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HOPFCITY AND JACOBSON SMALL SUBMODULES

ABDERRAHIM EL MOUSSAOUY∗

Abstract. The study of modules by properties of their endomorphisms has long been of

interest. In this paper, we introduce the notion of jacobson weakly Hopfian modules. It is

shown that over a ring R, every projective (free) R-module is jacobson weakly Hopfian if and

only if R has no nonzero semisimple projective R-module. Let L be a module such that L

satisfies ascending chain conditions on jacobson-small submodules. Then it is shown that L is

jacobson weakly Hopfian. Some basic characterizations of projective jacobson weakly Hopfian

modules are proved.

1. Introduction

Throughout this paper all rings have identity and all modules are unitary right modules.
Let L be an R-module, for submodules X and Y of L, X ≤ Y denotes that X is a submodule
of Y , X ≤⊕ L denotes that X is a direct summand of L, Rad(L) denote the radical of L and
EndR(L) denote the ring of endomorphisms of L.
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Recall that a submodule K of an R-module L is said to be small in L, if for every submodule
H ≤ L with K + H = L implies H = L, and in this case we write K ≪ L. The socle of
L is defined as the sum of all its simple submodules and can be shown to coincide with the
intersection of all the essential submodules of L. It is a fully invariant submodule of L. Note
that L is semisimple precisely when L = Soc(L) (see [1]). The radical of an R-module L

defined as a dual of the socle of L, is the intersection of all maximal submodules of L, taking
Rad(L) = L when L has no maximal submodules. A submodule K of L is said to be jacobson-
small in L (K ≪J L), in case L = K +H with Rad(L/H) = L/H, implies L = H (see [7]).
It is clear that if A is a small submodule of L, then A is a jacobson-small submodule of L,
but the converse is not true in general. By [7], if Rad(L) = L and K ≤ L, then K is small in
L if and only if K is jacobson-small in L. For a right R-module L, Talebi and Vanaja [13],
defined the submodule Z(L) = ∩{Kerf : f ∈ Hom(L,N), N ∈ S} = ∩{K ⊂ L,L/K ∈ S}
as a dual of singular submodule, where S denotes the class of all small right R-modules. A
module L is called cosingular (resp. noncosingular) if Z(L) = 0 (resp. Z(L) = L). Recall that
a submodule N of L is said to be γ-small in L (denoted by N ≪γ L), if L = N +X with L/X

noncosingular implies L = X. In other words, L ̸= N +X for every proper submodule X of L
with L/X noncosingular ( see [8]). A submodule K of an R-module L is said to be δ-small in
L, written K ≪δ L, if for every submodule N of L such that K +N = L with L/N singular
implies N = L (see [16])

The concept of Hopfian modules has been extensively studied in the literature. Recall that
a module L is said to be Hopfian if every surjective endomorphism of L is an automorphism
(see [6]), and a module L is said to be co-Hopfian if every injective endomorphism of L

is an automorphism (see [14]). In [5], a proper generalization of Hopfian modules, called
generalized Hopfian modules, was given. A right R-module L is called generalized Hopfian, if
any surjective endomorphism of L has a small kernel. In [15], an other proper generalization
of Hopfian modules, called weakly Hopfian modules, was given. A right R-module L is called
weakly Hopfian, if any small surjective endomorphism of L is an automorphism. It is clear
that a right R-module L is Hopfian if and only if L is both generalized Hopfian and weakly
Hopfian. In [4], the concept of γ-Hopfian modules was investigated. A right R-module L is
called γ-Hopfian if any surjective endomorphism of L has a γ-small kernel. In [3], the concept
of δ-weakly Hopfian modules was introduced. A right R-module L is called δ-weakly Hopfian if
any δ-small surjective endomorphism of L is an automorphism. In [2], the concept of jacobson
Hopfian modules was studied. A right R-module L is called jacobson Hopfian if any surjective
endomorphism of L has a jacobson-small kernel. Such modules and others generalizations have
been considered by many authors ([2, 3, 4, 5, 6, 14, 15]).
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Motivated by the above-mentioned works, we are interested in introducing a new generaliza-
tion of Hopfian modules namely jacobson weakly Hopfian modules. We call a module jacobson
weakly Hopfian if any its jacobson-small surjective endomorphism is an automorphism, which
implies that a right R-module L is Hopfian if and only if L is both jacobson Hopfian and
jacobson weakly Hopfian.

