{1}\right)\right|\right.$. We conclude that G is an extension of \mathbb{Z}_{17} by $\operatorname{Alt}(5)$. Hence, G is a central extension of A_{1} by Alt(5). Since the Shur multiplier of $\operatorname{Alt}(5)$ is 2 , we get that $G \cong \mathbb{Z}_{17} \times \operatorname{Alt}(5)$.

Theorem 2.2. If G is a group such that $\psi^{\prime}(G)=2^{255} \cdot 3^{340} \cdot 5^{408} \cdot 17^{960}$, then $G \cong \mathbb{Z}_{17} \times \operatorname{Alt}(5)$.
Proof. By Lemma 1.6, we obtain $\pi(G)=\{2,3,5,17\}$ and $|G| \leqslant 1+255+340+408+906=1964$, and so $|G|=510=2 \cdot 3 \cdot 5 \cdot 17$ or $|G|=1020=2^{2} \cdot 3 \cdot 5 \cdot 17$ or $|G|=1530=2 \cdot 3^{2} \cdot 5 \cdot 17$.
(1) Let $|G|=510=2 \cdot 3 \cdot 5 \cdot 17$. By Lemma 1.2, we get a contradiction, because $\psi^{\prime}\left(\mathbb{Z}_{510}\right)=$ $2^{255} \cdot 3^{340} \cdot 5^{408} \cdot 17^{480}$.
(2) Let $|G|=1020=2^{2} \cdot 3 \cdot 5 \cdot 17$. Using Theorem 2.1, we have $G \cong \mathbb{Z}_{510} \times \operatorname{Alt}(5)$.
(3) Let $|G|=1530=2 \cdot 3^{2} \cdot 5 \cdot 17$. We have G is a solvable group. Therefore, G has a Hall subgroup H of order $3^{2} \cdot 5 \cdot 17$. We see that $n_{3}=n_{5}=n_{17}=1$. Therefore, $H \cong \mathbb{Z}_{3^{2} \cdot 5 \cdot 17}$ or $H \cong \mathbb{Z}_{3} \times \mathbb{Z}_{3 \cdot 5 \cdot 17}$. Hence,

$$
\begin{aligned}
& \psi^{\prime}\left(\mathbb{Z}_{3^{2} \cdot 5 \cdot 17}\right)=3^{1190} \cdot 5^{612} \cdot 17^{720} \\
& \psi^{\prime}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3 \cdot 5 \cdot 17}\right)=3^{680} \cdot 5^{612} \cdot 17^{720}
\end{aligned}
$$

which is a contradiction.
The proof is now complete.

Theorem 2.3. If G is a group such that $|G|=1380=2^{2} \cdot 3 \cdot 5 \cdot 23$ and $\psi^{\prime}(G)=2^{345} \cdot 3^{460}$. $5^{552} \cdot 23^{1320}$, then $G \cong \mathbb{Z}_{23} \times \operatorname{Alt}(5)$.

Proof. If G is solvable, then G has a subgroup H of order 345. Thus, $s_{345} \neq 0$, and $s_{345}=$ $\varphi(345) k=176 k$, where $k \in \mathbb{N}$. If $k>2$, then, $\psi^{\prime}\left(\mathbb{Z}_{345}\right) 345^{352}=3^{230} \cdot 5^{276} \cdot 23^{330} 345^{352}$ must
divide $\psi^{\prime}(G)$, which is a contradiction. Hence, $k \leq 2$, and similarly by the proof of Theorem 2.1, we obtain that $s_{3}=2, s_{5}=4$ and $s_{23}=22$. Using (3) and (4), we have

$$
\begin{array}{cl}
15 \mid 1+s_{3}+s_{5}+s_{15}, & 69 \mid 1+s_{3}+s_{23}+s_{69} \\
115 \mid 1+s_{5}+s_{23}+s_{115}, & 345 \mid 1+s_{3}+s_{5}+s_{23}+s_{15}+s_{69}+s_{115}+s_{345}
\end{array}
$$

