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GENUS g GROUPS OF DIAGONAL TYPE

HAVAL M. MOHAMMED SALIH∗

Abstract. A transitive subgroup G ≤ Sn is called a genus g group if there exist non identity

elements x1, ..., xr ∈ G satisfying G = ⟨x1, x2, ..., xr⟩,
∏r

i=1 xi = 1 and
∑r

i=1 ind xi = 2(n +

g− 1). The Hurwitz space Hin
r,g(G) is the space of genus g covers of the Riemann sphere P1C

with r branch points and the monodromy group G. Isomorphisms of such covers are in one

to one correspondence with genus g groups.

In this article, we show that G possesses genus one and two group if it is diagonal type

and acts primitively on Ω. Furthermore, we study the connectedness of the Hurwitz space

Hin
r,g(G) for genus 1 and 2.

1. Introduction

Let F : X → P1 be a meromorphic function from a compact connected Riemann surface X

of genus g into the Riemann sphere P1. For every meromorphic function there is a positive
integer n such that all points have exactly n preimages. So every compact Riemann surface
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can be made into the branched covering of P1. The points p are called the branch points of F
if |F−1(p)| < n. It is well known that the set of branch points is finite and it will be denoted
by B = {p1, ..., pr}. For q ∈ P1\B, the fundamental group π1(P1\B, q) is a free group which is
generated by all homotopy classes of loops γi winding once around the point pi. These loops of
generators γi are subject to the single relation that γ1 . . . γr = 1 in π1(P1 \B, q). The explicit
and well known construction of Hurwitz shows that a Riemann surface X with n branching
coverings of P1 is defined in the following way: consider the preimage F−1(q) = {x1, ..., xn},
every loop in γ in P1 \B can be lifted to n paths γ̃1, · · · , γ̃n where γ̃i is the unique path lift of
γ and γ̃i(0) = xi for every i. The endpoints γ̃i(1) also lie over q.

That is γ̃i(1) = xσ(i) in F−1(q) where σ is a permutation of the indices {1, ..., n} and it
depends only on γ. Thus it gives a group homomorphism φ : π1(P1 \B, q) → Sn. The image of
φ is called the monodromy group of F and denoted by G = Mon(X,F ). Since X is connected,
then G is a transitive subgroup of Sn. Thus a group homomorphism is determined by choosing
n permutations xi = φ(γi), i = 1, ..., r and satisfying the relations

(1) G = ⟨x1, x2, ..., xr⟩

(2)
r∏

i=1

xi = 1, xi ∈ G# = G \ {1}, i = 1, ..., r

(3)
r∑

i=1

ind xi = 2(n+ g − 1)

where ind x = n − orb(x), orb(x) is the number of orbits of the group generated by x on Ω

where |Ω| = n. Equation (3) is called the Riemann Hurwitz formula. A transitive subgroup
G ≤ Sn is called a genus g group if there exist x1, ..., xr ∈ G satisfying (1), (2) and (3) and
then we call (G,Ω, S) a genus g system. If the action of G on Ω is primitive, we call G a
primitive genus g group and (G,Ω, S) a primitive genus g system.

A genus g group corresponds to the existence of an n sheeted branched covering of the
Riemann sphere P1 by a Riemann surface X of genus g with r-branch points and monodromy
group G. Guralnick and Thompson have observed that the conjecture reduce to consideration
of genus g group where G acts primitively on Ω [5]. So the structure of G reduce into one of
the five cases by their maximal subgroups whose structure has been described by Aschbacher
and O’Nan-Scott Theorem [1].
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Theorem 1.1. [1] Suppose that G is a finite group and M is a maximal subgroup of G such
that ⋂

g∈G
Mg = 1

Let S be a minimal normal subgroup of G, let L be a minimal normal subgroup of S, and
let ∆ = {L = L1, L2, ..., Lm} be the set of the G-conjugates of L. Then L is simple, S =

⟨L1, ..., Lm⟩, G = MS and furthermore either

(A): L is of prime order p;
or L is a non abelian simple group and one of the following holds:

(B): F ∗(G) = S ×R, where S ∼= R and M ∩ S = 1;
(C1): F ∗(G) = S and M ∩ S = 1;
(C2): F ∗(G) = S and M ∩ S ̸= 1 = M ∩ L;
(C3): F ∗(G) = S and M ∩ S = M1 ×M2 × · · · ×Mm, where Mi = M ∩ Li, 1 ≤ i ≤ m.

