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RESULTS ON GENERALIZED DERIVATIONS IN PRIME RINGS

HAFEDH M. ALNOGHASHI, FAEZ A. ALQARNI AND NADEEM UR REHMAN∗

Abstract. A prime ring S with the centre Z and generalised derivations that meet certain

algebraic identities is considered. Let’s assume that Ψ and Φ are two generalised derivations

associated with ψ and φ on S, respectively. In this article, we examine the following identities:

(i) Ψ(a)b−aΦ(b) ∈ Z, (ii) Ψ(a)b− bΦ(a) ∈ Z, (iii) Ψ(a)a− bΦ(b) ∈ Z, (iv) Ψ(a)a−aΦ(b) ∈ Z,

(v) Ψ(a)a− bΦ(a) ∈ Z, for every a, b ∈ J, where J is a non-zero two sided ideal of S. We also

provide an example to show that the condition of primeness imposed in the hypotheses of our

results is essential.

1. Introduction

Let S be a ring with center Z. For any a, b ∈ S the symbol (a ◦ b) [a, b] denotes the (anti-)
commutator (ab+ ba) ab− ba. If aSb = (0) (where a, b ∈ S) implies a = 0 or b = 0, a ring S is
said to be a prime ring. The non-zero central elements of a prime ring are not zero divisors.
We let Qr = Qr(S) (resp. Ql = Ql(S)) denote the right (resp. left) Martindale ring of quotient
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of S. We define the symmetric Martindale ring of quotient of S as Qs = Qs(S). The extended
centroid of S is denoted by the ring C. The ring SC is referred to as the S central closure. It
is known that S ⊆ SC ⊆ Qs ⊆ Qr ( and Ql). If S is a prime ring, it is obvious that SC, Qs,
Qr (and Ql) are also prime rings. For further information, we suggest the reader to the book
[6]. An additive mapping ψ : S → S is said to be a derivation, if ψ(ab) = ψ(a)b+ aψ(b) holds
for every a, b ∈ S. An additive mapping Ψ : S → S is said to be a generalized derivation, if
there exists a derivation ψ : S → S such that Ψ(ab) = Ψ(a)b+ aψ(b) holds for every a, b ∈ S.

As a result, each derivation is a generalised derivation.
The relationship between the commutativity of a prime ring S and the behaviour of a

derivation or extended derivation on S has attracted continued research. Posner [19] initiated
the study of such mappings, and he established the relationship between the commutativity
of a prime ring S. In [15], Herstein demonstrated that S is commutative if ψ is a non-zero
derivation of S and [ψ(a), ψ(b)] = 0 for every a, b ∈ S, where S is a 2-torsion free prime ring.
After that, Daif [11] improved this result for ideal of semi-prime ring. A semi-prime ring S must
be commutative, according to Daif and Bell’s proof in [12], if it admits a derivation ψ such that
[ψ(a), ψ(b)]± [a, b] = 0 for every a, b ∈ S. This classical theorem was extended to include the
class of generalised derivations by Bell and Rehman in [7]. Later, many authors have studied
the action of such types of mappings as derivations, generalized derivations, skew derivations
etc. on semi-prime and prime (rings) ideals in different directions. (see [3, 4, 5, 16, 21, 22]
where references can be found).

Recently many authors viz. [13, 2] and [14, Theorem 3.4] have gained commutativity of semi-
prime and prime rings with derivations satisfying certain algebraic identities. Motivated by
these results, in the present article we shall explore the commutativity of ring S satisfying any
one of the properties Ψ(a)b−aΦ(b) ∈ Z, Ψ(a)b−bΦ(a) ∈ Z, Ψ(a)a−bΦ(b) ∈ Z, Ψ(a)a−aΦ(b) ∈
Z, Ψ(a)a− bΦ(a) ∈ Z, for every a, b ∈ J, where J is a non-zero ideal of S. We also provide an
example to demonstrate that the hypothesis of primeness imposed in our results is essential.

2. Preliminaries

We will make use of the following fundamental identities that apply to every a, b, c ∈ S

without explicitly mentioning them:

[ab, c] = a[b, c] + [a, c]b,

[a, bc] = b[a, c] + [a, b]c.