Thus, $s_{3}=2, s_{5}=4, s_{23}=22, s_{15}=8, s_{69}=44, s_{115}=88$ and $s_{345}=176$.
We can see $s_{1380}=s_{690}=s_{460}=0$. On the other hand, we have

$$
1320=s_{23}+s_{46}+s_{69}+s_{92}+s_{115}+s_{138}+s_{230}+s_{276}+s_{345} .
$$

Therefore, the number $2^{s_{46}+s_{92}+s_{138}+s_{230}+s_{276}}=2^{990}$ must divide 2^{345}, which ia a contradiction.
Therefore, G is not solvable and by Lemma 1.8, G has a normal series $1 \unlhd A_{1} \unlhd A_{2} \unlhd G$ such that $A_{2} / A_{1} \cong \operatorname{Alt}(5)$ and $\left|G / A_{2}\right|\left|\left|\operatorname{Out}\left(A_{2} / A_{1}\right)\right|\right.$. We conclude that G is an extension of \mathbb{Z}_{23} by Alt(5). Hence, G is a central extension of A_{1} by Alt(5). Since the Shur multiplier of Alt(5) is 2 , we get that $G \cong \mathbb{Z}_{23} \times \operatorname{Alt}(5)$.

Theorem 2.4. If G is a group such that $\psi^{\prime}(G)=2^{345} \cdot 3^{460} \cdot 5^{552} \cdot 23^{1320}$, then $G \cong \mathbb{Z}_{23} \times \operatorname{Alt}(5)$.
Proof. By Lemma 1.6, we obtain $\pi(G)=\{2,3,5,23\}$ and $|G| \leqslant 2678$, and so $|G| \in$ $\{690,1380,2070\}$. By Lemma 1.2, and $\psi^{\prime}\left(\mathbb{Z}_{690}\right)=2^{345} \cdot 3^{460} \cdot 5^{552} \cdot 23^{660}$, we have $|G| \neq 690$. If $|G|=2070$, then G is solvable. Thus, G has a subgroup H of order $3^{2} \cdot 5 \cdot 23$. We see that $n_{3}=n_{5}=n_{23}=1$. Therefore, $H \cong \mathbb{Z}_{3^{2} \cdot 5 \cdot 23}$ or $H \cong \mathbb{Z}_{3} \times \mathbb{Z}_{3 \cdot 5 \cdot 23}$. Hence,

$$
\psi^{\prime}\left(\mathbb{Z}_{3^{2} \cdot 5 \cdot 23}\right)=3^{1610} \cdot 5^{828} \cdot 23^{990}, \quad \psi^{\prime}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3 \cdot 5 \cdot 23}\right)=3^{920} \cdot 5^{828} \cdot 23^{990}
$$

which is a contradiction. Hence, $|G|=1380=2^{2} \cdot 3 \cdot 5 \cdot 23$. Using Theorem 2.1, we have $G \cong \mathbb{Z}_{23} \times \operatorname{Alt}(5)$. The proof is now complete.

Proposition 2.5. Let $|G|=60, \psi^{\prime}(G)_{2}=2^{15}$ and $\psi^{\prime}(G)_{5}=2^{24}$. Then, $G \cong \operatorname{Alt}(5)$.
Proof. If G is a non-solvable group, then we get the result. If G is a solvable group, then by Lemma 1.3, $n_{3} \in\{1,4\}$ and $n_{5}=1$. Therefore, $s_{3} \in\{2,8\}$ and $s_{5}=4$.

By (3) and (4), $15 \mid 1+s_{3}+s_{5}+s_{15}$ and so $s_{3}=2, s_{5}=4$ and $s_{15}=8$. Since $\psi^{\prime}\left(\mathbb{Z}_{20}\right)=2^{25} 5^{16}$, we get a contradiction. If $s_{30} \neq 0$, then $\psi^{\prime}\left(\mathbb{Z}_{30}\right)=2^{15} 3^{20} 5^{24}$ and so $s_{3}=20$, which is a contradiction.

