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Abstract. In this article, we extend the concept of divisors to ideals of Noetherian rings,

more generally, to submodules of finitely generated modules over Noetherian rings. For a

submodule N of a finitely generated module M over a Noetherian ring, we say a submodule

K of M is a regular divisor of N in M if K occurs in a regular prime extension filtration of M

over N . We show that a submodule N of M has only a finite number of regular divisors in M .

We also show that an ideal b is a regular divisor of a non-zero ideal a in a Dedekind domain

R if and only if b contains a. We characterize regular divisors using some ordered sequences

of prime ideals and study their various properties. Lastly, we formulate a method to compute

the number of regular divisors of a submodule by solving a combinatorics problem.
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1. Introduction

In [5], the concept of prime ideal factorization is generalized to proper submodules of finitely
generated modules over a Noetherian ring. If

(1) N = M0

q1
⊂ M1 ⊂ · · · ⊂ Mn−1

qn
⊂ Mn = M

is a filtration of submodules, where for each i, qi is a maximal element in Ass(M/Mi−1) and Mi

is maximal among the submodules of M such that Mi−1 is a qi-prime submodule of Mi, then
we say the generalized prime ideal factorization of N in M , denoted PM (N), is q1 · · · qn. We
also write PM (N) = p1

r1 · · · pkrk if pi occurs exactly ri times in q1, . . . , qn, and r1+· · ·+rk = n.
In this case, the filtration (1) is called a regular prime extension (RPE) filtration of M over
N . We call a submodule which occurs in any RPE filtration of M over N as a regular divisor
of N in M . We show that regular divisors extend the concept of divisors to submodules of
finitely generated modules over Noetherian rings. If n is an integer, then d is a divisor of n if
and only if dZ is a regular divisor of nZ in Z. So nZ has

∏k
i=1(ri + 1) regular divisors if the

prime factorization of n is p1
r1 · · · pkrk .

In this paper, we show that a submodule N of M has only a finite number of regular divisors
in M . We also formulate a method to compute the number of regular divisors of a submodule.

Throughout this article, we assume that R is a commutative Noetherian ring with identity,
M is a finitely generated unitary R-module, and N is a proper submodule of M . For
terminology used, the standard reference is [4].

In [3], Lu put forward various useful properties of prime submodules of modules and showed
their applications. In [1], a submodule K of M is called a p-prime extension of N in M if N
is a prime submodule of K with (N : K) = p, and it is denoted as N

p
⊂ K. Further, if K

is not properly contained in any other p-prime extensions of N in M , then we say N
p
⊂ K is

maximal. If p is a maximal element in Ass(M/N), then a maximal p-prime extension N
p
⊂ K

is called a regular p-prime extension.
Let F : N = M0

p1
⊂ M1 ⊂ · · · ⊂ Mn−1

pn
⊂ Mn = M be a filtration of submodules containing

N , where each extension Mi−1

pi⊂ Mi is a regular pi-prime extension. Then F is called a
regular prime extension (RPE) filtration of M over N . Regular prime extension filtration of
submodules is introduced and studied in [1].

It is proved that a regular p-prime extension of a submodule is unique.

Lemma 1.1. [1, Theorem 11] Let N be a proper submodule of M and p be a maximal element
in Ass(M/N). Then the submodule (N : p) of M is the unique maximal p-prime extension of
N in M .

Remark 1.2. Hence, if p is a maximal element in Ass(M/N), then (N : p) is the regular
p-prime extension of N in M . So the number of regular prime extensions of N in M is exactly
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equal to the number of maximal elements in Ass(M/N). Hence, a submodule of M has only
a finite number of regular prime extensions in M .

Lemma 1.3. [1, Proposition 14] Let N = M0

p1
⊂ M1 ⊂ · · · ⊂ Mn−1

pn
⊂ Mn = M be a

filtration of submodules such that each Mi−1

pi⊂ Mi is a maximal pi-prime extension. Then
Ass(M/Mi−1) = {pi, . . . , pn} for 1 ≤ i ≤ n. In particular, Ass(M/N) = {p1, . . . , pn}.

Since regular prime extensions are maximal prime extensions, we have that Ass(M/N) is
precisely the set of prime ideals occurring in any RPE filtration of M over N .

The following lemma shows the uniqueness of the length of RPE filtrations.

Lemma 1.4. [1, Theorem 22] For a proper submodule N of M , the number of times a prime
ideal p occurs in any RPE filtration of M over N is unique, and hence, any two RPE filtrations
of M over N have the same length.

Definition 1.5. Let N be a proper submodule of M with Ass(M/N) = {p1, . . . , pk}, where
pi’s are distinct. Then we write PM (N) = p1

r1 · · · pkrk if, for each i, pi occurs exactly ri times
in an RPE filtration of M over N .

