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ABSTRACT. The main objective of this study is to introduce Sheffer stroke Ro—algebra (for
short, SRo— algebra). Then it is stated that the axiom system of a Sheffer stroke Ro—algebra
is independent. It is indicated that every Sheffer stroke Ro—algebra is Ro—algebra but spe-
cific conditions are necessarily for the inverse. Afterward, various ideals of a Sheffer stroke
Rop—algebra are defined, a congruence relation on a Sheffer stroke Ro—algebra is determined
by the ideal and quotient Sheffer stroke Ro—algebra is built via this congruence relation. It is
proved that quotient Sheffer stroke Rg—algebra constructed by a prime ideal of this algebra is
totally ordered and the cardinality is less than or equals to 2. After all, important conclusions
are obtained for totally ordered Sheffer stroke Ro—algebras by applying various properties of

prime ideals.
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1. INTRODUCTION

The notion of lattice implication algebras was introduced and some properties were exam-
ined by Xu [21]. Also, he and Qin presented implicative filters of these algebraic structures and
researched some their properties [22]. Then Turunen gave the concept of Boolean deductive
system, i.e., Boolean filter of BL-algebras which is the algebraic structure of Hajek’ s Basic
Logic [4]. Esteva and Godo introduced MTL-algebras which are the algebraic structures of
monoidal t-norm based logic, IMTL-algebras as an extension of MTL-algebras, and so, NM-
algebras as an extension of IMTL-algebras [3]. Ro—algebras were introduced by Wang who
suggested a formal deductive system £* for fuzzy propositional calculus ([L15], [19] and [20]).
Besides, Pei and Wang showed that NM-algebras are categorically isomorphic to Rg—algebras
[14]. Jun and Liu investigated some filters of Rop—algebras and stated that Ro—algebras is
contributes to the development of the theory of MTL-algebras [5]. Tough these new algebraic
structures are different from BL-algebras, lattice implication algebras and MTL-algebras, all
these algebras have the implication operator —. Therefore, BL-algebras and lattice implica-
tion algebras can be generalized to Rg—algebras.

The Sheffer stroke (or Sheffer operation) was first introduced by H. M. Sheffer [16]. Since
any Boolean formulae or axiom can be stated by means of this operation [(], it draws many
researchers’ attention. The most important application is to have all diods on the chip forming
processor in a computer. Thus, it is simpler and cheaper than to produce different diods for
other Boolean operations. Since Sheffer stroke is a commutative, applying to many logical al-
gebras leads to many useful results, and it reducts axiom systems of many algebraic structures.
Hence, we replace unary and binary operations with the binary operation called Sheffer stroke.
Recently, the mathematicians has widely investigated algebraic structures with Sheffer stroke
such as Sheffer stroke non-associative MV-algebras[2], Sheffer stroke BL-algebras and (fuzzy)
filters [9], filters of strong Sheffer stroke non-associative MV-algebras [10], Sheffer stroke UP-
algberas [12], Sheffer stroke Hilbert algebras [11] and (fuzzy) filters [13]. There also exist
authentic studies on Sheffer stroke algebras such as representations of strongly algebraically
closed algebras [[], Visser algebras [§], and a shortest 2-basis for Boolean algebra in terms of
the Sheffer stroke [[18]. Thus, applying Sheffer stroke to Rg—algebra provides to obtain more
useful system which has fewer axioms.

The setup scheme of the manuscript is as below. In the first section, the historical back-
gorund and current studies of mentioned structures are presented. In the second section, the
basic definitions and notions using throughout the study are presented. In the second sec-
tion, basic definitions and concepts using throughout the manuscript are given. In the third
section, Rg—algebras with Sheffer stroke are introduced. In the fourth section, various ideals

of these new algberaic structures are defined. In the fifth section, a congruence relation on
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these algebras is described by means of an ideal. Then quotient Sheffer stroke Ro—algebras are
constructed by this relation, and totally ordered Sheffer stroke Ro—algebras are defined. Also,
related concepts are examined, and these results are supported with illustrative examples. In
the last section, the conclusions are summarized in detail. Since these conclusions are new and
novel in literature, the manuscript contributes to pure mathematics regarding Rg—algebras,

Sheffer operation and abstract algebra.

2. Preliminaries

In this section, we give basic definitions and notions about Sheffer stroke and Rg—algebras.

Definition 2.1. [} Let M = (M,|) be a groupoid. The operation | is said to be a Sheffer
stroke if it satisfies the following conditions:

(S1) zly = ylz,

(52) (ala)|(ely) = o,

(33) 2l((412)|(y12)) = (&) (z]y)) 2,

(S4) (z[((z[x)|(y[v))|(2|((2]2)[(yly))) = =,

for all z,y,z € M.

Definition 2.2. [19] Let M be a (-, A, V,—)—type algebra, where — is a unary operation,
A, V and — are binary operations. If there is a partial order < on M, such that (M, <) is a
bounded distributive lattice, A, V are infimum and supermum operations with respect to <,

- is an order-reversing involution with respect to <, and the following conditions hold for any

)1 —z=zx,0— =1,
Jy—rz2<(z—ry) — (. — 2),
Rz — (y—2) =y — (x — 2),
Jx—(yVz)=(x—y)Vx—2),z— (yAz)=(x — y) A (x — 2),
R6) (z —y)V((z —y) — (rzVy)) =1
where 1 is the largest element of M, then M is called a Ro—algebra.