Therefore, we obtain the following diagram:

HopfianNoetherian

generalized Hopfian and weakly Hopfian

jacobson Hopfian and jacobson weakly Hopfian

The paper is organized as follows:
In Section 2, some basic characterizations of projective jacobson weakly Hopfian modules

are proved in (Theorem 2.6). It is proved that a projective module L is jacobson weakly
Hopfian if and only if whenever f ∈ EndR(L) has a right inverse and Ker(f) is semisimple,
then f has a left inverse in EndR(L). We show also that if every projective (free) R-module
is jacobson weakly Hopfian if and only if R has no nonzero semisimple projective R-module
(Theorem 2.7).

In [15], Yongduo Wang proved that if the ACC holds on small submodules of L, then L

is weakly Hopfian. In [3], El Moussaouy, Moniri Hamzekolaee, Ziane and Khoramdel showed
that if the ACC holds on δ-small submodules of L, then L is δ-weakly Hopfian. Also we know
that Noetherian modules are Hopfian modules. Thus it is natural to prove that if the ACC
holds on jacobson-small submodules of L, then L is jacobson weakly Hopfian (Theorem 2.20).

At the end of the paper, some open problems are given.
We list some properties of jacobson-small submodules that will be used in the paper.

Lemma 1.1. [2] Let L be an R-module and K ≤ L. The following are equivalent.

(1) K ≪J L.
(2) If X +K = L, then L = X ⊕H for a semisimple submodule H of L.

Lemma 1.2. [7].
Let L = L1 ⊕L2 be an R-module and let A1 ≤ L1 and A2 ≤ L2. Then A1 ⊕A2 ≪J L1 ⊕L2

if and only if A1 ≪J L1 and A2 ≪J L2.

2. Modules whose jacobson-small surjective endomorphisms are isomorphism

Motivated by the definition of Hopfian modules and the definition of δ-weakly Hopfian
modules, we introduce the key definition of this paper.
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Definition 2.1. Let L be an R-module. We say that L is jacobson weakly Hopfian if any
jacobson-small surjective endomorphism of L is an automorphism.

The following example introduces a module which is not jacobson weakly Hopfian.

Example 2.2. There exists a jacobson-small epimorphism which is not an isomorphism. Let
G = Zp∞ , since in G every proper subgroup is jacobson-small, so every surjective endomor-
phism of G has a jacobson-small kernel, but the multiplication by p induces an epimorphism
of G which is not an isomorphism.

Lemma 2.3. For a nonzero module L, the following statements are equivalent.
(i) L is jacobson weakly Hopfian;
(ii) L/K ∼= L for any jacobson-small submodule K of L if and only if K = 0.

Proof. (i) ⇒ (ii) Suppose L ∼= L/K for some K ≪J L. Let φ : L/K → L be an isomorphism
and π : L → L/K the canonical epimorphism. Then the map φπ is an epimorphism with
Ker(φπ) = K. Then φπ is a jacobson-small epimorphism. So φπ is an isomorphism by (i),
and so K = 0.

(ii) ⇒ (i) Let f : L → L be a jacobson-small epimorphism. Then L ∼= L/Ker(f) by first
isomorphism theorem. From (ii), we get Ker(f) = 0. This shows f is an isomorphism. Hence
L is jacobson weakly Hopfian.

Proposition 2.4. Let L be a jacobson weakly Hopfian module. If L ∼= L ⊕ N for some
semisimple module N , then N = 0. Moreover, if L is projective, then the converse holds.