If PM (N) = p1
r1 · · · pkrk , as a product of ideals, it is possible that p1r1 · · · pkrk = p1

s1 · · · pksk

with ri 6= si for some i. But PM (N) 6= p1
s1 · · · pksk as per our definition. In [5], PM (N) is called

the generalized prime ideal factorization of N in M and its various properties are studied.
We prove that a subchain of an RPE filtration is also an RPE filtration using the following

lemma.

Lemma 1.6. [2, Lemma 2.8] If N
p
⊂ K is a regular p-prime extension in M and L is any

submodule of M , then N ∩L
p
⊂ K∩L is a regular p-prime extension in L when N ∩L 6= K∩L.

Proposition 1.7. If N = M0

p1
⊂ M1 ⊂ · · · ⊂ Mn−1

pn
⊂ Mn = M is an RPE filtration of M

over N , then Mi

pi+1

⊂ Mi+1 ⊂ · · · ⊂ Mj−1

pj
⊂ Mj is an RPE filtration of Mj over Mi for every

0 ≤ i < j ≤ n, and therefore, PMj (Mi) = pi+1 · · · pj and Ass(Mj/Mi) = {pi+1, . . . , pj}.

Proof. For i < n,

(2) Mi

pi+1

⊂ Mi+1 ⊂ · · · ⊂ Mn−1

pn
⊂ Mn = M

is an RPE filtration since Mk+1 is a regular pk+1-prime extension of Mk in M for k =

i, . . . , n− 1. Let i < j ≤ n. Then intersecting (2) with Mj , we get a chain

(3) Mi

pi+1

⊂ Mi+1 ⊂ · · · ⊂ Mj−1

pj
⊂ Mj .

By Lemma 1.6, (3) is an RPE filtration of Mj over Mi, and hence, PMj (Mi) = pi+1 · · · pj and
by Lemma 1.3, Ass(Mj/Mi) = {pi+1, . . . , pj}.
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2. Regular Divisors of a Submodule

In this section, we define regular divisors of a submodule N in M and study its properties.

Definition 2.1. A submodule K of M is called a regular divisor of N in M if there exists an
RPE filtration N = N0

p1
⊂ N1 ⊂ · · · ⊂ Nn−1

pn
⊂ Nn = M with K = Ni for some i. We also say

M is a regular divisor of M in M .

Let DM (N) denote the set of all regular divisors of N in M .

Example 2.2. N is a prime submodule of M if and only if DM (N) = {N,M}. For, if N is
a p-prime submodule of M , Ass(M/N) = {p} and M is the maximal p-prime extension of N .
So N

p
⊂ M is the only RPE filtration of M over N . In particular, an ideal a is a prime ideal

of R if and only if DR(a) = {a, R}.

Example 2.3. Let R = k[x, y] and a = (x2y, xy2). Since the primary decomposition of a

is (x2, y2) ∩ (x) ∩ (y), Ass(R/a) = {(x, y), (x), (y)}. Then (a : (x, y)) = (xy) is the regular
(x, y)-prime extension of a in R. Now, Ass(R/(xy)) = {(x), (y)}. Then ((xy) : (y)) = (x) and
((xy) : (x)) = (y) are the regular (y)-prime and (x)-prime extensions of (xy) respectively. So
we have exactly two RPE filtrations of R over a,

a = (x2y, xy2)
(x,y)
⊂ (xy)

(y)
⊂ (x)

(x)
⊂ R,

a = (x2y, xy2)
(x,y)
⊂ (xy)

(x)
⊂ (y)

(y)
⊂ R.

Therefore, the set of all regular divisors of a in R, DR(a) = {a, (xy), (x), (y), R}.

Now we show that the set of regular divisors of a submodule is finite.

Proposition 2.4. A submodule N of M has a finite number of regular divisors in M .

Proof. Since M is Noetherian, any RPE filtration is of finite length. While constructing an
RPE filtration N = N0

p1
⊂ N1 ⊂ · · · ⊂ Nn−1

pn
⊂ Nn = M, N1 must be one of the regular prime

extensions of N in M ; hence the number of choices for N1 is the number of maximal elements
in Ass(M/N) [Remark 1.2]. Similarly, for each i, the number of submodules Ni which can
be regular prime extensions of Ni−1 is the number of maximal elements in Ass(M/Ni−1), and
therefore is finite. So the number of RPE filtrations of M over N is finite, and hence the
number of regular divisors of N in M is finite.

Next we show if K is a regular divisor of N in M , then PM (N) is a multiple of PM (K) as
a product of prime ideals.
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Proposition 2.5. If K is a regular divisor of N in M , then PM (N) = PK(N)PM (K) and
Ass(M/K) ∪Ass(K/N) = Ass(M/N).

Proof. We have an RPE filtration N = N0

p1
⊂ N1 ⊂ · · ·

pr
⊂ Nr

pr+1

⊂ · · ·
pn
⊂ Nn = M with K = Nr.