Proposition 2.3. [19] Let M be a Ry—algebra. Then for all x,y,z € M
(P1) z <y if and only if v — y =1,

(P2) x <y — z if and only ify < x —> z,

(P3) (zVy) —z=(@x—2)AN(y—2), (xA\y) — z=(r — 2)V (y — 2),
(P4) Ifx <y, thenz —ax<z—yandy — z<x —> 2,

(P5) x — y > -z Vy,

(P6) (x —y)V(y —z)=Lavy=((z—y) —y Ay —2z) — ),
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(P7)x— (y —2x)=1, 20— (—z —y) =1,

(P8) x —y<(zVz)—(yVz),z —y<(zAz)— (yAz),

(P9) z — y < (x — 2)V(z —vy),

(P10) If x <y, thenx @ z <y ® z,

(Pll)z@y —z=2— (y —2),c — (y — xzRy) =1,

(P12) 2@ -z =0,1®x ==z,

(P13) 2™ = 22 for alln > 2,

(P14) (xVy)" =z" Vy" for alln € N

where x @y = —(x — —y), 2" is inductively defined as follows: z' = x, 2" = 2F @ 2, for
all k € N.

Proposition 2.4. [14] Let M be a Ry—algebra. Then —x = x — 0, for all x,y,z € M.

3. Sheffer stroke Rg—algebras
In this section, we introduce Sheffer stroke Ry—algebras and present some of properties.

Definition 3.1. A Sheffer stroke Rgp—algebra (briefly, SRo—algebra) is an algebra
(M,V,A,1],0,1) of type (2,2,2,0,0) satisfying the following properties for all z,y,z € M:
(SR1) z[(z|z) =1,

(SR2) yl(z]2) < (el(wly)I(](212))] (#](z]2))),

(SR3) al((y v 2)I(y v 2)) = (2l(yly)) V (&1(=]2)) and al((y A 2)I(y A 2)) = (2l(yly)) A (@](=12)),
where (M, <) is a bounded distributive lattice, V, A are supremum and infimum with respect
to <, and | is Sheffer stroke on M.

Moreover, 1 = 0|0 is the greatest element and 0 = 1|1 is the least element of M.
Proposition 3.2. The azxioms (SR1)-(SR3) are independent.

Proof. (1) Consider a set M = {0,1/2,1} with the Cayley tables in Table 1. Then (SR2) and
(SR3) hold while (SR1) does not, since 1/2[1(1/2]11/2) =1/2 # 1.

TABLE 1. Operation tables for independency of (SR1)

L |0 1/2 1 Vil 0 1/2 1 A0 172 1
01 1 1 00 1/2 1 00 0 0
/211 1/2 0 1/21/2 1/2 1 1/210 1/2 1/2
11 0 0 11 1 1 110 1/2 1

(2) Consider a set M = {0,1/2,1} with the Cayley tables in Table 2. Then (SR1)
and (SR3) hold but (SR2) does not, because 1/2]3(0[20) = 1/2 > 0 = 1]2(0/20) =
(1]2(1/2[21/2))|2((1]2(0]20))]2(1]2(0]20))).
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TABLE 2. Operation tables for independency of (SR2)

b |0 1/2 1 Vo | 0 1/2 1 Ay |0 1/2 1
01 1 1 00 1/2 1 00 0 0
/211 0 1/2 1/21/2 1/2 1 /210 1/2 1/2
1 (1 1/2 o0 11 1 1 1o 1/2 1

(3) Consider a set M = {0,1/2,1} with Cayley tables in Table 3. Then (SR1) and (SR2) hold

69

whereas (SR3) does not, since 1|((1/2A31)[(1/2A31)) =0 # 1 = (1]3(1/2]31/2)) A3 (1|3(1|31)).

0

TABLE 3. Operation tables for independency of (SR3)

I3 |0 1/2 1 Vs | 0 1/2 1 Az |0 1/2 1
01 1 1 00 1/2 1 00 0 0
1/2/1 0 0 1/211/2 1/2 1 1/210 1/2 0
111 0 0 11 1 1 110 0 1

Example 3.3. Consider a set M = {0,a,b, 1} with

FIGURE 1. Hasse diagram for M

The binary operations |, V and A on M have the Cayley tables in Table 4:
Then this structure is a SRg—algebra.

Example 3.4. Consider a set M = {0,a,b,c,d, e, f,1} with
The binary operations |, V and A on M have the Cayley tables in Table 5:
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TABLE 4. Cayley tables of the binary operations |, V and A on M

|10 a b 1 VIO a b 1 ANlO a b 1
01111 0/0 a b 1 0/(0 0 0 O
all b 1 b ala a 1 1 a|0 a 0 a
bl 1 a a b|b b 1 b0 0 b b
111 b a 0O 11 1 11 110 a b 1

FI1GURE 2. Hasse diagram for M

Then this structure is a SRg—algebra.

