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THE MINIMUM EDGE DOMINATING ENERGY OF THE CAYLEY
GRAPHS ON SOME SYMMETRIC GROUPS
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Abstract. The minimum edge dominating energy of a graph G is defined as the sum of the

absolute values of eigenvalues of the minimum edge dominating matrix of G. In this paper,

for some finite symmetric groups Γ and subset S of Γ, the minimum edge dominating energy

of the Cayley graph of the group Γ, denoted by Cay(Γ, S), is investigated.

1. Introduction

Throughout the paper, we consider G = (V,E) as a simple graph with the vertex set
V = {v1, . . . , vn} and the edge set E = {e1, . . . , em}. The number of edges connected to vertex
vi ∈ V is called the degree of vi and denoted by di. For two vertices u and v in graph G,
if du = 0 and dv = 1, then u and v are called the isolated vertex and pendant vertex in the
graph, respectively. Graph G is r-regular if the degree of all vertices is r.
For graph G, the adjacency matrix A(G) = (aij) of the order n is defined as aij = 1 if vivj ∈ E
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and aij = 0 otherwise. The number of non-zero eigenvalues of G is called the rank of G and is
denoted by r = rank(A(G)). The eigenvalues of graph G are the eigenvalues of the adjacency
matrix A(G) [17]. Assume that λi is the eigenvalue of a graph G with multiplicity mi for
1 ≤ i ≤ t. The spectrum of the graph G is as follows

Spec(G) =

 λ1 . . . λt

m1 . . . mt


One of the effective topological indices in graph theory that has many applications in molec-

ular structures is graph energy. Ivan Gutman 1978 introduced the energy of a graph G which
is the sum of the absolute eigenvalues of G [16]. The energy of line graph G is called the
edge energy, denoted by EE(G) [6]. The line graph of G, denoted by L(G) is the graph with
the vertex set V (L(G)) = E(G) and two vertices of L(G) are adjacent if and only if their
corresponding edges are incident in G [17].
The dominating set of graph G is a subset D of V if every vertex of V \D is adjacent to some
vertices in D [17]. The minimum dominating set of G is any dominating set with minimum
cardinality. In [28], the minimum dominating matrix AD(G) is defined. Also, the authors
introduced the minimum dominating energy of graph G, denoted by ED(G), which is the sum
of the absolute values of eigenvalues of matrix AD(G). F ⊆ E is the edge dominating set
of graph G if every edge e ∈ E \ F is adjacent to some edges in F . The edge domination
number, denoted by γ′(G) is an edge dominating set of G with the minimum cardinality [14].
Obviously, F is the edge dominating set of graph G if and only if F is the dominating set for
its line graph. In [1], the minimum edge dominating energy of graph G, denoted by EEF (G)

is defined as the sum of the absolute values of eigenvalues of matrix AF (G) in which the
minimum edge dominating matrix AF (G) is as follows

AF (G) = (aij) =


1 if ei and ej are adjacent,

1 if i = j and ei ∈ F,

0 otherwise.

For more study of the minimum edge dominating energy of graphs, the reader is referred
to [1, 25, 24, 26]. In [9], the minimum edge dominating energy of some Cayley graphs for the
finite group Sn are investigated. Chokani et al. [10] are obtained the graph energy, Laplacian
energy, signless Laplacian energy, edge energy and the minimum edge dominating energy of
Γ(R) for the commutative rings R.
Arthur Cayley in 1878, first defined the Cayley graph on the finite groups[7]. Let Γ be a
finite group and S ⊆ Γ \ {1} such that S = S−1. The Cayley graph G(V,E) = Cay(Γ, S)

is an undirected and simple graph with the vertex set V (G) = Γ and the edge set E(G) =
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{(x, y) |xy−1 ∈ S}. A Cayley graph Cay(Γ, S) is a connected graph if and only if S is the
generating subset of Γ [4]. The Cayley graphs are the relation between group theory and graph
theory that have many applications in the different sciences [29].
In this paper, we investigate the minimum edge dominating energy of Cayley graphs of two
symmetric groups namely, the dihedral groups D2n and the symmetric group Zn.
In this paper, Kn and Cn are denoted for a complete graph and cycle of the order n, respec-
tively. Two graphs G1 and G2 are called isomorphic, denoted by G1 ≃ G2 if there is a bijective
correspondence between their vertices and edges.