Then by Proposition 1.7, N = N0

p1
⊂ N1 ⊂ · · ·

pr
⊂ Nr = K and K = Nr

pr+1

⊂ · · ·
pn
⊂ Nn = M

are RPE filtrations. So PM (N) = p1 · · · prpr+1 · · · pn = PK(N)PM (K). By Proposition 1.7,
Ass(M/N) = {p1, . . . , pn}, Ass(M/K) = {pr+1, . . . , pn}, and Ass(K/N) = {p1, . . . , pr}. This
proves the Proposition.

Remark 2.6. In particular, if PM (N) = p1
r1 · · · pkrk , where p1, . . . , pk are distinct prime

ideals and r1, . . . , rk positive integers, and K is a regular divisor of N in M , then PK(N) =

p1
s1 · · · pksk , PM (K) = p1

t1 · · · pktk with 0 ≤ si, ti ≤ ri and si + ti = ri for 1 ≤ i ≤ k.

The converse of Proposition 2.5 is not true. In Example 2.3, we have PR(a) = (x, y)(x)(y).
Let b = (x, y). Then

a = (x2y, xy2)
(y)
⊂ (x2, xy)

(x)
⊂ (x, y) = b and b = (x, y)

(x,y)
⊂ R.

are RPE filtrations. So Pb(a)PR(b) = (y)(x)(x, y) = PR(a) and Ass(b/a) ∪ Ass(R/b) =

{(y), (x), (x, y)} = Ass(R/a), but b is not a regular divisor of a in R.

The next proposition shows that regular divisors extend the concept of divisors in integers.

Proposition 2.7. Let R be a Dedekind domain and a a non-zero ideal in R. Then an ideal b
is a regular divisor of a in R if and only if b ⊇ a. In particular, for d, n ∈ Z, dZ is a regular
divisor of nZ in Z if and only if d is a divisor of n.

Proof. If b is a regular divisor of a in R, then clearly, a ⊆ b. Next, we assume b ⊇ a. There exist
distinct prime ideals p1, . . . , pk in R and positive integers r1, . . . , rk such that a = p1

r1 · · · pkrk .
Since p1, . . . , pk are non-zero prime ideals, they are maximal ideals.

Note that (pi
ri : pi) = pi

ri−1. For since R is Dedekind, (piri : pi) = q1
t1 · · · qmtm for some

distinct prime ideals q1, . . . , qm and positive integers t1, . . . , tm. Then pi
ri−1 ⊆ (pi

ri : pi) ⊆ qj

for every 1 ≤ j ≤ m. This implies that pi = qj for 1 ≤ j ≤ m. Therefore (pi
ri : pi) = pi

t for
some integer t. That is, pitpi ⊆ pi

ri . So t ≥ ri − 1. Also, piri−1 ⊆ (pi
ri : pi) = pi

t implies that
ri − 1 ≥ t. Therefore t = ri − 1.

We claim that (a : pi) = p1
r1 · · · piri−1 · · · pkrk . Clearly p1

r1 · · · piri−1 · · · pkrk ⊆ (a : pi). For
a ∈ (a : pi), api ⊆ a = p1

r1 · · · pkrk ⊆ pj
rj for j = 1, . . . , k. For j 6= i, api ⊆ pj

rj implies
a ∈ pj

rj since pj
rj is a primary ideal. Also, we have api ⊆ pi

ri , that is, a ∈ (pi
ri : pi) = pi

ri−1.
Therefore a ∈ p1

r1 ∩ · · · ∩ pi
ri−1 ∩ · · · ∩ pk

rk = p1
r1 · · · piri−1 · · · pkrk . Hence the claim.



56 T. Duraivel, K. R. Thulasi and K. Premkumar

Then since pi is a maximal element in Ass(R/a), by Remark 1.2, (a : pi) =

p1
r1 · · · piri−1 · · · pkrk is the regular pi-prime extension of a in R. For an ideal b ⊇ a,

b = p1
s1 · · · pksk , where 0 ≤ si ≤ ri. So we can have an RPE filtration

a = p1
r1 · · · pkrk

pi⊂ p1
r1 · · · piri−1 · · · pkrk ⊂ · · · ⊂ p1

s1 · · · pksk = b ⊂ · · · ⊂ R.

Hence b is a regular divisor of a in R.

If R is not Dedekind, then the above result is not true. In Example 2.3, the ideal (x2, xy)
contains a, but is not a regular divisor of a in R.

3. Regular Prime Sequences

For a submodule N in M , for every RPE filtration there exists an ordered sequence of prime
ideals. In this section, we characterize the regular divisors of N in M using these sequences.

Definition 3.1. An ordered sequence of prime ideals (p1, . . . , pn) is called a regular prime
sequence of M with respect to N if there exists an RPE filtration

N = N0

p1
⊂ N1 ⊂ · · · ⊂ Nn−1

pn
⊂ Nn = M.

Proposition 3.2. Let (p1, . . . , pn) be a regular prime sequence of M with respect to N . Then

(i) pi 6⊂ pj if i < j, that is, pi is a maximal element in {pi, pi+1, . . . , pn}.
(ii) Any other sequence (p′1, . . . , p

′
n) is a regular prime sequence of M with respect to N if

and only if it is a permutation of (p1, . . . , pn) satisfying p′i 6⊂ p′j for 1 ≤ i < j ≤ n.