Lemma 3.5. Let (M,V,A,]|,0,1) be a SRy—algebra. Then
(1) =|((yl(z]2))[(w](2]2))) = yl((z|(2]2))|(z](2]2))).
2) 1|(z|z) = =,
3 a:\(l\l) =1,
4 z|(yly),
5 D|(z|]1) = =,
6) (zly)l(zly) <z and (z]y)|(zly) <y,
)|
z|1

Qﬁ

:c|

X

~—~~

)
)
)
)
)
7) 1=
8) ) =1,
9) x < (z[y)ly,

)

)

)

)

)

)

)

—_

X

7

X

(
(
(
(
(
(
(
(

AI/\’\

10) z <y < z|(yly) =1,
<yl(zlz) &y < z|(z]2),
12) If x <y, then y|z < z|z and z|(z|z) < z|(y|y),

(
(
(
(13) z vy < (z[z)|(y[y),
(
(
(

8 8

11

~

14) =[((y|(z[x))|(y|(z[x))) = 1,
15) z <y < yly < x|z,
16) if x <y and z < t, then y|t < z|z,



Alg. Struc. Appl. Vol. 10 No. 2 (2023) 65-85.

TABLE 5. Cayley tables of the binary operations |, V and A
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Proof. The properties (1) through (20) follow from (S1)-(S3), Definition 3.1 and each other.
(21) It is known that z < (z[(yly))|(yly) and y < (z[(yly))|(yly) from (9) and (4), re-

spectively. Then (z|(y|y))|(y|ly) is an upper bound of x and y.

Let z,y < z.

Thus,
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([ (yly)I(wly) < Cll)lyly) = (Yl(z]2))I(z]z) = 1](z]z) = 2 from (12), (20) and (2), re-

spectively. Hence, (x|(y|y))|(y|y) is a supremum of x and y, i.e.,, x Vy = (z|(y|y))|(y|y). In a
|

similar way, = Ay = (z[(z[(y|y)))(x|(2|(y]y)))-
(22)

(@[(yly)) v (yl(zlz)) = ((=|

([ wly )| (Yl le) [l (el2))) (] (el2)) [yl (z]2)))

(I () [l Yl () [ yly))DDIY] ) (] (z]e)))
= (Wl ([2)[((yl(z]2)[(yl(z]2)))

=1

from (21), (1), (S1), (S2) and (SR1), respectively.
(23)

([(yly)) v ((@|(yly)[(((z]z) vV )l ((z]x) V y)))
= (([(ly) (@Il ((z]x) v )l (@) v DIyl () v y)[(@]z)v
YN[l () v )l ((lz) vV o)) ly)[((2lz) v y)l((zlz) v y))))
= ([l YN ly) | @ ly)DI (@) v y)l((@le) v y)))]
(@I ly)I((z]x) v o)l ((lz) V)l yly)(((z]z) v y)l () V y))))
= (([(yly)(((2|) v y)l((elz) v )] (yly) | (((2]2)
Vy)l((zlz) v o)) I(([(yly)[(((l) v o)l ((z]z) v y))))

=1

from (21), (S3), (S2) and (SR1), respectively.
(24) It is known from (9) that z|y < ((z]y)|y)|y. Since

(I ly)(ly) = (Wl wly))I((x]y)(z]y))
(@) (zly)I((x]y)|(=]y))

|
Yyl )I((z]y)] (z[y))

from (1)-(3), (20), (S1), (S2) and (SR1), it follows from (10) that ((z|y)|y)|y < z|y. Thus,
zly = ((zly)ly)ly-
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(25)

(@[(z[2)I(2](2]2))) V ((y](z12))](y](2]2))

= (Wl(z[2DI((y](z]2)((2](2]2))] (z[(2]2))))

= ((z[(2]2)) A (yl(z[2))|((2|(2]2)) A (y](2]2)))

= (((zl2)[(([2)[ (z]))) A (12) 1@l Wly)DI(El2)[(@le)](l2) A ()1l Y)))
= ((212)[(((lz) A (yly)I((lz) A Gly))I2)1(@le) A ly)(@l) A (yly)

= ((12)I((y[(z]))|(2|2)))|((z]2)[((y|(z]2))[ (z]x)))

= () [ly ) Wy Yl YlY))

= ((z v y)l(z[2)|((z Vy)I(2]2))

from (20), (21), (S1), (S2) and (SR3).

Theorem 3.6. Let (M,V,A,|,0,1) be a SRy—algebra. If x — y := z|(yly) and -z := x|z,
then (M,V,\,—~,—>,1) is a Ry—algebra.

Proof. Tt is obvious that (M, <) is a bounded distributive lattice, V, A are supremum and
infimum with respect to <, and 1 is the greatest element of M. Also, — is an order-reversing
involution with respect to < from Lemma 3.5 (15).

(R1): =z — —y = (z[2)[((y[¥)|(yly)) = yl(z|z) = y — @ from (S1) and (52).

(R2): 1 — z = 1|(z|z) = v and * — = = z|(z|r) = 1 from Lemma 3.5 (2) and (SR1),
respectively.

(R3): y — 2z = yl(z[2) < (2l(yly)I((z](z]2))[(z[(2]2))) = (2 — y) — (z — 2) from
(SR2).

(Rd): z — (y — 2) = z[((yl(z]2)[(W](2]2))) = yl((x[(z|2))](z](z]2))) =y — (& — 2)
from Lemma 3.5 (1).

(R5): & — (y v 2) = zl((y v 2)|(y V 2)) = (2|(yly)) V (z[(2]2)) = (x — y) V (x — 2) and
similarly x — (y A z) = (x — y) A (x —> z) from (SR3).

(R6): (z — y)V((z — y) — (~2vy)) = (@|(yly) v ([ (yly))(z]z)vy)|((z]z)vVy))) =1
from Lemma 3.5 (23).

Example 3.7. Given the SRyg—algebra M in Example 3.3. Then a Rg—algebra defined by
the SRg—algebra has the Cayley tables in Table 6.