2. Preliminaries

In this section, we recall some useful results which will be needed in the proofs of our main
results.

Lemma 2.1. [1] If Cn is a cycle of the order n ≥ 3, then EEF (Cn) = ED(Cn).

Lemma 2.2. [25] Let G be a graph of order n and size m whose vertices have degree di for
i = 1, . . . , n. If F is the minimum edge dominating set of G with cardinality k, then

EEF (G) ≤
n∑

i=1

d2i −m.

Lemma 2.3. [25] Let G be a graph of order n with m edges. If F is the minimum edge
dominating set of G with cardinality k, then EEF (G) ≤ 4m− 2n+ k.

Lemma 2.4. [25] Let G be a graph of order n with m ≥ n edges. If F is the minimum edge
dominating set of G, then EEF (G) ≥ 4(m − n + s) + 2p, where p and s are the number of
pendant and isolated vertices in G.

Lemma 2.5. [25] Let G be a regular graph of degree r ≥ 2 with n vertices and m = rn
2 edges.

If F is the minimum edge dominating set with cardinality k, then

(i) If r = 2, then EEF (G) ≤ E(G) + k,
(ii) If r > 2, then EEF (G) < E(G) + k + 2n(r − 2).

Lemma 2.6. [25] Let G be a bipartite graph of order n with m ≥ 1 edges and rank r. Then
EEF (G) ≥ 2

(
E(G)− r

)
.

Lemma 2.7. [8] Let G be a graph of order n and γ′ be the minimum edge dominion number
of G. Then γ′ ≤ ⌊n2 ⌋.

Lemma 2.8. [25] Let G be a connected graph of order n. If v+ is the number of the positive
eigenvalues of the matrix A(G), then EEF (G) ≥ 2E(G)− 4v+.
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Lemma 2.9. [21] Let G be a complete multipartite graph with minimum degree δ(G). Then
E(G) = 2δ(G).

Lemma 2.10. [13] If M1 and M2 are n×n real matrices, then E(M1+M2) = E(M1)+E(M2).

Lemma 2.11. [15] The graph energy of cycle Cn is given as follows

E(Cn) =


4cotπn if n ≡ 0(mod4),

4cscπn if n ≡ 2(mod4),

2cot π
2ncos

π
2n if n ≡ 1, 3(mod4).

3. Main Results

We first consider the unitary Cayley graph Xn. Let Zn = {0, 1, . . . , n − 1} be a additive
cyclic group of integers modulo n and Un = {a ∈ Zn : gcd(a, n) = 1} be the multiplicative
group of its units for n > 1. The unitary Cayley graph Xn = Cay(Zn, Un) is the Cayley graph
of group Zn on Un with the vertex set V (Xn) = Zn = {0, 1, . . . , n− 1} and E(Xn) = {(a, b) :
a, b ∈ Zn, gcd(a− b, n) = 1}. The graph Xn is |Un|-regular graph in which |Un| = φ(n) and φ

is the Euler function. Note that graph Xn has n vertices and nφ(n)
2 edges [11].

We obtain the minimum edge dominating energy of the unitary Cayley graph Xn. We first
state the following results of the unitary Cayley graph Xn.

Lemma 3.1. [19] For the unitary Cayley graph Xn, if n = pα, where α > 1, then Xn is the
complete p-partite graph Kpα−1,...,pα−1.

Lemma 3.2. [11] Let Xn be the unitary Cayley graph. If n is an even number, then Xn is a
bipartite graph.