Proof. Let N = N0

p1
⊂ N1 ⊂ · · · ⊂ Nn−1

pn
⊂ Nn = M be the RPE filtration with respect to

(p1, . . . , pn). Then for every 1 ≤ i ≤ n, Ni is a regular pi-prime extension of Ni−1, and therefore
pi is a maximal element in Ass(M/Ni−1). By Lemma 1.3, Ass(M/Ni−1) = {pi, pi+1, . . . , pn}.
This proves (i).

Suppose (p′1, . . . , p
′
n) is a regular prime sequence of M with respect to N . Then by Lemma

1.4, (p′1, . . . , p
′
n) is a permutation of (p1, . . . , pn), and by (i), p′i 6⊂ p′j for 1 ≤ i < j ≤ n.

Conversely, if (p′1, . . . , p′n) is a permutation of (p1, . . . , pn) satisfying p′i 6⊂ p′j for 1 ≤ i < j ≤ n,
then p′1 is maximal in {p′1, . . . , p′n} = Ass(M/N). So there exists a regular p′1-prime extension
K1 of K0 = N in M and Ass(M/K1) = {p′2, . . . , p′n} [Proposition 2.5]. Inductively, we assume
that Ki is a regular p′i-prime extension of Ki−1 in M and Ass(M/Ki) = {p′i+1, . . . , p

′
n}. Since

p′i+1 is maximal in {p′i+1, . . . , p
′
n}, by Lemma 1.1, there exists a regular p′i+1-prime extension

Ki+1 of Ki in M . So we have an RPE filtration N = K0

p′1⊂ K1

p′2⊂ K2 ⊂ · · ·
p′n⊂ Kn = M, and

therefore (p′1, . . . , p
′
n) is a regular prime sequence of M with respect to N .
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Definition 3.3. A sequence of prime ideals (p1, . . . , pr) is called a part regular prime
sequence of M with respect to N if there exist prime ideals pr+1, . . . , pn such that
(p1, . . . , pr, pr+1, . . . , pn) form a regular prime sequence of M with respect to N .

Proposition 3.4. Let (p1, . . . , pr) be a part regular prime sequence of M with respect to N .
Then

(i) pi 6⊂ pj for 1 ≤ i < j ≤ r.
(ii) A permutation (p′1, . . . , p

′
r) of (p1, . . . , pr) is also a part regular prime sequence of M

with respect to N if and only if p′i 6⊂ p′j for 1 ≤ i < j ≤ r.
(iii) If q ∈ Ass(M/N) and q ⊃ pi for some pi ∈ {p1, . . . , pr}, then q ∈ {p1, . . . , pr}.

Proof. We have prime ideals pr+1, . . . , pn such that (p1, . . . , pr, pr+1, . . . , pn) is a regular prime
sequence of M with respect to N . Let N

p1
⊂ N1 ⊂ · · ·

pr
⊂ Nr

pr+1

⊂ · · ·
pn
⊂ Nn = M be the

corresponding RPE filtration of M over N . By Proposition 1.7, N
p1
⊂ N1 ⊂ · · ·

pr
⊂ Nr is an

RPE filtration of Nr over N , and hence (p1, . . . , pr) is a regular prime sequence of Nr with
respect to N . So (i) and (ii) follow from Proposition 3.2.

Since {p1, . . . , pn} = Ass(M/N) [Lemma 1.3], q = pk for some 1 ≤ k ≤ n. Then by
Proposition 3.2 (i), pk ⊃ pi implies k < i ≤ r, and therefore q ∈ {p1, . . . , pr}.

Definition 3.5. If N = N0

p1
⊂ N1 ⊂ · · ·

pr
⊂ Nr ⊂ · · ·

pn
⊂ Nn = M is an RPE filtration of M over

N , then we say Nr is the regular divisor of N in M defined by the part regular prime sequence
(p1, . . . , pr).

Note. Nr = (N : p1 · · · pr) by the following lemma.

Lemma 3.6. [2, Lemma 3.1] Let N be a proper submodule of an R-module M . If
N = N0

p1
⊂ N1 ⊂ · · ·

pn
⊂ Nn = M is an RPE filtration of M over N , then Ni = {x ∈

M | p1 · · · pix ⊆ N} = (N : p1 · · · pi) for 1 ≤ i ≤ n.

Proposition 3.7. If K is the regular divisor of N in M defined by a part regular prime
sequence (p1, . . . , pr), then any permutation (p′1, . . . , p

′
r) of (p1, . . . , pr) satisfying p′i 6⊂ p′j for

1 ≤ i < j ≤ r also defines K.

Proof. By Proposition 3.4 (ii), any permutation (p′1, . . . , p
′
r) of (p1, . . . , pr) satisfying p′i 6⊂ p′j

for 1 ≤ i < j ≤ r is also a part regular prime sequence of M with respect to N . Then the
regular divisor defined by (p′1, . . . , p

′
r) is (N : p′1 · · · p′r) = (N : p1 · · · pr) = K.