Proof. Let L be a jacobson weakly Hopfian module and L ∼= L ⊕ N for some semisimple
module N . It is easy to see that L ∼= K ⊕ H where K ∼= N and H ∼= L. Note that K is
a jacobson-small submodule of L as N is semisimple by Lemma 1.1. Since L/K ∼= H ∼= L,
K = 0 by Lemma 2.3.

For the moreover statement, assume that L is projective and f is a surjective endomorphisme
of L, where Ker(f) ≪J L. Then L = Kerf⊕T , where T ≤ L and T ∼= L. Since Ker(f) ≪J L,
we have L = P ⊕ T where P is a semisimple submodule of Ker(f), by Lemma 1.1. Now,
modular law implies that Ker(f) = P . Therefore L ∼= Ker(f) ⊕ L and Kerf is semisimple.
Hence Ker(f) = 0 and L will be a jacobson weakly Hopfian module.

Proposition 2.5. Let R be a semisimple artinian ring. Then a free R-module F is jacobson
weakly Hopfian if and only if it has finite rank.
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Proof. Let F be a free R-module jacobson weakly Hopfian. If F has infinite rank, then RN is
jacobson weakly Hopfian (because RN is a direct summand of F ). Since RN ∼= RN ⊕ RN and
RN ̸= 0, it is impossible, by Proposition 2.4. Hence F has finite rank. Conversely, If F has
finite rank, then it is Hopfian and so it is jacobson weakly Hopfian.

In the following, we explore some basic characterizations of projective jacobson weakly
Hopfian modules.

Theorem 2.6. Let L be a projective R-module and f ∈ EndR(L). Then the following state-
ments are equivalent:

(1) L is jacobson weakly Hopfian.
(2) If f has a right inverse and Ker(f) is semisimple, then f has a left inverse in EndR(L).
(3) If f has a right inverse and Ker(f) ≪J L, then f has a left inverse in EndR(L).
(4) If f has a right inverse g and (1− gf)L ≪J L, then f has a left inverse in EndR(L).
(5) If f is a surjective endomorphism and Ker(f) is semisimple, then f has a left inverse

in EndR(L).

Proof. If L is projective and f ∈ EndR(L), then f is a surjective endomorphism if and only if
f has a right inverse g. Therefore Ker(f) = (1− gf)L and L = Ker(f)⊕ (gf)L.

(1) ⇒ (2) If f has a right inverse g, then fg = 1. Since Ker(f) ≤⊕ L, it is projective.
Hence L ∼= L⊕Kerf where Kerf is semisimple. Now by Proposition 2.4, Ker(f) = 0.

(2) ⇒ (3) Suppose that f has a right inverse and Ker(f) ≪J L. Since Ker(f) ≤⊕ L,
Ker(f) is semisimple. Therefore f has a left inverse in EndR(L).

(3) ⇒ (4) It is clear, because Ker(f) = (1− gf)L ≪J L

(4) ⇒ (5) It is clear, because Ker(f) = (1−gf)L ≪J L if and only if Ker(f) is semisimple.
(5) ⇒ (1) Let f be a surjective endomorphism of L and Ker(f) ≪J L. Since L is projective,

f has a right inverse g and Ker(f) = (1−gf)L ≤⊕ L. Hence Ker(f) is semisimple. Therefore
by (5), f has a left inverse and it is an automorphism.

Theorem 2.7. Let R be a ring. Then the following statements are equivalent:

(1) Every projective R-module is jacobson weakly Hopfian.
(2) Every free R-module is jacobson weakly Hopfian.
(3) Every maximal right ideal of R is essential in RR.
(4) R has no nonzero semisimple projective R-module.

Proof. (1) ⇒ (2) Is clear.
(2) ⇒ (1) Is clear by Proposition 2.14
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(1) ⇒ (3) Assume that m is a maximal right ideal of R. Then either m is a direct summand
of RR or it is essential in RR. If m is a direct summand of RR, then L = (R/m)(N) is semisimple
and projective. Therefore L is jacobson weakly Hopfian by (1). Since L ∼= L ⊕ L, L = 0, by
Proposition 2.4, which is impossible, and so m is essential in RR.