Facts 2.1, 2.2, and 2.3 can be verified easily.

Fact 2.1. Let S be a prime ring and a ∈ S. If {az, z} ⊆ Z, then a ∈ Z or z = 0.
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Fact 2.2. Let S be a prime ring and J be a non-zero ideal of S. If for a, b ∈ S and aJb = (0),

then a = 0 or b = 0. In particular, if aJ = (0), then a = 0, also if Jb = (0), then b = 0,

Fact 2.3. Let S be a prime ring and J a non-zero ideal of S. Suppose that S admits generalized
derivation Ψ with associated derivations ψ. If Ψ(a) = 0 for every a ∈ J, then Ψ(a) = 0 for
every a ∈ S, that is Ψ = 0.

Fact 2.4. [2, Lemma 2.2] If a prime ring S contains a commutative non-zero ideal, then S is
commutative.

Fact 2.5. [1, Lemma 2.5] Let S be a prime ring and J be a non-zero ideal of S such that

(i) [a, b] ∈ Z for every a, b ∈ J ; or
(ii) (a ◦ b) ∈ Z for every a, b ∈ J,

then S is commutative.

Fact 2.6. [10] Let S be a prime ring and J a non-zero ideal of S. Then, S, J, and Qr (resp.
Ql) satisfy the same generalized polynomial identities with coefficients in Qr (resp. Ql).

Fact 2.7. [18, Theorem 3] Let S be a prime ring, then the following statements hold:

(i) Every generalized derivation of S can be uniquely extended to Qr (and Ql).
(ii) Every derivation of S can be uniquely extended to Qr (and Ql). Since every derivation

is generalized derivation, it follows from (i).

Fact 2.8. [8, Lemma 2] Let S be a prime ring and Ψ : S → SC be an additive map satisfying
Ψ(ab) = Ψ(a)b (resp. Ψ(ab) = aΨ(b)) for every a, b ∈ S. Then there exists q ∈ Qr ( resp.
q ∈ Ql ) such that Ψ(a) = qa (resp. Ψ(a) = aq) for every a ∈ S.

Fact 2.9. [17, Theorem L] Let S be a prime ring with a derivation ψ, J a left ideal of S and
n,m two positive integers. Suppose that [ψ(am), am]n = 0 for every x ∈ J. Then either ψ = 0

or S is commutative.

In [17, Theorem 2], they worked on a non-zero left ideal, but we will take a special case,
when J is a non-zero ideal of S, as follows:

Fact 2.10. [17, Theorem 2] Let S be a prime ring, J a non-zero ideal of S, ψ a deriva-
tion of S, and mi fixed positive integers, where i ∈ {1, ..., 4}. If [ψ(am1)am2 , am3 ]m4 = 0

([am1ψ(am2), am3 ]m4 = 0) for every a ∈ J, then ψ = 0 or S is commutative.

3. The Main Result

Theorem 3.1 (Main theorem). Let S be a prime ring and J a non-zero ideal of S. Assume
that S admit generalized derivations Ψ and Φ with associated derivations ψ and φ, respectively.
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(1) If Ψ(a)b± aΦ(b) ∈ Z for every a, b ∈ J, then
(i) S is commutative or
(ii) Ψ(a) = aq with ψ(a) = [a, q] and Φ(a) = ±qa with φ = 0 for every a ∈ J and

some q ∈ Qs.

(2) S is commutative or Ψ = Φ = 0 if, for every a, b ∈ J, satisfies any one of the following
(i) Ψ(a)b± bΦ(a) ∈ Z,

(ii) Ψ(a)a± bΦ(b) ∈ Z,

(iii) Ψ(a)a± aΦ(b) ∈ Z,

(iv) Ψ(a)a± bΦ(a) ∈ Z.

We need some auxiliary lemmas in order to prove our main theorem.

Throughout this section, S is a prime ring and J a non-zero ideal of S such that S admit
generalized derivations Ψ and Φ with associated derivations ψ and φ, respectively.

Lemma 3.2. If Ψ(a)b− aΦ(b) ∈ Z for every a, b ∈ J, then

(i) S is commutative or
(ii) Ψ(a) = aq with ψ(a) = [a, q] and Φ(a) = qa with φ = 0 for every a ∈ J and some

q ∈ Qs.