Let S denote the set of all part regular prime sequences of M with respect to N . We define
a relation ∼ on S as (p1, . . . , pr) ∼ (q1, . . . , qs), if (q1, . . . , qs) is a permutation of (p1, . . . , pr).
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Clearly, ∼ is an equivalence relation. We denote the equivalence class containing the sequence
(p1, . . . , pr) as [p1, . . . , pr].

Proposition 3.8. Mapping an equivalence class [p1, . . . , pr] to the regular divisor defined by
(p1, . . . , pr) is a one-to-one correspondence between the set of all equivalence classes in S under
the relation ∼ defined above and DM (N).

Proof. By Proposition 3.7, every equivalence class [p1, . . . , pr] defines a unique regular divisor
K of N in M . Suppose an element of [q1, . . . , qs] also defines K. Then we have two RPE
filtrations of K over N

N = N0

p1
⊂ N1 ⊂ · · ·

pr
⊂ Nr = K,

N = N ′
0

q1
⊂ N ′

1 ⊂ · · ·
qs
⊂ N ′

s = K.

By Lemma 1.4, s = r and by Proposition 3.2 (ii), (q1, . . . , qs) is a permutation of (p1, . . . , pr),
i.e., (q1, . . . , qs) ∈ [p1, . . . , pr], and therefore [q1, . . . , qs] = [p1, . . . , pr].

Let K ∈ DM (N). Then there exists an RPE filtration N = N0

p1
⊂ N1 ⊂ · · ·

pr
⊂ Nr ⊂ · · ·

pn
⊂

Nn = M with Nr = K for some r. Then K is the regular divisor defined by [p1, . . . , pr].

Let PM (N) = p1
r1 · · · pkrk . We characterize the k-tuples (s1, . . . , sk) of integers such that

there exists a regular divisor K of N in M with PK(N) = p1
s1 · · · pksk .

Proposition 3.9. Let PM (N) = p1
r1 · · · pkrk . There is a one-to-one correspondence between

the regular divisors of N in M and k-tuples (s1, . . . , sk) of integers such that 0 ≤ si ≤ ri, and
whenever pi ⊃ pj with sj ≥ 1, then si = ri.

Proof. If K is a regular divisor of N in M , then there exists an RPE filtration N = N0 ⊂
N1 ⊂ · · · ⊂ Nr ⊂ · · · ⊂ Nn = M with K = Nr. Then by Remark 2.6, PK(N) = p1

s1 · · · pksk ,
where 0 ≤ si ≤ ri. This implies that each pi occurs si times in any part regular prime sequence
(q1, . . . , qr) which defines K [Lemma 1.4]. By Proposition 3.7, the equivalence class [q1, . . . , qr]
is uniquely determined by p1

s1 , . . . , pk
sk . Let pi ⊃ pj . Then sj ≥ 1 implies pj ∈ {q1, . . . , qr},

i.e., pj = qt for some 1 ≤ t ≤ r. Let (q1, . . . , qr, qr+1, . . . , qn) be a regular prime sequence of
M with respect to N . Suppose ql = pi for some l. Since qt = pj ⊂ pi = ql, by Proposition 3.4
(iii), l < t ≤ r. This implies that pi occurs ri times in (q1, . . . , qr). Therefore si = ri.

Suppose the k-tuple (s1, . . . , sk) satisfies the given condition. Without loss of generality, we
assume that pi 6⊂ pj for i < j. We denote the sequence

(p1, . . . , p1︸ ︷︷ ︸
s1times

, p2, . . . , p2︸ ︷︷ ︸
s2times

, . . . , pk, . . . , pk︸ ︷︷ ︸
sktimes

, p1, . . . , p1︸ ︷︷ ︸
r1−s1times

, p2, . . . , p2︸ ︷︷ ︸
r2−s2times

, . . . , pk, . . . , pk︸ ︷︷ ︸
rk−sktimes

)



Alg. Struc. Appl. Vol. 10 No. 2 (2023) 51-64. 59

as σ. Note that if pi ⊃ pj and sj ≥ 1 then si = ri, and therefore pi cannot occur after pj in σ.
This implies that σ is a regular prime sequence [Proposition 3.2 (ii)]. Therefore, the sequence

δ = (p1, . . . , p1︸ ︷︷ ︸
s1times

, p2, . . . , p2︸ ︷︷ ︸
s2times

, . . . , pk, . . . , pk︸ ︷︷ ︸
sktimes

)

is a part regular prime sequence. Then the regular divisor K defined by δ has PK(N) =

p1
s1 · · · pksk , and corresponds to the k-tuple (s1, . . . , sk).

4. Computation of the Number of Regular Divisors of a Submodule

First, we compute the number of regular divisors of an ideal in a Dedekind domain.