(3) ⇒ (4) Is clear.
(4) ⇒ (1) Assume that L is a projective module and f : L → L is an epimorphism where

Ker(f) ≪J L. Since L is projective, there existe an endomorphism g of L which makes the
following diagram commutative.

LL 0

L

f

idg

Therefore, fg = id and L = Kerf ⊕ Img. Since Ker(f) ≪J L, then by Lemma 1.1,
L = N ⊕Img, for some semisimple submodule N of Ker(f). And N is projective, as N ≤⊕ L.
Hence by modular law Ker(f) = N ⊕ (Im(g) ∩ Ker(f)) = N . Since R has no nonzero
semisimple projective R-module, N = 0, hence Kerf = 0. Therefore f is an automorphism
and L is jacobson weakly Hopfian.

Recall that a ring R is a right GV -ring provided every simple R-module is either projective
or injective. It is known that R is a right GV -ring if and only if every simple singular R-
module is injective (see [10]). A ring R is called CP in case every cosingular right R-module
is projective. A ring R is right GV if and only if every small right R-module is projective (see
[11]).

Corollary 2.8. Let L be an R-module. Then the following statements hold.

(1) If R is right GV , then every indecomposable small right R-module is jacobson-weakly
Hopfian.

(2) If R is right CP , then every indecomposable cosingular right R-module is jacobson-
weakly Hopfian.

Recall that a ring R is right CD if and only if every cosingular right R-module is discrete
(see [12]).

Proposition 2.9. [12, Proposition 2.26] Let R be a commutative domain. Then the following
are equivalent:

(1) R is CD;
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(2) Every cosingular R-module is projective.

Corollary 2.10. Let R be a commutative domain and L an R-module. If R is right CD, then
every indecomposable cosingular right R-module is jacobson-weakly Hopfian.

Proposition 2.11. Let L be an R-module. If L/N is jacobson weakly Hopfian for any nonzero
jacobson-small submodule N of L, then L itself is jacobson-weakly Hopfian.

Proof. If L is not jacobson weakly Hopfian. Then there exists a jacobson-small surjection
f of L which is not an isomorphism, and f induces an isomorphism g : L/Kerf → L. If
π : L → L/Kerf denotes the canonical quotient morphism, then πg : L/Kerf → L/Kerf is
a jacobson-small surjection which is not an isomorphism. This is a contradiction.

Example 2.12. Let P be a set of all primes and Q/Z =
⊕

p∈P Zp∞ . If
⊕

p∈P Zp∞ is jacobson
weakly Hopfian Z-module, hence Zp∞ is jacobson weakly Hopfian by Proposition 2.14, con-
tradiction with example 2.2. Then Q/Z is not jacobson weakly Hopfian, but Q is jacobson
weakly Hopfian Z-module.

Proposition 2.13. Let L be a quasi-projective module, if L is co-Hopfian, then it is jacobson
weakly Hopfian.

Proof. Let f : L → L be a jacobson-small surjective endomorphism, since L is quasi-projective,
there exists g : L → L, such that fg = idL, then g is a injective endomorphism, since L is
co-Hopfian, so g is automorphism, which shows that f is an automorphism, then L is jacobson
weakly Hopfian.

Proposition 2.14. Any direct summand of a jacobson weakly Hopfian module L is jacobson
weakly Hopfian.

Proof. Let K ≤⊕ L. Then there exists N a submodule of L such that L = K ⊕ N . Let
f : K → K be a jacobson-small surjective endomorphism of K, then f induces a surjective
endomorphism of L, f ⊕ 1N : L → L with (f ⊕ 1N )(k + n) = f(k) + n, where k ∈ K and
n ∈ N . Thus by lemma 1.2, Ker(f ⊕ 1N ) = Ker(f) ⊕ 0 ≪J K ⊕ N . Since L is jacobson
weakly Hopfian, f ⊕ 1N is automorphism of L and hence f is an automorphism of K, then K

is jacobson weakly Hopfian.