Proof. Assume that

Ψ(a)b− aΦ(b) ∈ Z(1)

for every a, b ∈ J. Replacing b by bw in (1), where w ∈ J, we have

(Ψ(a)b− aΦ(b))w − abφ(w) ∈ Z.(2)

for every a, b, w ∈ J. Using (1) in (2), we get [abφ(w), w] = 0. Putting a = b = w in the last
relation, we obtain w2[φ(w), w] = 0, and so φ = 0 or S is commutative, by Fact 2.10. In case
S is commutative, as desired. Now, in case

φ = 0,(3)

as desired. Now, by using (3) in (2), we see that (Ψ(a)b− aΦ(b))w ∈ Z, and by using (1) and
Fact 2.1 in the last relation, we find that Ψ(a)b− aΦ(b) = 0 or w ∈ Z. If w ∈ Z, then J ⊆ Z,

hence S is commutative, by Fact 2.4. Now, if

Ψ(a)b− aΦ(b) = 0(4)

for every a, b ∈ J. Then by [9, p. 200], there exists q ∈ Qs such that

Ψ(a) = aq(5)
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for every a ∈ J and

Φ(a) = qa(6)

for every a ∈ J. On other hand, from definition of Ψ, we have Ψ(ab) = Ψ(a)b+ aψ(b), and by
using (5) in the last relation, we arrive at abq = aqb + aψ(b), that is, a(bq − qb − ψ(b)) = 0,

hence J(bq−qb−ψ(b)) = (0), thus bq−qb−ψ(b) = 0, by Fact 2.2, this implies that ψ(b) = [b, q]

for every b ∈ J and some q ∈ Qs, as desired.

Corollary 3.3. If φ ̸= 0 and Ψ(a)b− aΦ(b) ∈ Z for every a, b ∈ J, then S is commutative.

Lemma 3.4. If Ψ(a)b− bΦ(a) ∈ Z for every a, b ∈ J, then S is commutative or Ψ = Φ = 0.

Proof. Assume that

Ψ(a)b− bΦ(a) ∈ Z(7)

for every a, b ∈ J.

Case (I): Suppose that J ∩Z ̸= (0). Replacing b by z in (7), where 0 ̸= z ∈ J ∩Z, we have
Ψ(a)−Φ(a) ∈ Z, by Fact 2.1, that is, (Ψ−Φ)(a) ∈ Z. Putting H = Ψ−Φ with φ = ψ− φ in
the last relation, we get

H(a) ∈ Z(8)

for every a ∈ J. Note that H is a generalized derivation of S with associated derivation φ.

Now, replacing a by ab in (8), where b ∈ J, we obtain

H(a)b+ aφ(b) ∈ Z(9)

for every a, b ∈ J. By using (8) in (9), we see that [aφ(b), b] = 0. Putting a = b in the last
relation, we find that b[φ(b), b] = 0, hence φ = 0 or S is commutative, by Fact 2.10. In case
S is commutative, as desired. Now, in case φ = 0. Using the last relation in (9), we conclude
that

H(a)b ∈ Z.(10)

for every a, b ∈ J. By using (8) in (10) and by Fact 2.1, we get H(a) = 0 or b ∈ Z. If b ∈ Z

for every b ∈ J, then J ⊆ Z, and by using Fact 2.4 in the last relation, we see that S is
commutative. Now, in case H(a) = 0, then H = 0, by Fact 2.3, that is, Ψ− Φ = 0, hence

Ψ = Φ.(11)

Using (11) in (7), we obtain Ψ(a)b− bΨ(a) ∈ Z, and so

[Ψ(a), b] ∈ Z(12)
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for every a, b ∈ J. Replacing b by Ψ(a)b in (12), we get Ψ(a)[Ψ(a), b] ∈ Z, and by using (12)
and Fact 2.1 in the last expression, we have Ψ(a) ∈ Z or [Ψ(a), b] = 0. Note that Ψ(a) ∈ Z if
and only if [Ψ(a), b] = 0, and so

Ψ(a) ∈ Z(13)

for every a ∈ J. Now, the same as in Eq. (8), we get S is commutative or Ψ = 0. In case S
is commutative, as desired. Now, in case Ψ = 0. Using the last relation in (11), we arrive at
Ψ = Φ = 0, as desired.