Proposition 4.1. Let a be an ideal of a Dedekind domain R. If a = p1
r1 · · · pkrk is the prime

ideal factorization of a, then |DR(a)| =
∏k

i=1(ri + 1).

Proof. By Proposition 2.7, the regular divisors of a in R are the ideals of R containing a. Since
R is a Dedekind domain, p1s1 · · · pksk , 0 ≤ si ≤ ri, are precisely the ideals of R which contain
a. So the number of regular divisors is

∏k
i=1(ri + 1).

Proposition 4.2. If Ass(M/N) has only isolated prime ideals and PM (N) = p1
r1 · · · pkrk ,

then |DM (N)| =
∏k

i=1(ri + 1).

Proof. If every element of Ass(M/N) is isolated, then any set of k integers s1, . . . , sk with
0 ≤ si ≤ ri satisfies the condition given in Proposition 3.9. Hence the number of regular
divisors of N in M is the number of k-tuples (s1, . . . , sk) with 0 ≤ si ≤ ri, and therefore
|DM (N)| =

∏k
i=1(ri + 1).

Next, we find a method to compute the number of regular divisors of N in M for the general
case. For that, we consider the following combinatorics problem.

Definition 4.3. Let (P,�) be a partially ordered set. For a, b ∈ P , we say a and b are
comparable if a � b or b � a. Otherwise, we say a and b are incomparable. We say a subset S

of a partially ordered set P is independent if the elements of S are pairwise incomparable. An
independent subset is said to be maximal if it is not a proper subset of any other independent
subset.

Every independent subset of a partially ordered set P is contained in a maximal independent
subset of P . Also, if A is a maximal independent subset of P , then b ∈ P \ A implies b is
comparable with some element of A, that is, there exists a ∈ A such that a � b or b � a.
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Example 4.4. Consider the ring k[x1, x2, x3, x4]. Let p1 = (x1), p2 = (x1, x2), p3 =

(x1, x2, x3), p4 = (x1, x4), and P be the partially ordered set {p1, p2, p3, p4} with pi � pj

if pi ⊇ pj . Then the maximal independent subsets of P are {p1}, {p2, p4}, and {p3, p4}.

Definition 4.5. Let (P,�) be a partially ordered set. A subset S of P is said to be a node if
whenever a ∈ S and b ∈ P with b � a, then b ∈ S.

Clearly ∅ and P are nodes of P . Also, any intersection of nodes is a node. For if a ∈ ∩iSi

where each Si is a node, and b ∈ P with b � a, then b ∈ Si for each i, and therefore b ∈ ∩iSi.
Hence ∩iSi is a node.

Example 4.6. Let P = {a1, . . . , an} with ai � ai+1 for every i, i.e., P is a totally ordered set.
Then {{a1}, {a2}, . . . , {an}} is the set of all maximal independent subsets of P ; and ∅, {a1},
{a1, a2}, …, {a1, . . . , an} are the nodes of P .

Example 4.7. Let P = {a1, . . . , an}, where the elements of P are pairwise incomparable.
Then {a1, . . . , an} is the only maximal independent subset of P . Clearly, any subset of P is a
node. So the power set of P , P(P ), is the collection of all nodes of P , and therefore the total
number of nodes is 2n.

Example 4.8. In Example 4.4, P = {p1, p2, p3, p4} with p2, p4 pairwise incomparable, p3, p4
pairwise incomparable, p3 ≺ p2 ≺ p1, and p4 ≺ p1. So the nodes of the partially ordered set
(P,�) are ∅, {p3}, {p4}, {p3, p2}, {p3, p4}, {p3, p2, p4} and P .

Definition 4.9. Let (P,�) be a partially ordered set and P ′ ⊆ P . Then the set⟨
P ′⟩ = {a ∈ P | a � b for some b ∈ P ′}

is a node of P , and we call it the node generated by the subset P ′.

Proposition 4.10. Let P ′ be a subset of a partially ordered set (P,�). Then every node of P
containing P ′ contains 〈P ′〉. In particular, 〈P ′〉 is the intersection of all nodes of P containing
P ′.

Proof. For any node S with P ′ ⊆ S, if a ∈ 〈P ′〉, then a � b for some b ∈ P ′ ⊆ S. This implies
that a ∈ S, and hence 〈P ′〉 ⊆ S. So 〈P ′〉 is contained in the intersection of all nodes of P

containing P ′. The equality holds since 〈P ′〉 itself is a node of P containing P ′.

In Example 4.6, 〈{ai}〉 = {a1, . . . , ai} for each i. In Example 4.7, for every i, 〈{ai}〉 = {ai}.
In Example 4.8, 〈{p2}〉 = {p2, p3}, and 〈{p1}〉 = {p1, p2, p3, p4}.
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Example 4.11. We consider a job that requires the completion of a set of n tasks, say
T = {t1, . . . , tn}. Certain tasks may have some prerequisite tasks in T that must be completed
before starting them. We define a relation � in T as ti � tj if either i = j, or to do the task tj ,
the completion of task ti is required. Then (T,�) is a partially ordered set, and each node of
T is a stage of the job. That is, a subset S of T is a stage if whenever tj ∈ S, any prerequisite
task ti for tj also belongs to S. In other words, if tj ∈ S and ti � tj , then ti ∈ S. So the
number of distinct nodes of T gives the number of all possible stages of the job.