As far as we know (see [12, 8, 7]), there are four types of classification of genus g system as
follows:

(1) Up to signature
(2) Up to ramification type
(3) Up to the braid action and diagonal conjugation by Aut(G)

(4) Up to the braid action and diagonal conjugation by Inn(G).

The weakest classification is up to signature and the strongest one is up to the braid action
and diagonal conjugation by Inn(G), because it includes all 1,2 and 3.

In [12, 13, 5, 3], they have classified these cases (A),(B),(C1),(C2),(C3) up to signatures for
genus zero. In [8, 9], they have produced a complete list of affine primitive genus 0, 1 and 2
groups up to the braid action and diagonal conjugation by Inn(G). In [13], Shih shows that
G cannot be a group of genus zero if it satisfies Theorem 1.1 (B).

In this paper, we consider the case (B) of Theorem 1.1 for genus g where g = 1, 2. The
permutation representation of G on the coset space Ω = G/M is primitive. We show that G

possesses genus 1 or 2 group. It can be seen in the following results.

Theorem 1.2. Up to isomorphism, there exist one primitive genus one group satisfies Theorem
1.1 (B) and this group is represent on Ω by right multiplication. The corresponding primitive
genus one group is enumerated in Table 5.

Theorem 1.3. Up to isomorphism, there exist two primitive genus two groups satisfy Theorem
1.1 (B) and these groups are represent on Ω by right multiplication. The corresponding
primitive genus two groups are enumerated in Table 6.
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This work gets done by both the proof in group theory and calculations of GAP (Groups,
Algorithms, Programming) software. So far the library of GAP contains all primitive actions
whose degree are less than or equal to 4096. A calculation shows, there is exactly 4 and 8
braid orbits of primitive genus 1 and 2 groups of diagonal type respectively. The degree and
the number of the branch points are given in Tables 1 and 2.

Table 1. Primitive Genus One Groups: Number of Components

Degree
Number of Group
up to Isomorphsim

Number of
Ramification Types

Number of connected
components, r = 3

Number of connected
components, total

168 1 2 4 4

Table 2. Primitive Genus Two Groups: Number of Components

Degree
Number of Group
up to Isomorphsim

Number of
Ramification Types

Number of connected
components, r = 3

Number of connected
components, r = 4

Number of connected
components, total

60 1 1 0 1 1

168 1 1 7 - 7

Totals 2 2 7 1 8

Our paper is organized as follows. In section 2, we show that the existence the genus one or
two groups of diagonal type up to signatures. In section 3, we give our algorithm and explain
an example as appliction of it. In section 4, for the groups whose possesses genus one or two,
we show the connectedness of the Hurwitz space.

2. Classification up to signature

Let Ω be a finite set of size n. For x ∈ G, S ⊆ G#, define U(x) = c(x)
n , where c(x) denotes

the number of orbits on Ω. N(x) = f(x)/n, M(x) = max{N(g) : g ∈ ⟨x⟩#}, f(x) = |Fix(x)| is
the number of the set of fixed points of x on Ω and d is the order of x. Also, U(S) =

∑
x∈S U(x)

and r = |S|. The general form of Riemann Hurwitz formula is
∑r

i=1 c(xi) = (r−2)n+2(1−g),
that is U(S) =

∑r
i=1

c(xi)
n = (r − 2) + 2(1−g)

n . The signature of the r-tuple (x1, ..., xr) is the
r-tuple (d1, ..., dr) where o(xi) = di. The following lemma can be found in [13].

Lemma 2.1. Let x be a permutation of Ω and d = o(x). Then

(1) c(x) = 1
d{

∑
d
s
φ(ds )f(x

d)} where φ is the Eular function.
(2) U(x) ≤ 1

d{1 +M(x)(d− 1)}.
(3) c(x) ≤ c(xi), U(x) ≤ U(xi), f(x) ≤ f(xi).
(4) For any x ̸= 1,M(x) ≤ 1

10 and U(x) ≤ 3
5 .

(5) U(x) ≤ 7
20 ,

11
30 for o(x) ≥ 4, o(x) = 3 respectively.

(6) U(x) ≤ 8
15 for o(x) = 2, unless L = A5, t = 1, x acts on L as an outer involution and

in which case U(x) ≤ 11
20 .
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The following result is an interesting tool to eliminate some signatures which cannot generate
G.

Proposition 2.2. [6] Assume that a group G acts transitively and faithfully on Ω and |Ω| = n.
Let r ≥ 2, G = ⟨x1, ..., xr⟩,

∏r
i=1 xi = 1 and o(xi) = di > 1, i = 1, ..., r. Then one of the

following holds:

(1)
∑r

i=1
di−1
di

≥ 85
42 .