Theorem 3.8. Let (M,V,\,—,—, 1) be a Ry—algebra such that —~x = x — —x and (r —
y) — x =z forallx,y € M. If x|y .=z — -y, then (M,V,A,|,0,1) is a SRy—algebra.
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TABLE 6. Cayley tables of the binary operations —, V and A on M in Example 3.7

— 10 a b 1 V{0 a b 1 A0 a b 1
0|1 1 11 0[{0 a b 1 0[{0 0 0 O
a |[b 1 b 1 ala a 1 1 a|l0 a 0 a
b |la a 1 1 b|lb 1 b 1 b0 0 b b
1 10 a b 1 171 1 11 110 a b 1

Proof. Tt is clear that (M, <) is a bounded distributive lattice, V and A are supremum and
infimum with respect to <.

It is firstly shown that | is Sheffer stroke on M.

Sl zly=2 — w=2 —(y — 0 =y — (. — 0) =y — -z = ylr from
Proposition 2.4 and (R4).

(82): (2l2)|(2ly) = (z — ~2) — (& — ) =~z — ~(z — ) = (z — ~y) —
x =z from (R1).

(S3):

z|((Wl2)l(ylz) = = — =y — —2)
= z— (((y — —-z) — 0) —0)
= ((y—-2) —0) — (x —0)
= (y — —z) — 2
= z— (y — —2)
= z— (z — W)
— (. — )

= ((z[y)l(zly))]=

from Proposition 2.4, (R4), (R1) and (S1).

(S4): It is obtained from (S2) that (z[((z[x)[(yly)))|(z|((z|2)|(yly))) =

Moreover, 1 = 0|0 is the greatest element and 0 = 1|1 is the least element of M.

(SR1): z|(z|z) =2 — -2z =2 — ((x — 0) — 0) = (v — 0) — (x — 0) =1 from
Proposition 2.4, (R4) and (R2).

(SR2): yl(z]2) =y — 2 < (z — y) — (r — 2) = (@[(yly)|((2|(z[2))|(2](z]2))) from
Proposition 2.4, (R4), (R1) and (R3).

(SR3): z[((yV2)(yVz)) =2 — (yVz) = (¢ — y)V(z — 2) = (2[(yly)) V (z|(z]2)) and
similarly z|((y A 2)|(y A 2)) = (z|(y|y)) A (z|(2]2)) from Proposition 2.4, (R4), (R1) and (R5).

|
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Example 3.9. Consider a Rop—algebra (M, V, A, -, —>,1) which has Cayley tables in Table
7. Then a SRg—algebra defined by the Rg—algebra is the SRg—algebra M in Example 3.4.

TABLE 7. Cayley tables of the binary operations —, V and A on M in Example 3.9

— |0 a b ¢ d e f 1 VIO a b ¢ de f 1
O |1 1111111 00 a b ¢c d e f 1
a |f 1 f f 1 1 f 1 ala a d e d e 1 1
b |le e 1 e 1 e 1 1 blb d b f d1 f 1
c|ddd 1l d1 11 clec e f c 1 e f 1
d |c e fc 1l e f 1 dld d d 1 d 1 1 1
e |bd b fd1l1 f 1 ele e 1 e 1 e 1 1
a a d e d e 1 1 fif1r f f 11 f1
1 10 a b ¢ d e f 1 1111111111

AO a b ¢c d e f 1

0/{0 0O0OO0OO0O0O0O

a|l0 a 00 a a 0 a

b0 O b O b O b b

c|0 0 0 ¢c 0 ¢c ¢ ¢

d|0 a b 0 da b d

e|l0 a 0 ¢c a e c e

f10 0 b ¢c b ¢ f f

110 a b ¢c d e f 1

Definition 3.10. Let (M, Vs, Anr, |ar, Oar, 1ar) and (N, Vi, AN, |N,On, 1n) be two SRo— al-
gebras. Then the set M x N is the Cartesian product of M and N, the operations |y« n,
Varsxn, Avxn and the partial order <p;xny on M x N are defined by (z1,y1)|mxn(22,y2) =
(z1|mr, yilnye), (T1,91) Vaxn (T2,92) = (21 Vi 22,91 Vv ¥2), (71,91) Amxn (T2,y2) =
(1 Aar 22,91 AN y2) and (z1,y1) <mxn (2,92) = (21 <ar z2,y1 <N y2), respectively. Also,

Omxn = (0ar,0n) and 1prxnv = (1ar, 1n).

Theorem 3.11. Let (M, Vo, A, ‘M,OM,lM) and (N,Vn,AN,|N,On,1N) be two SRy— al-

gebras. Then (M X N,V r«ns AMxNs |MxN, Ovx v, Lyrxn) s a SRo—algebra.

4. Ideals of SRy—algebras

In this section, we give some types of ideals on a SRg-algebra. Unless indicated otherwise,

M represents a SRg-algebra.
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Definition 4.1. Let M be a SRp-algebra. Then a nonempty subset I C M is called an ideal
of M if it satisfies

(sI1) 0 € I,

(sI2) y € I and (z|(yly))|(z|(yly)) € I imply = € I.

Example 4.2. For the SRg-algebra M in Example 3.3, the subsets {0}, {0,a}, {0,b} and M
are ideals of M.

Proposition 4.3. Let I be a nonempty subset of a SRy—algebra M. Then I is an ideal of M
if and only if the following hold:

(sI8) y € I and x <y imply x € I,

(slf) x € I andy € I imply (x|x)|(y|ly) € I.