We compute the number of distinct nodes of a finite partially ordered set P by using the
maximal independent subsets of P .

Theorem 4.12. Let (P,�) be a finite partially ordered set and T = {A1, . . . , At} be the
collection of all maximal independent subsets of P . Then the number of nodes of P is equal to

∑
1≤i≤t

2|Ai| −
∑

1≤i<j≤t

2|Ai∩Aj | +
∑

1≤i<j<k≤t

2|Ai∩Aj∩Ak| − · · · + (−1)t+1 2
|

t
∩

i=1
Ai|

.

Proof. For a node S of P , let SM denote the set of all maximal elements of S, i.e.,
SM = {a ∈ S | a � b for some b ∈ S implies a = b}. Then SM is an independent subset
of P , and therefore contained in Ai for some i. So SM ∈

t
∪
i=1

P(Ai), where P(Ai) denotes the
power set of Ai. By Proposition 4.10, 〈SM 〉 ⊆ S. If a ∈ S, then by the definition of SM , there
exists b ∈ SM such that a � b. This implies a ∈ 〈SM 〉. So S = 〈SM 〉.

Let B ∈
t
∪
i=1

P(Ai). Then B ⊆ Ai for some maximal independent subset Ai ∈ T . Then 〈B〉
is the node such that the set of all maximal elements of 〈B〉 is B, i.e., 〈B〉M = B. Hence the
correspondence S 7→ SM induces a bijection between the set of all nodes of P and

t
∪
i=1

P(Ai).

So the number of nodes of P is equal to |
t
∪
i=1

P(Ai)|
=

∑
1≤i≤t |P(Ai)| −

∑
1≤i<j≤t

|P(Ai) ∩ P(Aj)| +
∑

1≤i<j<k≤t

|P(Ai) ∩ P(Aj) ∩ P(Ak)| − · · · +

(−1)t+1 |
t
∩
i=1

P(Ai)|

=
∑

1≤i≤t 2
|Ai| −

∑
1≤i<j≤t

2|Ai∩Aj | +
∑

1≤i<j<k≤t

2|Ai∩Aj∩Ak| − · · · + (−1)t+1 2
|

t
∩

i=1
Ai|

since ∩iP(Ai) = P(∩iAi).

Next, we compute the number of nodes of P containing given common elements.

Proposition 4.13. Let P be a partially ordered set and P ′ a subset of P . Then the number
of nodes of P which contain P ′ is equal to the number of nodes of the partially ordered set
P \ 〈P ′〉.
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Proof. Let S be any node of P containing P ′. Then by Proposition 4.10, 〈P ′〉 ⊆ S. Let
a ∈ S \ 〈P ′〉 and b ∈ P \ 〈P ′〉 with b � a. Since S is a node, b ∈ S. Hence, b ∈ S \ 〈P ′〉, and
therefore S \ 〈P ′〉 is a node of P \ 〈P ′〉.

Conversely, let S′ be a node of P \ 〈P ′〉. We claim that S′ ∪ 〈P ′〉 is a node of P containing
P ′. Let a ∈ S′ ∪ 〈P ′〉 and b ∈ P such that b � a. If b /∈ 〈P ′〉, since 〈P ′〉 is a node of P ,
a /∈ 〈P ′〉. Then a ∈ S′, and b ∈ P \ 〈P ′〉 implies b ∈ S′. Therefore b ∈ S′ ∪ 〈P ′〉, which implies
that S′ ∪ 〈P ′〉 is a node of P which contains P ′. Since S′ ⊆ P \ 〈P ′〉, (S′ ∪ 〈P ′〉) \ 〈P ′〉 = S′.
Hence S 7→ S \ 〈P ′〉 is a one-to-one correspondence between the nodes of P which contain P ′

and the nodes of P \ 〈P ′〉. This proves the proposition.

We consider a partially ordered set consisting of products of prime ideals for the submodule
N in M using PM (N).

Notation. Let N be a submodule of M with PM (N) = p1
r1 · · · pkrk , where p1, . . . , pk are

distinct prime ideals and r1, . . . , rk positive integers. Let

ΣM/N = {pis | 1 ≤ i ≤ k , 1 ≤ s ≤ ri}.

We define a partial order � on ΣM/N as pi
s � pj

t if pi ⊃ pj or pi = pj with s ≤ t.

Example 4.14. Let N be a submodule of M with PM (N) = p1
2p2p3p4

2, where the prime
ideals p1, p2, p3, p4 are distinct, and p4 ⊂ p3 is the only inclusion. Then the set ΣM/N =

{p1, p12, p2, p3, p4, p42} and the maximal independent subsets of (ΣM/N ,�) are {p1, p2, p3},
{p1, p2, p4}, {p1, p2, p42}, {p12, p2, p3}, {p12, p2, p4}, and {p12, p2, p42}.