(2) r = 4, di = 2 for i = {1, 2, 3, 4} and G
′′
= 1.

(3) r = 3 and (up to permutation)(d1, d2, d3) =
(a): (3, 3, 3), (2, 3, 6) or (2, 4, 4) and G

′′
= 1.

(b): (2, 2, d) and G is dihedral.
(c): (2, 3, 3) and G ∼= A4.
(d): (2, 3, 4) and G ∼= S4.
(e): (2, 3, 5) and G ∼= A5.

(4) r = 2 and G is cyclic.

For the remaining of this paper, we assume that G is a group of genus 1 or 2 and satisfies
Theorem 1.1 (B). The next two results give the boundenss of the number of branch points
which is 3 except for L = A5 (in this case r = 4).

Lemma 2.3. If G is a primitive permutation group of genus 1 or 2 of diagonal type, then
r ≤ 4.

Proof. Recall that r−2 < U(S). By Lemma 2.1(4), r−2 < U(S) ≤ r.max{U(x) : x ∈ S} ≤ 3
5r.

This implies that r < 5. Hence r ≤ 4.

Lemma 2.4. If G is a primitive permutation group of genus 1 or 2 of diagonal type and
L ̸= A5, then r = 3.

Proof. By Proposition 2.2, we have d4 ≥ 3. By Lemma 2.1, we obtain U(S) ≤ 3. 815 + 11
20 < 2,

which is a contradiction. Thus r = 3.

It can be very hard to determine whether a set of signatures can generate the entire group
in group theory. We know that each signature corresponds to some tuples. So one can use
computational tool (via double cosets) to determine a tuple length 3 generate the entire group
or not. The program exists in [9].

Lemma 2.5. The group A2
5 possesses genus 2 system.
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Table 3. Indices of A2
5

d = |x| 2 3 5 h

f(x) 4 3 5 0

ind x 28 38 44 (h− 1/h)n

Table 4. Indices of L2(7)
2.2

d = |x| 2 3 4 6 7 8 h

f(x) 6,8 3 4 3 4 7 0

ind x 81,80 110 122 137 143 138 (h− 1/h)n

Proof. From Table 3, we obtain the following signatures (2,2,2,2),(3,3,3),(2,3,6),(3,3,5),(2,5,5),
(2,3,10),(2,5,6),(2,5,15) and (2,2,2,3) for genus 1 and 2 system. The first three signatures
cannot generate G, by Proposition 2.2. The signatures (2,3,10) and (2,5,15) cannot generate
the group because Aut(A5) doesn’t contain elements of order 10 and 15. We left with the
following signatures (3,3,5),(2,5,5),(2,5,6) and (2,2,2,3). Finally, the direct computation shows
that the signatures (3,3,5),(2,5,5),(2,5,6) cannot generate G that is they do not satisfy Equation
(1), however (2,2,2,3) generates G for genus 2. This completes the proof.

Lemma 2.6. The group L2(7)
2.2 possesses genus 1 system if n = 168.

Proof. Recall that
∑r

i=1 ind xi = 2(n+ g − 1). If g = 1 and n = 168, then r ≤ 4. From Table
4, we have the following signatures (2,2,2,2),(2,4,4),(2,3,6),(2,3,7) and (2,3,8). The first three
signatures cannot generate G, by Proposition 2.2. The computation shows that the signature
(2,3,8) generates G, but (2,3,7) cannot. This completes the proof.

Lemma 2.7. The group L2(7)
2.22 possesses genus 2 system if n = 168.

Proof. The proof is similar as Lemma 2.6.

The remaining primitive permeation groups of diagonal type do not possesses genus one or
two. Some of these groups are L2(13)

2, L2(7)
2, L2(17)

2, A2
6, A

2
7, L2(8)

2, L2(19)
2, L2(11)

2, A3
5,

L2(16)
2, . . . .
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3. Algorithm and Example

Tables 5 and 6 contain our results . To obtain these tables we need to do the following
steps:

• We extract all primitive permutation group G by using the GAP function
AllPrimitiveGroups(DegreeOperation,n).

• One can check which primitive group satisfy Theorem 1.1 (B) by using the GAP
function
ONanScottType.

• For the diagonal group G, compute the conjugacy class representatives and permuta-
tion indices on n points.