Lemma 3.3. [18] Let n = pα1
1 . . . pαt

t where p1, . . . , pt are distinct primes and α1, . . . , αt are
positive integers. If Xn is the unitary Cayley graph, then E(Xn) = 2tφ(n).

Theorem 3.4. Let Xn be the unitary Cayley graph. If F is the minimum edge dominating
set of Xn with |F | = k, then

EEF (Xn) < φ(n)
(
2t + 2n

)
+ (k − 4n),

where φ(n) and t are the Euler function and the number of distinct prime factors dividing n,
respectively.

Proof. Assume that Xn is the unitary Cayley graph of order n and size m = nφ(n)
2 with the

degree φ(n) for all vertices. According to the parameters of Lemma 2.5 in the graph Xn,
m = nr

2 . Thus, we investigate EEF (Xn) for n ≥ 2.
If r = 2, then φ(n) = 2 and obviously n = 2. Therefore, Xn is the 2-regular graph with
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2 vertices and 2 edges. This is a contradiction with the definition of simple and undirected
graphs. So, Xn is the r-regular graph for r > 2.
Suppose that n = pα1

1 . . . pαt
t where pi’s and αi’s are distinct primes and positive integers,

respectively. Using Lemmas 3.10(ii) and 3.3, we get

EEF (Xn) < E(G) + k + 2n(r − 2)

= 2tφ(n) + k + 2n
(
φ(n)− 2

)
= φ(n)

(
2t + 2n

)
− 4n+ k.

Therefore, the result holds.

Corollary 3.5. Let Xn be the unitary Cayley graph where n = pα, for α > 1 and p is a prime.
If F is the minimum edge dominating set of Xn, then

EEF (Xn) < 2n
(
φ(pα)− 1

p
− 3

4

)
,

where φ(.) is the Euler function.

Proof. Let Xn be the φ(n)-regular graph of order pα and size pαφ(pα)
2 . Let F is the minimum

edge dominating set of Xn with |F | = k. Using Lemma 2.7, we have k ≤ ⌊n2 ⌋. The similar to
the proof of Theorem 3.4, we get

EEF (Xn) < 2φ(pα) + k + 2(pα)
(
φ(pα)− 2

)
≤ 2

(
pα − pα−1

)
+ 2(pα)

(
pα − pα−1 − 2

)
+ ⌊n

2
⌋

≤ 2pα − 2pα−1 + 2p2α − 2p2α−1 − 4pα +
n

2

= 2pα
(
pα − pα−1 − 1

p
− 1

)
+

n

2

= 2n
(
φ(pα)− 1

p
− 3

4

)
.

Therefore, the result completes.

Theorem 3.6. Let Xn be the unitary Cayley graph where n = pα, for α ≥ 1 and p a prime.
If F is the minimum edge dominating set of Xn, then

EEF (Xn) ≤ n
(4φ(n)− 3

2

)
.

Proof. According to the definition of the unitary graph, Xn is φ(pα)-regular graph of order
n and size m = nφ(n)

2 . For any vertex vi in graph Xn, deg(vi) = di = φ(n). Let F be the
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minimum edge dominating set of Xn.
By applying Lemmas 2.3 and 2.7, we get

EEF (Xn) ≤ 4m− 2n+ |F |

≤ 4
(nφ(n)

2

)
− 2n+ ⌊n

2
⌋

≤ 2
(
nφ(n)

)
− 3n

2

=
4nφ(n)− 3n

2
.

By simplifying the above inequality the result holds.

Theorem 3.7. Let Xn be the unitary Cayley graph where n = 2α, for α ≥ 1. If F is the
minimum edge dominating set of Xn, then

4(β − 1) ≤ EEF (Xn) ≤ β2
(
2β − 1),

where β = 2α−1 = n
2 .