The next result gives a condition that a direct sum of two jacobson weakly Hopfian modules
is jacobson weakly Hopfian.
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Proposition 2.15. Let L = L1 ⊕ L2 and let L1, L2 be fully invariant submodules under any
surjection of L. Then L is jacobson weakly Hopfian if and only if L1, L2 are jacobson weakly
Hopfian.

Proof. ⇒) Clear by Proposition 2.14.
⇐) Let f : L → L be a jacobson-small epimorphism, then f |Li : Li → Li where i ∈ {1; 2},

is a jacobson-small surjection. By assumption, f |Li is automorphism. Let f(x1 + x2) = 0,
then f(x1) + f(x2) = 0 and so x1 = x2 = 0. Thus f is injective. Then L is jacobson weakly
Hopfian.

Definition 2.16. [9] A module L is called duo, provided that every submodule of L is fully
invariant.

Corollary 2.17. Let L = L1⊕L2 be a duo module. Then L is jacobson weakly Hopfian if and
only if L1 and L2 are jacobson weakly Hopfian.

It is clear that every jacobson weakly Hopfian module is weakly Hopfian. The following
examples shows that the converse is not true, in general.

Example 2.18. Note that L = Z6 is a semisimple Z-module. Since for any semisimple
module L we have Rad(L) = 0, so any proper submodule is jacobson-small in L. Hence L

is not jacobson weakly Hopfian. But L has non nonzero small submodule, then L is weakly
Hopfian.

Lemma 2.19. Let M , N and L be modules. If f : M → N and g : N → L are two
jacobson-small epimorphisms. Then gf is jacobson-small epimorphism.

Proof. Suppose that Kergf + K = M , with Rad(M/K) = M/K, then Kerg + f(K) =

f(M). As Rad(M/K) = M/K and f(Rad(M/K)) ⊆ Rad(f(M/K)). Hence f(M/K) =

f(M)/f(K) ⊆ Rad(f(M)/f(K)). Then Rad(f(M)/f(K)) = f(M)/f(K). And since
Kerg ≪J f(M) = N , f(M) = f(K), then M = Kerf + K. Since Kerf ≪J M and
Rad(M/K) = M/K, M = K. Thus gf is jacobson-small epimorphism.

Theorem 2.20. Let L be an R-module with ACC on jacobson-small submodules. Then L is
jacobson weakly Hopfian.

Proof. Let L be an R-module and f : L → L be a jacobson-small epimorphism of L. Then
Kerf ⊆ Kerf2 ⊆ ... ⊆ Kerfn ⊆ ... is an ascending chain of jacobson-small submodules of L
by Lemma 2.19. Since L satisfies the ACC on jacobson-small submodules, then there exists a
positive number n such that Kerfn = Kerfn+1. Let x ∈ Kerf , then f(x) = 0. Since f is an
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epimorphism, there exists x1 ∈ L such that f(x1) = x. Since f is an epimorphism, there exists
x2 ∈ L such that f(x2) = x1. Repeating the process, we obtain xn−1 ∈ L with f(xn) = xn−1.
Thus

x = f(x1) = f2(x2) = ... = fn(xn).

Since x ∈ Kerf , 0 = f(x) = f(fn(xn)), that is, fn+1(xn) = 0. So xn ∈ Kerfn+1 = Kerfn.
Consequently, fn(xn) = 0 and hence x = 0, so Kerf = 0 and f is an isomorphism. Then L is
jacobson weakly Hopfian.

Open Problems

(1) What is the structure of rings whose finitely generated right modules are jacobson
weakly Hopfian?

(2) Let R be a ring with identity, and M a jacobson weakly Hopfian module. Is M [X,X−1]

jacobson weakly Hopfian in R[X,X−1]-module?
(3) Let R be a jacobson weakly Hopfian ring and n ≥ 1 an integer. Is the matrix ring

Mn(R) jacobson weakly Hopfian?
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