Case (II): Suppose that J ∩Z = (0). Since a, b ∈ J in (7) and by using the our assumption
in Case (II), we get

Ψ(a)b− bΦ(a) = 0(14)

for every a, b ∈ J. Left multiplying (14) by t, where t ∈ J, we have

tΨ(a)b− tbΦ(a) = 0(15)

for every t, a, b ∈ J. Replacing b by tb in (14), where t ∈ J, we see that

Ψ(a)tb− tbΦ(a) = 0(16)

for every t, a, b ∈ J. Subtracting (15) from (16), we obtain Ψ(a)tb − tΨ(a)b = 0 this implies
that (Ψ(a)t− tΨ(a))b = 0, and so (Ψ(a)t− tΨ(a))J = (0) and by Fact 2.2, we conclude that
Ψ(a)t− tΨ(a) = 0, hence [Ψ(a), t] = 0, that is,

Ψ(a) ∈ Z(R).(17)

Now, the same as in Eq. (13), we get S is commutative or Ψ = 0. In case S is commutative,
as desired. Now, in case Ψ = 0, as desired. On other hand, since Ψ = 0, and by using the last
relation in (14), gives bΦ(a) = 0, that is, JΦ(a) = (0) and by Fact 2.2, we find that Φ(a) = 0,

and by Fact 2.3, we get Φ = 0, as desired.

Lemma 3.5. If Ψ(a)a− bΦ(b) ∈ Z for every a, b ∈ J, then S is commutative or Ψ = Φ = 0.

Proof. Assume that

Ψ(a)a− bΦ(b) ∈ Z(18)

for every a, b ∈ J. Putting b = 0 in (18), we get

Ψ(a)a ∈ Z(19)

for every a ∈ J. By linearizing (18), we obtain

Ψ(a)b+Ψ(b)a ∈ Z(20)
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for every a, b ∈ J.

Case (I): Suppose that J ∩ Z ̸= (0). From (20), we have

[Ψ(a)b+Ψ(b)a, s] = 0(21)

for every a, b, s ∈ J. Replacing b by bs in (21), we see that

[Ψ(a)bs+Ψ(bs)a, s] = 0(22)

for every a, b, s ∈ J. Right multiplying (21) by s, we find that

[Ψ(a)bs−Ψ(b)as, s] = 0(23)

for every a, b, s ∈ J. Comparing (22) and (23), we infer that

[Ψ(bs)a−Ψ(b)as, s] = 0

for every a, b, s ∈ J. It implies that

[Ψ(b)sa+ bψ(s)a−Ψ(b)as, s] = 0

for every a, b, s ∈ J. That is,
[Ψ(b)[s, a] + bψ(s)a, s] = 0

for every a, b, s ∈ J. Putting a = z in the last relation, where 0 ̸= z ∈ J ∩ Z, we deduce that
[bψ(s), s]z = 0 for every b, s ∈ J. Since the non-zero central elements of a prime ring are not
zero divisors, we get [bψ(s), s] = 0 for every b, s ∈ J. Again, putting b = z in the last relation,
where 0 ̸= z ∈ J ∩ Z, we have z[ψ(s), s] = 0 for every s ∈ J. It follows that [ψ(s), s] = 0 for
every s ∈ J, and by Fact 2.9, we get ψ = 0 or S is commutative. In case S is commutative, as
desired. Now, if ψ = 0, then from definition of Ψ, we obtain Ψ(ab) = Ψ(a)b, and by Fact 2.8,
we see that

Ψ(a) = qa(24)

for every a ∈ J and some q ∈ Qr. Using (24) in (19), we find that qa2 ∈ Z. Putting a = z

in the last relation, where 0 ̸= z ∈ J ∩ Z, we arrive at qz2 ∈ Z. That is [qz2, t] = 0 for every
t ∈ S. Hence z2[q, r] = 0 for every r ∈ S, and by using Fact 2.6 in the last relation, we deduce
that z2[q, t] = 0 for every t ∈ Qr. Since z ̸= 0, we have [q, t] = 0 for every t ∈ Qr. That is

q ∈ C.(25)