Proof. Assume that Xn is the unitary Cayley graph of order n = 2α and size 22α−2 with the
degree 2α−1 for all vertices. By applying Lemma 2.2, we get

EEF (Xn) ≤
n∑

i=1

d2i −m

= n
(
φ(n)

)2 − nφ(n)

2

= nφ(n)
(
φ(n)− 1

2

)
= 2αφ(2α)

(
φ(2α)− 1

2

)
= 22α−1

(
2α−1 − 1

2

)
.(1)

With considering β = 2α−1 in (1), we have

EEF (Xn) ≤ 22α−1
(
2α−1 − 1

2

)
= 2β2

(
β − 1

2

)
= β2

(
2β − 1).

Thus, the result for the upper bound holds.
Since n = 2α, using Lemmas 3.1 and 3.2, graph Xn is the complete bipartite graph K2α−1,2α−1 .
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Therefore, rank(Xn) = 2. Using Lemmas 2.6 and 3.3, we get

EEF (Xn) ≥ 2
(
E(Xn)− rank(Xn)

)
= 2

(
2(2α−1)− 2

)
= 2

(
2α − 2

)
= 4(2α−1 − 1),

By putting β = 2α−1, the lower bound is obtained.

Now, we consider the Dihedral group D2n which is the finite group with 2n elements of
symmetries including rotations and reflections of regular polygon [2]. We first obtain the
minimum edge dominating energy of the Cayley graph of group D2n with respect to the
generating subset S = {b, ab, . . . , an−1b}. We recall the following result of the Cayley graph
Cay(D2n, S).

Lemma 3.8. [12] If D2n is the dihedral group of the order 2n, for n ≥ 3 and S =

{b, ad, . . . , an−1b} ⊆ D2n, then Cay(D2n, S) = Kn,n where Kn,n is the complete bipartite
graph.

Theorem 3.9. Let D2n be the dihedral group of the order 2n, where n ≥ 3 and S =

{b, ad, . . . , an−1b} ⊆ D2n be the generating subset of D2n. If F is the minimum edge dominating
set of the Cayley graph Cay(D2n, S) with cardinality k, then

EEF

(
Cay(D2n, S)

)
≤ 4n(n− 1) + k.

Proof. Let G be the Cayley graph Cay(D2n, S) of order 2n and size n2 for n ≥ 3 where
S = {b, ad, . . . , an−1b} ⊆ D2n. Using Lemma 3.8, G is the complete bipartite graph Kn,n.
Assume that F is the minimum edge dominating set of G such that |F | = k. Using Lemma
2.3, we get

EEF (G) ≤ 4m− 2n+ k

= 4(n2)− 2(2n) + k

= 4n2 − 4n+ k

= 4n(n− 1) + k.
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In the following result, we obtain the lower and upper bounds for the minimum edge domi-
nating energy of the Cayley graph Cay(D2n, S) where S = {b, ad, . . . , an−1b} ⊆ D2n in terms
of the number of elements of group D2n.

Theorem 3.10. Let Cay(D2n, S) be the Cayley graph of the dihedral group D2n on the subset
S = {b, ad, . . . , an−1b} ⊆ D2n where n ≥ 3. If F is the minimum edge dominating set of the
Cayley graph Cay(D2n, S), then

4n(n− 1) ≤ EEF

(
Cay(D2n, S)

)
≤ n2(2n− 1).

Proof. By applying Lemma 3.8, the Cayley graph Cay(D2n, S) of group D2n on the subset
S = {b, ad, . . . , an−1b} ⊆ D2n for n ≥ 3 is the complete bipartite graph Kn,n. Thus, this graph
is n-regular of order 2n and size n2.
For the upper bound, we apply Lemma 2.2 and have

EEF

(
Cay(D2n, S)

)
≤

2n∑
i=1

(n)2 − n2(2)

= 2n(n)2 − n2

= n2(2n− 1).