Next, we identify the regular divisors of N in M with the nodes of ΣM/N , and with that,
we compute the number of regular divisors of N in M .

Theorem 4.15. Let N be a submodule of M with PM (N) = p1
r1 · · · pkrk , where p1, . . . , pk

are distinct prime ideals and r1, . . . , rk positive integers. Then the regular divisors of N in M

are in one-to-one correspondence with the nodes of the partially ordered set (ΣM/N ,�), and
therefore

(4) |DM (N)| =
∑
1≤i≤t

2|Ai| −
∑

1≤i<j≤t

2|Ai∩Aj | +
∑

1≤i<j<k≤t

2|Ai∩Aj∩Ak| − · · · + (−1)t+1 2
|

t
∩

i=1
Ai|

,

where {A1, . . . , At} are the maximal independent subsets of the partially ordered set (ΣM/N ,�).

Proof. For a node S of ΣM/N , we have the following.

(i) If pis ∈ S then pi
t ∈ S for 1 ≤ t ≤ s.

(ii) If pi � pj and pj ∈ S, then pi
s ∈ S for 1 ≤ s ≤ ri.
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So, if for each 1 ≤ i ≤ k, si is the largest integer such that pi
si ∈ S, then

〈{pisi | 1 ≤ i ≤ k, si 6= 0}〉 = S, and if pi � pj with sj ≥ 1, then by (ii), si = ri. That is,
the k-tuple (s1, . . . , sk) satisfies the condition

(∗) 0 ≤ si ≤ ri, and whenever pi ⊃ pj with sj ≥ 1, then si = ri.

Also, if (s1, . . . , sk) is a k-tuple of non-negative integers satisfying the condition (∗), then we
have 〈{pisi | 1 ≤ i ≤ k, si 6= 0}〉, a node of ΣM/N . So we have a one-to-one correspondence
between the nodes of the partially ordered set (ΣM/N ,�) and the k-tuples (s1, . . . , sk) of
integers satisfying the condition (∗). Hence, by Proposition 3.9, the regular divisors of N in
M are in one-to-one correspondence with the nodes of the partially ordered set (ΣM/N ,�).
Then (4) follows from Theorem 4.12.

Using the above formula, the number of regular divisors of N in M in Example 4.14 is equal
to 24.

Now we find the number of regular divisors of N which have a common factor in the
generalized prime ideal factorization.

Definition 4.16. Let PM (N) = p1
r1 · · · pkrk and K be a regular divisor of N in M with

PK(N) = p1
s1 · · · pksk . Then for 0 ≤ ti ≤ si, we say a prime ideal product p1

t1 · · · pktk is a
factor of the regular divisor K.

Corollary 4.17. Let PM (N) = p1
r1 · · · pkrk and t1, . . . , tk be integers such that 0 ≤ ti ≤ ri for

i = 1, . . . , k. Then the number of regular divisors of N in M having p1
t1 · · · pktk as a factor is

equal to ∑
1≤i≤s

2|A
′
i| −

∑
1≤i<j≤s

2|A
′
i∩A′

j | +
∑

1≤i<j<l≤s

2|A
′
i∩A′

j∩A′
l| − · · · + (−1)s+1 2

|
s
∩

i=1
A′

i|,

where {A′
i}1≤i≤s is the set of all maximal independent subsets of ΣM/N \⟨

{piti | 1 ≤ i ≤ k, ti 6= 0}
⟩
.

Proof. From Theorem 4.15, we have a one-to-one correspondence between the regular divisors
of N in M and the nodes of ΣM/N , which maps a regular divisor K of N in M with PK(N) =

p1
s1 · · · pksk to the node 〈{pisi | 1 ≤ i ≤ k, si 6= 0}〉 of ΣM/N . So a prime ideal product

p1
t1 · · · pktk is a factor of the regular divisor K if and only if piti ∈ 〈{pisi | 1 ≤ i ≤ k, si 6= 0}〉,

for 1 ≤ i ≤ k, ti 6= 0. Therefore the number of regular divisors of N in M having
p1

t1 · · · pktk as a factor is exactly equal to the number of nodes of ΣM/N containing {piti |
1 ≤ i ≤ k, ti 6= 0}, which is equal to the number of nodes of the partially ordered set
ΣM/N \

⟨
{piti | 1 ≤ i ≤ k, ti 6= 0}

⟩
by Proposition 4.13.
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Example 4.18. For N,M in Example 4.14, we compute the number of regular divisors of N in
M having p1

2p3 as a factor. We have ΣM/N \
⟨
{p12, p3}

⟩
= ΣM/N \{p1, p12, p3} ={p2, p4, p42},

and the maximal independent subsets of this set are {p2, p4} and {p2, p42}. Using the formula,
the number of regular divisors of N in M having p1

2p3 as a factor is equal to 6.
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