• For given n, g and G we use the GAP function RestrictedPartions to compute all
possible ramification types satisfying the Riemann-Hurwitz formula.

• Compute the character table of G if possible and remove those types which have zero
structure constant.

• We use the class names from the Atlas notion of finite groups.
• For the genearting tuples of length at least 4, we use MAPCLASS package to compute

braid orbits see Example 3.1
• For the genearting tuples of length 3 determine braid orbits via double cosets [9].

The next example show that how to compute the ramification types and braid orbits for
the group Alt(5)2.

Example 3.1. LoadPackage( "mapclass", false );
gap> rts:=[];; N:=60;;
gap> a:=AllPrimitiveGroups(DegreeOperation,N);
[ Alt(5)^2, Alt(5)^2.2, Alt(5) wreath Sym(2), Alt(5) wreath Sym(2),
Alt(5)^2.2^2, PSL(2,59), PGL(2,59), A(60), S(60) ]
gap> g:=grps[1];;
gap> reps:= List( ConjugacyClasses( g ), Representative );;
gap> orders:= List( reps, Order );;
gap> Ind:= pi -> NrMovedPoints( pi ) - Sum( CycleStructurePerm( pi ), 0 );;
gap> ind:= List( reps, Ind );
[ 0, 30, 48, 48, 40, 30, 28, 54, 54, 50, 48, 54, 44, 48, 56, 48,
54, 48, 44, 56, 40, 50, 56, 56, 38 ]
gap> cand:= RestrictedPartitions( 2*N-2, Set( ind{ [ 2 .. Length( ind ) ] } ) );;
gap> for l in cand do
UniteSet( rts, Set( Cartesian( List( l, x -> Positions( ind, x ))),SortedList)); od;
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gap> Length(rts);
53
gap> cand:=rts[39];
[ 7, 7, 7, 25 ]
gap> orbs:= GeneratingMCOrbits( g, 0, reps{ cand } : OutputStyle:= "silent" );;
gap> Length(orbs);
1
gap> tup:= orbs[1].TupleTable[1].tuple;;

The group g is primitive genus 2 group because it satisfies Equations (1),(2) and (3) respec-
tively.

gap> g=Group(tup);
true
gap> Product(tup);
()
gap> Sum( List( tup, Ind ) );
122

4. Connectedness of Hin
r,g(G,C)

The details of the relationship between the braid orbits on the Nielsen classes N (C) and
the connected components of the hurwitz space Hin

r,g(G,C) can be found in section two in [11].
The multi set of non trivial conjugacy classes C = {C1, ..., Cr} in G is called the ramification
type of the G-covers X. In general, to show that whether or not Hr(G,C) is connected is an
open problem both computationally and theoretically for any finite group G. There are several
well known results for some special groups in [8, 11]. For a given finite group and given type,
there is a package which is called the MAPCLASS. It will be used to compute braid orbits.
So we can show that the Hurwitz space Hr(G,C) is connected or not for given group which
satisfy (B) of Theorem 1.1 for genus 1 and 2. To do this, one needs to find corresponding
braid orbits which corresponds to the connected components Hr(G,C) of G-curves X such
that g(X/G) = 0.

Table 5. Primitive Genus One Groups

degree group ramification type Number of orbits Length of orbits

168 L2(7)2.2 (2D,3C,8H) 2 1

(2D,3C,8D) 2 1

Now, we present some results which shows the connectedness of the Hurwitz space for given
groups.
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Table 6. Primitive Genus Two Groups

Degree group ramification type Number of orbits Length of orbits

60 A2
5 (2C,2C,2C,3C) 1 288

168 L2(7)2.22 (2B, 4D, 6E) 7 1

Proposition 4.1. If G is a finite group satisfies Theorem 1.1 (B) and G is represent on Ω

by right multiplication, r ≥ 4 and g = 2 then Hin
r,g(G,C) is connected.

Proof. Since we have just one braid orbit for all types C and the Nielsen classes N (C) are the
disjoint union of braid orbits. From [14, Proposition 10.14], we obtain that the Hurwitz space
Hin

r,2(G,C) is connected.

Proposition 4.2. If G is a finite group satisfies Theorem 1.1 (B) and G is represent on Ω

by right multiplication, r = 3 and g = 1, 2 then Hin
r,g(G,C) is disconnected.

Proof. Since we have at least two braid orbits for some type C and the Nielsen classes N (C)

are the disjoint union of braid orbits. From [14, Proposition 10.14], we obtain that the Hurwitz
space Hin

r,g(G,C) is disconnected.
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