On the other hand, using Lemma 2.4, we have

EEF

(
Cay(D2n, S)

)
≥ 4(n2 − 2n+ s) + 2p,

where p and s are the numbers of pendant and isolated vertices in Cay(D2n, S). By applying
Lemma 3.8 and the structure of the Cayley graph Cay(D2n, S), s = p = 0. Therefore,

(3) EEF

(
Cay(D2n, S)

)
≥ 4n(n− 1).

From (3) and (4), the result completes.

Now, we consider distance-regular Cayley graphs on dihedral groups as two classes trivial
and non-trivial. The distance-regular graph is a connected graph such that the cardinality
of the intersection of two spheres depends only on their radii and the distance between their
centers. In the first, the minimum edge dominating energy of trivial distance-regular Cayley
graphs is obtained in the results [3].

Theorem 3.11. Let Cay(Dn, S) is the Cayley graph of the dihedral group Dn of the even
order n and the subset S = Dn \ {1}. If F is the minimum edge dominating set of graph
Cay(Dn, S), then the minimum edge dominating energy of Cay(Dn, S) is as follows
i) if n = 2, then EEF (Cay(D2, S)) = 0,
ii) if n ≥ 4, then 2n− 3 ≤ EEF (Cay(Dn, S)) <

1
2(4n

2 − 7n− 4).
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Proof. Using Theorem 1.2 in [23] the trivial-regular Cayley graph G = Cay(Dn, S) of diameter
1 is the complete graph. Thus its eigenvalues are n − 1 with multiplicity 1 and −1 with
multiplicity n− 1. Therefore, E(G) = 2(n− 1).
For n = 2, it is easy to see that Cay(D2, S) ≃ K2. Clearly, EEF (Cay(D2, S)) = 0.
For n ≥ 4, by applying Lemmas 2.5(ii) and 2.7, we get

EEF (Cay(Dn, S)) < E(Cay(Dn, S)) + |F |+ 2n(r − 2)

≤ 2(n− 1) + ⌊n
2
⌋+ 2n(n− 3)

≤ (2n2 − 4n− 2) +
n

2
.

By simplifications of the above relation, the result completes for the upper bound.
For the lower bound, by setting E(Cay(Dn, S)) = 2(n − 1) and the number of the positive
eigenvalues v+ = 1 in Lemma 2.8, the result holds.

Theorem 3.12. Let Cay(Dn, S) be the Cayley graph of the dihedral group Dn of the even
order n = tq and the subset S = Dn \ L in which L is a subgroup of the order q. If F is the
minimum edge dominating set of graph Cay(Dn, S), then

2n(α− 2) ≤ EEF (Cay(Dn, S)) ≤ 2n(α− 1)− q,

where α = q(t− 1).

Proof. According to Theorem 1.2 in [23], the trivial distance-regular Cayley graph G =

Cay(Dn, S) on the dihedral group Dn of the order n = tq which contains L ⊆ Dn of the
order q and Dn \ L is a complete multipartite graph Kt×q = Kq,q,...,q. Since graph G is a
(t − 1)q-regular graph, thus using Lemma 2.9, E(G) = 2(t − 1)q. If F is the minimum edge
dominating set of Cay(Dn, S), obviously |F | = q. Therefore, using Lemma 2.5(ii) we have

EEF (G) < E(G) + |F |+ 2n(r − 2)

= 2(t− 1)q + q + 2n(n− q − 2)

= 2n− q + 2n2 − 2nq − 4n

= 2n(n− q − 1)− q.

With simplification and by substituting for α = q(t − 1) in the above inequality, the upper
bound completes.
The number of edges in graph G is equal to n(n−q)

2 . Using Lemma 2.4, for the lower bound we
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get

EEF (G) ≥ 4(m− n+ s)− 2p

= 4
(n(n− q)

2
− n

)
= 2(n2 − nq)− 4n

= 2n(n− q − 2).

With considering n− q = q(t− 1) = α, the result holds.