Since $\psi^{\prime}(G)_{2}=2^{24}$, we conclude that $s_{10}=12$. We know that G has a Sylow 2-subgroup P. If $P \cong \mathbb{Z}_{4}$, then $\psi^{\prime}\left(\mathbb{Z}_{4}\right) 10^{s_{10}}$ divides $\psi^{\prime}(G)$, which is a contradiction.

If $P \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, then we obtain that $n_{2}=1$, and consequently $G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{30}$, which is a contradiction.

References

[1] H. Amiri, S. M. Jafarian Amiri and I. M. Isaacs, Sums of element orders in finite groups, Comm. Algebra, 37 No. 9 (2009) 2978-2980.
[2] M. Baniasad Azad and B. Khosravi, A criterion for solvability of a finite group by the sum of element orders, J. Algebra, 516 (2018) 115-124.
[3] M. Baniasad Azad and B. Khosravi, On the sum of element orders of $\operatorname{PSL}(2, p)$ for some p, Ital. J. Pure Appl. Math., 2 (2019) (18-24).
[4] M. Baniasad Azad and B. Khosravi, On two conjectures about the sum of element orders, Can. Math. Bull., 65 No. 1 (2022) 30-38.
[5] M. Baniasad Azad and B. Khosravi, A criterion for p-nilpotency and p-closedness by the sum of element orders, Commun. Algebra, 48 No. 12 (2020) 5391-5395.
[6] M. Baniasad Azad and B. Khosravi, Properties of finite groups determined by the product of their element orders, Bull. Aust. Math. Soc., 103 No. 1 (2020) 88-95.
[7] G. Frobenius, Verallgemeinerung des Sylow'schen Satzes, Königlich Preussische Akademie der Wissenschaften, Berlin, 1895.
[8] M. Garonzi and M. Patassini, Inequalities detecting structural properties of a finite group, Comm. Algebra, 45 No. 2 (2017) 677-687.
[9] P. Hall, A note on soluble groups, J. Lond. Math. Soc., 3 (2017) 98-105.
[10] M. Herzog, M. Longobardi and M. Maj, Two new criteria for solvability of finite groups, J. Algebra, 511 (2018) 215-226.
[11] M. Herzog, P. Longobardi and P. Maj, Properties of Finite and Periodic Groups Determined by Their Element Orders (A Survey), Group theory and computation, Springer, Berlin, 2018.
[12] I. M. Isaacs, Finite Group Theory, American Mathematical Soc., 2008.
[13] S. M. Jafarian Amiri, Characterization of A_{5} and $\operatorname{PSL}(2,7)$ by sum of element orders, Int. J. Group Theory, 2 No. 2 (2013) 35-39.
[14] B. Khosravi and M. Baniasad Azad, Recognition by the product element orders, Bull. Malays. Math. Sci. Soc., 37 No. 9 (2019) 1-11.
[15] S. F. Mousavi, A. Gilani, M. Alaeiyan and M. Golriz, A characterization by the product element orders for some groups, Journal of Information and Optimization Sciences, 41 No. 4 (2020) 1133-1139.
[16] M. Tărnăuceanu, A note on the product of element orders of finite abelian groups, Bull. Malays. Math. Sci. Soc., 36 No. 4 (2013) 1123-1126.
[17] H. Xu, G. Chen and Y. Yan, A new characterization of simple K_{3}-groups by their orders and large degrees of their irreducible characters, Comm. Algebra, 42 No. 12 (2014) 5374-5380.

Hamideh Rashidi

Department of Mathematics, Faculty of Science
University of Jiroft, , Jiroft, Iran.
rashidi.hamidehh@gmail.com

Mohammad Etezadi

Department of Mathematics, Faculty of Science
Emam Ali University, Tehran, Iran
muhammad.etezadi@gmail.com

[^0]: DOI：10．22034／as． 2023.3010