Proof. (=) Let I be an ideal of M.

(sI3): Let y € I and = < y. Then z|(yly) = 1 and so (z|(y|y))|(z|(y|y)) = 1|1 =0 € I from
Lemma 3.5 (10) and (sI1). Thus, z € I from (sI2).

(sI4): Let x and y be any elements of I. Since

(@) [l Il ([((z]2)|(y[y) | (y]y))|(z]2)]
(@)l [l I(((z]2)|(y[y)I(y[y)I(z]z))
((l((2]2)[(xl2)) ((z])|(2]2))]((yI(
((l((l)[ (zlx))]((zle)|(2]2))]((y](
((wle) )| ((ylz)|2))| (2]2)) [ ((((y]=
a|(z]x))[(z[(x]2))))|((y])]

—_~ o~

x|z

=

)|
((

ylz)l
1

((
(
((
((
1
0

from Lemma 3.5 (3) and (20), (S2)-(S3), (SR1) and (sIl), it is obtained from (sI2) that

()l W) I(((z]2)[(yly)[(yly)) € 1. Hence, (x]x)[(yly) € I from (sI2).
(<) Let I be a nonempty subset of M satisfying (1) and (2). Assume that x € I. Since

0 < z for all x € M, we have from (1) that 0 € I. Let y and (z|(y|y))|(z|(y|y)) be any elements

of I. Then 2V y = (al (311)) (31) = (2l (¥l (=1l (@l )| )] (ply) € T from
Lemma 3.5 (21), (S2) and (sI4), respectively. Since z < z V y, it follows from (sI3) that z € I.

0

Lemma 4.4. Let I be a nonempty subset of a SRy—algebra M. Then I is an ideal of M if
and only if

(sI5) 0 € 1,

(sl6) x € I andy € I implyxVy€E 1.
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Proof. Let I be an ideal of M. Then (sI5) is obvious from (sI1). Assume that z € [ and y € I.
xVy € I. Since (z|z)|(yly) € [ and x Vy < (z|z)|(y|ly) from (sI4) and Lemma 3.5 (13), it is
obtained from (sI3) that  Vy € I.

Conversely, let I be a nonempty subset of M satisfying (sI5) and (sI6). Then (sI1) is obvious

from (sI5). Suppose that y € I and (z|(y|y))|(z|(y|y)) € I. Then
eVy = (zl(yly)lyly)

(

= ([(((yIy Yy (WIIWIvINDI(Yly)
(
(

(@ Wly) @ WD Yly) [(yly)

(@ (yly)|(=(yly))) vy € I

from Lemma 3.5 (21), (S1), (S2) and (sI6). Since x € x V y, it follows from (sI3) that x € I.
Thus, I is an ideal of M.

Theorem 4.5. The family Tys of all ideals of a SRy—algebra M forms a complete lattice.

Proof. Let {I; : i € J} be a family of ideals of a SRyp—algebra M. Since 0 € I;, for all i € J,
we have 0 € (J;c;I; and 0 € (), s 1.

(1) Assume that y € (,c; L and (z|(yly))|(z|(yly)) € NjcsyLli- Then y € I; and
(x|(yly)|(z|(y|y)) € I;, for all i € J. Since I; is an ideal of M, for all ¢ € J, it is
obtained that x € I;, for all ¢ € J which implies that z € (,.; I;.

(2) Let v be the family of all ideals of M containing |J;c; ;. Thus, ()~ is an ideal of M
by (1).

If Niesdi = Niey Li and \/;c; I; = ()7, then (Zar, V/, /\) is a complete lattice. g

Definition 4.6. Let I be an ideal of a SRg—algebra M. [ is called a prime ideal of M if
xAy€limpliesxeloryel, forall z,y € M.

Example 4.7. Consider the SRp-algebra M in Example 3.4. Then {0, a,c, e} is a prime ideal

of M while {0,a} is not since d and e are not in I when dAe=a € I.

Proposition 4.8. Let I be an ideal of a SRy—algebra M. Then I is a prime ideal of M if
and only if x € I or z|x € I, for all x € M.

Proof. (=) Let I be a prime ideal of M. Since = A (z|x) =0 € I from Lemma 3.5 (21), (S2),
(SR1) and (sI1), it follows that = € I or x|z € I, for all x € M.

(<) Let I be an ideal of M such that € I or zlx € [ for all x € M, and
x ANy € I. Suppose that = ¢ I for some z € M. Then zlx € I. Since
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([ (wly) | ((l2)|(@|2))I (I Yl [(@]e)|(z]2) = (@@ (yy)I (] (2l(yly)) =2 Ay € T from
(S1), (S2) and Lemma 3.5 (21), it is obtained from (sI2) that z|(y|y) € I. Since y < z|(y|y)

from Lemma 3.5 (4), we have y € I from (sI3).
Also, assume that y ¢ I for some y € M. Then yly € I. Since (x|(y|ly))|(z|(y]y)) < yly
from Lemma 3.5 (4) and (15), we get from (sI3) that (z|(y|ly))|(z|(yly)) € I. Since

(@[ (] gD @I D@l [ @ly))DDI @Gl @l )@ ) Yl))))) =
(z|(z|(yly)))|(x|(z](y]y))) = x Ay € I from (S2) and Lemma 3.5 (21), it follows from (sI2) that

.’L’EI.D

Proposition 4.9. Let I be an ideal of a SRy—algebra M. Then I is a prime ideal of M if
and only if (x|(yly))|(z[(yly)) € I or (yl(z]x))|(y|(z|z)) € I, for all z,y € M.