Theorem 3.13. Suppose that Cay(Dn, S) is the Cayley graph of the dihedral group Dn =

⟨ρ, τ |ρn, τ2, (ρτ)2⟩ of order n = 2q and the subset S = {ρiτ |1 ≤ i ≤ m − 1}. If F is the
minimum edge dominating set of graph Cay(Dn, S), then

2n(α− 1) ≤ EEF (Cay(Dn, S)) ≤ 2(nα+ 1),

where α = q − 3.

Proof. Using Theorem 1.2 in [23], the trivial distance-regular Cayley graph G = Cay(Dn, S)

for S = {ρiτ |1 ≤ i ≤ m − 1} is the graph Kq,q − qK2 such that n = 2q and G is the (q − 1)-
regular graph. By applying Lemma 2.10 and since the spectrum of graph Kq,q is ±q and 0
with multiplicity 2q − 2, we have

0 ≤ E(G) ≤ E(Kq,q)− qE(K2) = 2q − 2q = 0

Therefore, we have E(G) = 0.
If F is the minimum edge dominating energy of G, then |F | = 2. Therefore, using Lemma
2.5(ii) we get

EEF (G) < E(G) + |F |+ 2n(r − 2)

= 0 + 2 + 2n(q − 3)

= 2(nq − 3n+ 1)

= 2(2q2 − 6q + 1)

= 2(2q(q − 3) + 1).
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With considering n = 2q and α = q − 3, the result holds.
On the other hand, using Lemma 2.4 for q ≥ 4, we have

EEF (G) ≥ 4(m− n+ s)− 2p

= 4(q2 − n− n)

= 4(q2 − 4q)

= 4q(q − 4).

By substituting n = 2q, the result holds.

Theorem 3.14. Suppose that Cay(Dn, S) is the Cayley graph of the dihedral group Dn =

⟨ρ, τ |ρn, τ2, (ρτ)2⟩ of the order n and the subset S = {τ, ρτ}. Let F be the minimum edge
dominating set of graph Cay(Dn, S) and N = 2n.
i) If n is even, then

8cot(
π

N
)− 4N ≤ EEF (G) ≤ 4cot(

π

N
) +

N

2
.

ii) If n is odd, then
8ccs(

π

N
)− 4N ≤ EEF (G) ≤ 4csc(

π

N
) +

N

2
.

Proof. Let G = Cay(Dn, S) be the Cayley graph on the dihedral group and the subset S =

{τ, ρτ}. Assume that F is the minimum edge dominating set of graph G. By applying Theorem
1.2 in [23], the Cayley graph on the dihedral group Dn with the subset S = {τ, ρτ}, is the
cycle CN if N = 2n. According to Lemma 2.11, we consider two following cases.
Case 1: If N = 4m, thus n is even. Since the domination number of CN is ⌈N3 ⌉ and G is
2-regular graph then using Lemmas 2.5(i) and 2.11 we get

EEF (G) = EEF (CN ) ≤ E(G) + |F |

= 4cot(
π

N
) + ⌈N

3
⌉

≤ 4cot(
π

N
) +

N

2

Therefore, the upper bound holds.
For the lower bound, we use Lemma 2.8 and write

EEF (G) = EEF (CN ) ≥ 2E(CN )− 4v+

≥ 8cot(
π

N
)− 4N.

Case 2: Since N is even, thus N must be 4m + 2. Therefore, n is odd. The proof of this
case is similar to Case 1.
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Figure 1. The Heawood graph and its line graph

Now, we investigate the smallest non-trivial distance-regular Cayley graphs on dihedral
groups. The Heawood graph is a distance-regular Cayley graph on the dihedral group of the
order 14 with 14 vertices and 21 edges (see Figure 1(a)). Note that the Heawood graph is the
Cayley graph Cay(D14, S) of the dihedral group D14 =< x, y |x2 = y7 = 1, yx = y−1 > and
S = {x, xy, xy3} is the subgroup of D14 [20].