Now, from (20), we obtain
[Ψ(a)b+Ψ(b)a, t] = 0

for every t ∈ S and a, b ∈ J. Using Facts 2.6 and 2.7 in the last relation, we get

[Ψ(a)b+Ψ(b)a, t] = 0
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for every a, b, t ∈ Qr. That is
Ψ(a)b+Ψ(b)a ∈ C

for every a, b ∈ Qr. Using (24) in the last relation, we see that qab + qba ∈ C, it implies that
q(a ◦ b) ∈ C, and by using (25) and Fact 2.1 in the last relation, we get two cases: a ◦ b ∈ C

or q = 0. In case a ◦ b ∈ C, then by Fact 2.5(ii), we obtain Qr is commutative, hence S is
commutative, as desired. Now, assume that R is not commutative. Now, in case q = 0, then
from (24), we get Ψ(a) = 0 and by Fact 2.3, we obtain Ψ = 0.

Now, we will prove that Φ = 0 . Using (19) in (18), we have

bΦ(b) ∈ Z(26)

for every b ∈ J. Putting b = z in (26), where 0 ̸= z ∈ J ∩ Z, and by Fact 2.1, we find that

Φ(z) ∈ Z.(27)

By linearizing (26), we obtain

aΦ(b) + bΦ(a) ∈ Z(28)

for every a, b ∈ J. From (28), we have

[aΦ(b) + bΦ(a), s] = 0(29)

for every a, b, s ∈ J. Replacing b by sb in (29), we see that

[aΦ(sb) + sbΦ(a), s] = 0(30)

for every a, b, s ∈ J. Left multiplying (29) by s, we find that

[saΦ(b) + sbΦ(a), s] = 0(31)

for every a, b, s ∈ J. Subtracting (31) from (30), we infer that

[aΦ(sb)− saΦ(b), s] = 0

for every a, b, s ∈ J. Putting b = a = z in the last relation, where 0 ̸= z ∈ J ∩ Z, we deduce
that

[zΦ(zs)− szΦ(z), s] = 0

for every s ∈ J. That is
[zΦ(z)s+ z2φ(s)− szΦ(z), s] = 0

for every s ∈ J. Using (27) in the last relation, we arrive at [z2φ(s), s] = 0 for every s ∈ J.

Hence z2[φ(s), s] = 0, and so [φ(s), s] = 0, and by using Fact 2.9 in the last relation, we get
φ = 0 or S is commutative. But, R is not commutative as in assumption, and so φ = 0. By
using the last relation in definition of Φ, we obtain Φ(ab) = Φ(a)b, and by Fact 2.8, we see
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that Φ(a) = qa for every a ∈ J and some q ∈ Qr. Now, the same as in (24), we get S is
commutative or Φ = 0. But R is not commutative, and so Φ = 0, as desired.

Case (II): Suppose that J ∩ Z = (0). Using this assumption in (19), we deduce that

Ψ(a)a = 0(32)

for every a ∈ J. By linearizing (32), we obtain

Ψ(a)b+Ψ(b)a = 0.(33)

for every a, b ∈ J. Replacing b by ab in (33) and using (32), we get

Ψ(ab)a = 0.(34)

for every a, b ∈ J. Again, replacing b by ba in (34), we have

0 = Ψ(aba)a = (Ψ(ab)a+ abψ(a))a

for every a, b ∈ J. Using (34) in the last relation, we see that abψ(a)a = 0 this implies that
ψ(a)abψ(a)a = 0 which leads to ψ(a)aJψ(a)a = (0), so ψ(a)a = 0, that is [ψ(a)a, a] = 0, thus
[ψ(a), a]a = 0, hence ψ = 0 or S is commutative, by Fact 2.10. In case S is commutative,
as desired. Now, if ψ = 0. Then by using (34) and definition of Ψ in (34), we infer that
Ψ(a)ba = 0 so Ψ(a)Ja = (0) this implies that Ψ(a) = 0 or a = 0. But J ̸= 0, and so Ψ(a) = 0,