Proof. Let I be a prime ideal of M. Since

(=@ (yly)(=[(yly) A ((yl(z|2)[(y|(z]|2)))

= ([l | wly) DI (ly)] [l Yl ]2)]
(@Il Gl ly) | @Gyl (]x)

= ([l NI @I ()| ]2 (Y)Yl (z]2))))))]
([l Gl I )@l Y] ]z)]
= (([(ly) ([ Wy @I Gl ly) (@] @ly) @] yly))))
=11

=0¢€l

from Lemma 3.5 (21), (S1)-(S3), (SR1) and (sI1), it is obtained that (x|(y|y))|(z|(y|y)) € I or
(yl(z]x))|(y[(x]x)) € I, for all z,y € M.

Conversely, let I be an ideal of M such that (z|(y|ly))|(z|(yly)) € I or
(y|(z|z)|(y|(z|x)) € I, for all xz,y € M.  Assume that = Ay € I.  Since

(@[ (] WD D@ @l @ @ly)) DD (@] (yly)] (@

Wyl ](ylw))) = (l@lyly)))(@(z](yly)) = = Ay € I from (S2) and Lemma
3.5 (21), it follows from (sI2) that « € I. Similarly, y € I since xt Ay =y Ax. g

5. Quotient SRy—algebra via ideals

In this section, we introduce a quotient SRg—algebra via ideals and present some properties.

Let I be an ideal of a SRg—algebra M. A binary relation ~; on M is defined by

(1) w~ry o (@lly)lelyly) e Ioand  (y(z]x))|(yl(z]) € 1,

for all x,y € M.
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Definition 5.1. If 28y implies x|28y|z, x V zB8y V z and = A zBy A z, for all z,y,z € M, then

the equivalence relation [ is called a congruence relation on M.

Example 5.2. Consider the SRg—algebra M in Example 3.3. Then 8 =

{(0,0), (a,a), (b,0), (1,1), (0,
a), (a,0),(b,1),(1,b)} is a congruence relation on M.

Lemma 5.3. An equivalence relation 5 is a congruence relation on M if and only if By and

afb imply x|aPy|b, x V afy Vb and x A afy Ab, for all z,y,a,b € M.

Proof. Let 8 be a congruence relation on M and x,y,a and b be any elements of M such
that 8y and afb. Since z|afy|a and ylafy|b from (S1), it follows from the transitivity of 8
that x|aBylb, for all z,y,a,b € M. It is obtained from Lemma 3.5 (21) that = V afy V b and
x ANaPy Ab, for all x,y,a,b € M.

Conversely, let § be an equivalence relation on M such that xfy and afb imply x|aSBy|b,
xVapyVband x AafyAb, for all z,y,a,b € M. Assume that x,y and z be arbitrary elements
of M such that xBy. Since zfz, we get z|z8y|z, xVzPyV z and x Azfy A z, for all z,y,z € M.

Then 3 is a congruence relation on M.

Lemma 5.4. Let I be an ideal of a SRy—algebra M and ~p be defined as the statement (1).

Then ~1 is a congruence relation on M.

Proof. e Reflexivity is obvious from (SR1).

e Symmetry: let x and y be any elements of M such that « ~; y.  Since

@yl @I(yly), (yl(x]x))|(yl(z|x) € I, it is clear that y ~; .
o Transitivity: let x,y and z be any elements of M such that x ~; y and y ~; z. Then

([ (yly) (=l (yly)), (Yl (2|2))|(yl(z]x)), (wl(z]2))](yl(2]2), ([ (y]y))|(z](yly)) € I. Since

@(yly)lyl(z]2)) = ([l @lyDI(@ly)I(](Yy))]
(Il DIl DDl (212)[(Y](2]2)))) € T

and (z|(z]2))|(z|(2]2)) < (z[(y|y))|(y|(z]z)) from (S2), (sI4) and Lemma 3.5 (19), we get from
(sI3) that (x|(z|2))|(x|(2]2)) € I. Similarly, (z|(z|z))|(z|(x|z)) € I. So, x ~r z.
Thus, ~; is an equivalence relation on M.

Let x,y,a and b be any elements of M such that *+ ~; y and a ~; b. Then

([ (yly) (2 (y]y)), (l(2|2)|(y[(z])), (al(b]b))|(al (b]b)), (b](ala))|(b](ala)) € I.
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(1) Since

yl(zle) = (z[2)|((yly)I(yly))
< (al((z|2)|(2|2))I(al (Y9I (Yl ((ylv)](Ylv)))
= (z[a)|((yla)[(yla))

from (S1), (S2) and (SR2), it is obtained from Lemma 3.5 (15) that

((=la)[((yla)(yla))|((]a)|((y]a)|(yla))) < (yl(x]x))[(yl(z|2))-

By  (sI3),  ((z[a)|((yla)[(yla)))|((x|2)((y]2)[(y]2))) € I, and  similarly,

((wla)|((zla)|(z]a)[((yla)|((z]a)[(x]a))) € I. Thus, z|a ~1 yla.

|a
(2) By substituting [z := a, [y :=

)
b] and [a := y] in 1, simultaneously, we obtain from (S1)
that yla ~r ylb.

Hence, z|a ~; y|b from the transitivity of ~;. Also, zVa ~yyVband zAa~yyAb from
Lemma 3.5 (21).

Theorem 5.5. Let I be an ideal of a SRo—algebra M and ~; be a congruence relation
on M defined by I. Then (M/ ~1,Ve;,Avyylnys [0~ [L]~;) @8 a SRo—algebra where the
quotient set M| ~j= {[z]~, : © € M}, the binary operations |~,, V~, and A~, are defined by
[#nrlnr Wy = [2lY]~rs (2] Vi W~y = [2Vylay and [z]o; Ay [yl = [ A Y]~ [01~; s the
least element and [1]~, is the greatest element of M/ ~rp, respectively. Moreover, the partial

order < on M/ ~; is defined by [t]., < [y)~, © (2l(4]y))|(2|(yly)) € I, for any 2,y € M.

Proof. Let a relation < on M/ ~; be defined by [z]~, < [y]~, < (z|(y|y))|(z|(y|ly)) € I, for
any x,y € M.
» Since (z|(z]x))|(x|(2|z)

) =1|1 =0 € I from (SR1) and (sI1), we have [z]., < [z]~,.
o Let [z]~, < [y]~, and [y]~
[

~r < []~; Then (z[(y[y))|(z[(yly)) € I and (y[(z|z))|(y|(z|z)) €
I. So, x ~y y which implies [z]~, = [y]~,
o Let [z]~; < [y]~; and [y]~; < [2]~;. Then (z|(y|y))|(z|(yly)) € I and (y|(z[2))[(yl(z]2)) €
I. Since (z|(y|y))|(y|(z|2)) = (((@|(yly) (@[ (y]y)(@|yly)[(@]@ly)))I(YIz]2)|Y(z]2)]
I

(NI € T and (@l(z12)I(@l(212) < (@lwly)(@l(]2) fom (82), (s14) and
Lemma 3.5 (19), it follows from (sI3) that (z|(z|2))|(x|(z]z)) € I. Thus, [z]., < [z]~,.

Hence, the relation < is a partial otder on M/ ~j.

e Since z < xVy and zy < xVy, we have from Lemma 3.5 (10) and (sI1) that (z|((xVy)|(xV
))I(el(@vy)l(zvy)) = 11 =0 € Tand (5]((zve) 2V =Vl V) = 11 =0 € .
Then [z, < [2V gley = [ty Voy [y a0d [yley € [2V gy = 2]y Vey [y Thus,

; < [z]~, and

[yl~y < [2]~;- So, (2l(2[2))[(2](2]2)) € I and (y|(z]2))|(y](z]2)) € I. Since ((z Vv y)|(2]2))|((z V

[V y|~, = [x]~, V~, [y]~, is an upper bound of [z], and [y]~,. Assume that [x]~
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Y)l(zl2)) = ((z[(2]2))[(=((2]2))) V ((y](z]2))[(y[(z]2))) € I from Lemma 3.5 (25) and (sI6), we
have [z]~, V~, [Y]l~; = [z V y]~, < [2]~, which means that [z]., V~, [y]~, = [z V y]~, is a
supremum of [z]., and [y]~,. Similarly, [z]~, A~, [y]~, = [z Ay]~, is an infimum of [z]., and
[y]~s-

o [zl Vor (Wler Anp BZnp) = [V (YA 2)] e = [ Vy) AV 2)la; = ([l Vi [W]e)) Any
([2]~ Vs l2l~g), and similarly, ([#] Axp [yl )V [2]ng = ([l Vi (2] ) A (W Vs [2l~),
[#]~r Avp (Wlar Vg [2lng) = (g Ay Wlnr) Veor ([2]e) Any [2l~g) and ([2]~; Vg [W]eg) Axy
[~y = ([]ay Any [2]ng) Vior ([l Any [2]0), for all []e ), [y]ays (2]~ € M/ ~r

+ Since (0[(z|))[(O0f(x]x)) = ((z|x)]A1)|((z]2)[(1]1)) = 11 = 0 € I and
(z|(1]1))(x|(1]1)) = 1|1 = 0 € I from (S1), Lemma 3.5 (3) and (sI1), we have [0]~
and [z]~, < [1]~,, for all [z]~, € M/ ~, respectively.

Hence, (M/ ~1,<) is a bounded distributive lattice.

(S1): [z]nslnslylns = [@ly]ns = Wla]e; = Wlns I~ (2]~

(52): (g [l (g g [81s) = [ )y = 2],

I

N~
A~

I =

(S3):
(sl ((Wlnr s El D (Wl [ [Z)) = [2]((]2)[(y]2)]~,
= [((=[y)[(=]y))]2]~,
= (([ ]NI‘NI[ ]~1)|~1([x]~1|~[[y]~1))"v1[2]~[7

(S4):

[ loog ([l g [ D g (Wl Lo [ D D) o ([ [ (2] g [ ) Lo (W] [ [9]1)))
= [([((x]2)| () @[ (([2) [(Yly))]~r = 2
[ |y ([ [y 7)) = [2l(2]2)]np = (U

[

(SR1):

(SR2):  Since ((y](z|2))I(((2[(yly)[((x|(z]2))[(x|(z \ Il (ly)I((z](z]2))](z](2]2))))]
(WDl ) (2] z12)) ]| (z]2)) (@] ly)(@](2]2)|(2](2]2)))))) = 1]1 = 0 € [ from