and by Fact 2.3, we get

Ψ = 0,(35)

as desired. Now, putting a = 0 in (18) and since J ∩ Z = (0), we get

bΦ(b) = 0.(36)

b ∈ J. By linearizing (36), we get

aΦ(b) + bΦ(a) = 0.(37)

a, b ∈ J. Replacing a by ab in (37) and using (36), we deduce that

bΦ(ab) = 0.(38)

a, b ∈ J. Replacing a by ab in (38), we obtain 0 = bΦ(abb) = (bΦ(ab))b+ babφ(b), and by using
(38) in the last relation, we infer that 0 = babφ(b). Again, replacing a by b in the last relation,
this gives 0 = b3φ(b), and so b3[φ(b), b] = 0, hence φ = 0 or S is commutative, by Fact 2.10. S
is commutative, as desired. Now, if φ = 0. Then by using definition of Φ in (38), we find that

bΦ(a)b = 0.(39)
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a, b ∈ J. Right multiplying (37) by b, we get

aΦ(b)b+ bΦ(a)b = 0

a, b ∈ J. Using (39) in the last relation, we have aΦ(b)b = 0, that is, JΦ(b)b = (0) and since
J ̸= 0 we obtain

Φ(b)b = 0.(40)

b ∈ J. By linearizing (40), then

Φ(a)b+Φ(b)a = 0.(41)

a, b ∈ J. Replacing a by ba in (41) and using (40), we get Φ(ba)b = 0 and since φ = 0 we get
Φ(b)ab = 0, that is, Φ(b)Jb = (0), and so Φ(b) = 0 or b = 0. Since J ̸= 0, we deduce Φ(b) = 0,

and by Fact 2.3 we obtain Φ = 0, as desired.

Lemma 3.6. If Ψ(a)a− aΦ(b) ∈ Z for every a, b ∈ J, then S is commutative or Ψ = Φ = 0.

Proof. Assume that

Ψ(a)a− aΦ(b) ∈ Z(42)

for every a, b ∈ J. Putting b = 0 in (42), we get

Ψ(a)a ∈ Z(43)

for every a ∈ J. In case J ∩ Z ̸= (0) or J ∩ Z = (0) using the same trick in Lemma 3.5 in
Eq. (19) or (32) respectively, we get S is commutative or Ψ = 0. In case S is commutative,
as desired. Now, in case Ψ = 0, as desired. On other hand, using fact that Ψ = 0 in (42), we
have

aΦ(b) ∈ Z.(44)

for every a, b ∈ J.

Case (I): Suppose that J ∩ Z ̸= (0). Replacing a by z in (44), where 0 ̸= z ∈ J ∩ Z, we
see that zΦ(b) ∈ Z so Φ(b) ∈ Z, and by using the last relation in (44), we find that a ∈ Z

or Φ(b) = 0, by Fact 2.1. If a ∈ Z, for every a ∈ J, then J ⊆ Z, hence S is commutative by
Fact 2.4. Now, if Φ(b) = 0, then by Fact 2.3, we obtain Φ = 0, as desired.

Case (II): Suppose that J ∩ Z = (0). Using this assumption in (44), we get aΦ(b) = 0, so
JΦ(b) = (0) and by using Fact 2.2 in the last relation, we find that Φ(b) = 0, and by Fact 2.3,
we infer that Φ = 0, as desired.

Lemma 3.7. If Ψ(a)a− bΦ(a) ∈ Z for every a, b ∈ J, then S is commutative or Ψ = Φ = 0.
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Proof. See the proof of Lemma 3.6.

We provide an example to demonstrate that the primeness requirement in our results is not
unnecessary.

Example 3.8. Let S =


 a b

0 c

 : a, b, c ∈ Z

 and J =


 0 b

0 0

 : b ∈ Z

 . We have

S is a ring and J is a non-zero ideal of S. Define Ψ = 0 = ψ and Φ = φ : S → S by

φ

 a b

0 c

 =

 0 b

0 0

 is a (generalized) derivation of S. All the identities of all our results

are satisfied on J, but S is non-commutative and is not prime with Φ ̸= 0 ̸= φ. So the condition
of primeness is essential.
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