Lemma 3.5 (10) and (sI1), it follows that

S (I o 1 I e (I C | I

< [lly)|(@l12)@lz]2))~,
(S O O O 1 O O O (2
erlzle s (o by (s o [21))),
(SRB): [)y s ((1)s Voor [21ns (W) Vg [21)) = L2l ((y v )]y V 2]y = (2l ry»v
(@l (12Nns = (o s (Wl o 1)) Vs (@l (Elg s [F1r)) and [y |y (5~

[t (Wlnr Ay T2lnr)) = (@l ([Wlng |or W) Avp ([ o (2] |~ [2] ), for all
[2]ps Wy [2]ny € M/ ~1
Therefore, (M/ ~1,Vu,, Anyy gy 0]~ [1]~,) is @ SRo—algebra. g
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Example 5.6. Consider the SRg—algebra M in Example 3.4. For an ideal I = {0,b} of M,
~or= {(0,0), (@,0), (5,), (¢,), (d,d), (e, €), (£, £, (1, 1), (0,8), (5,0), (e, 1), (1, €), (a, ), (d, ),
(f,c),(c, f)} is a congruence relation on M. Then (M/ ~1,Ve,, Ay l~ys [0]~;, [1]~,) is a
SRo—algebra with the Hasse diagram in Figure 3 where M/ ~;= {[0],,[a]~,,[c]~,, [1]~,}
and the binary operations |.,, V~, and A, on M/ ~ have Cayley tables in Table 8.

FIGURE 3. Hasse diagram for M/ ~;

TABLE 8. Cayley tables of the binary operations |~,, V~, and A~, on M/ ~;
in Example 5.6

v | O~y fal~y [~y (U Vor [0~ lal~y [dy [~
O~y | W~y [~y [y [y Ol~; | 0]~ o]~y [dny [~y
@y | Wy ey np [y @)~y | lal~y [alny [~ [~y
o I e L A (P o I [ £ O L IO £ OV
Unr | M~r ey laley O], Unr | Wy [y [y [Hy

A |00~y laley [~y U~y

Ol~; | [0]~; [O]~; [0~ [0]~,

@)~y | 0]~ [a]~; [0~ [a]~,

e~y | O~ [0]~;  [elnr ey

Wy | O~ [aly e~y [y

Theorem 5.7. Let I be an ideal of a SRy—algebra M. Then I is a prime ideal of M if and
only if M/ ~r is a totally ordered SRy—algebra and | M/ ~|< 2.

Proof. (=) Let I be a prime ideal of a SRg—algebra M. Then M/ ~ is a SRop— algebra
from Theorem 5.5. Since (x|(y|y))|(z|(yly)) € I or (y(z|x))|(y|(z|x)) € I by Proposition 4.9,
[z]~, < [Y]~, or [y|~, < [2]~,, forall x,y € M. Thus, M/ ~ is a totally ordered SRo—algebra.
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Assume that | M/ ~r|> 2. Let [z]~, € M/ ~ such that [0], < [z]~, < [1]~,. Since I is
a prime ideal of M, x € I or x|z € I from Proposition 4.8. Suppose that z|x € I. Since
(1|(z|x))|(1|(z|x)) = z|x € I and (z|(1]1))[(z|(1|]1)) = 1|1 = 0 € I from Lemma 3.5 (2)-(3) and
(sI1), we have x ~r 1. So, [z]., = [1]~, which is a contradiction. Hence, | M/ ~|< 2.

(<) Let M/ ~r be a totally ordered SRo—algebra. Then [z]., < [y]~, or [y]~, < [z]~,
which mean that (z|(y|y))|(z|(y|y)) € I or (y(x|z))|(y|(x|z)) € I, for all x,y € M. Thus, I is
a prime ideal of a SRg—algebra M by Proposition 4.9.

Corollary 5.8. Let I be an ideal of a SRy—algebra M. Then M/ ~p is a totally ordered
SRo—algebra if and only if x € I or x|x € I, for all x € M.

Proof. 1t follows from Proposition 4.8 and Theorem 5.7.

6. Conclusion

In this paper, a Rg—algebra with Sheffer stroke, Cartesian product, some ideals, a congru-
ence relation and quotient structures are introduced. Then it is stated that the axiom system
of Sheffer stroke Rg—algebras (briefly, SRg—algebras) is independent. It is also shown that
a SRp—algebra is a Rp—algebra under the conditions z — y = z|(yly) and -~z = z|x but
special conditions are necessary for the inverse, and these statements are supported by giving
illustrative examples. It is demonstrated that a Cartesian product of two SRg—algebras is
a SRg—algebra. Afterward, various ideals and their features are studied on SRg—algebras.
Moreover, a congruence relation on these algebraic structures is defined by the ideal and quo-
tient SRg—algebra is built by means of this relation. Indeed, it is proved that an ideal of a
SRp—algebra is prime if and only if the quotient structure is a totally ordered SRg—algebra,
and its cardinality is less that or equals to two. At the end of the study, the new and novel
results are given on aforementioned concepts. These results are important to develop relations
between Sheffer stroke algebras and related notions.

In future works, we are planning to study fuzziness, neutrosophy, plithogeny, and various fil-
ters on Sheffer stroke Rg—algebras. Therefore, new bridges can be constructed among abstract
algebra, plithogeny, logic, probability and statistics.In this section, we give basic definitions

and notions about Sheffer stroke and Rg—algebras.
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