Theorem 3.15. Let Cay(D14, S) be the Cayley graph on the dihedral group D14 of order 14
and S = {x, xy, xy3}. Then the minimum edge dominating energy of Cay(D14, S) is almost
equal to 36.3391.

Proof. Let F be the minimum edge dominating set of graph G. Since G = Cay(D14, S) is
the Headwood graph, it is easy to obtain the line graph of G as Figure 1(b) that contains 21
vertices. Note that the minimum edge dominating set in G is the minimum dominating set in
L(G). Therefore, one can select the vertices marked by circles in figure 1(b) to dominate all
vertices in L(G). Thus, γ(L(G)) = 5.
By computing the minimum edge dominating matrix AF (G), we obtain the eigenvalues of
AF (G) that are as follows

{
4.30716, 3.03253, 2.8662, 2.80177, 2.53979, 2.43958, 2.41421,

−2, −2, −2, −1.9215, −1.86805, −1.65544, −1.61655, −1.41044,

−0.414214, 0.347237, −0.22534, −0.210756, 0.199117, 0.069174
}
.

Therefore,

EEF (Cay(D14, S)) =

21∑
i=1

|λi(A(G)| ≃ 36.3391.
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Another kind of the smallest non-trivial distance-regular Cayley graph is the Shrikhande
graph which is isomorphic to the Cayley graph of the generalized dihedral group GD(< a >

× < b >) where |a| = 1 and |b| = 4 related to the subset S = {t, ta, tb, tab3, b±1} [22]. This
graph is a 6-regular graph that contains 16 vertices and 48 edges. We obtain the upper and
lower bound for the minimum edge dominating energy of the Shrikhande graph in the following
theorem.

Figure 2. The Shrikhande graph

Theorem 3.16. Let Cay(GD,S) be the Cayley graph on the generalized dihedral group and
S = {t, ta, tb, tab3, b±1}. If F is the minimum edge dominating set in Cay(GD,S), then
128 ≤ EEF (Cay(GD,S)) ≤ 178.

Proof. Assume that G = Cay(GD,S) is the Shrikhande graph. According to the structure of
the Shrikhande graph in Figure 2, this graph is 6-regular with n = 16 vertices and m = 48

edges. An upper bound for the minimum domination number of G is obtained in [27] as follows

(4) γ(G) ≤
n
(
1 + ln(δ + 1)

)
δ + 1

.

where δ is the minimum degree of G.
Using the inequality (4), we have γ(L(G)) ≤ 48(1+ln(11))

11 ≃ 14.83.

Since the spectrum of Shrikhande graph G is Spec(G) =

 6 2 −2

1 6 9

, thus the number of

the positive eigenvalues of G is v+ = 7.
Also, the graph energy of G obtains as E(G) =

∑16
i=1 |λi(G)| = 36. Therefore, using Lemma

2.5(ii), we get

EEF (G) < E(G) + |F |+ 2n(r − 2)

≤ 36 + 14 + 2× 16(6− 2)

= 178.
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For the lower bound, we use Lemma 2.4 and have

EEF (G) ≥ 4(m− n+ s) + 2p

= 4(48− 16)

= 128.

Therefore, the result completes.

Finally, we consider the generalized Petersen graph P (n, 1), also called a Prism graph, with
2n vertices and 3n edges. The graph P (n, 1) is a trivalent Cayley graph Cay(D2n, S) with the
generating subset S = {x, x−1, y} [5]. Thus, the line graph of Cay(D2n, S) is the 4-regular
graph with 3n vertices and 6n edges.

Theorem 3.17. Let Cay(D2n, S) be the trivalent Cayley graph on the dihedral group D2n

and the generating subset S = {x, x−1, y}. If F is the minimum edge dominating set in
Cay(D2n, S), then 12n ≤ EEF (Cay(D2n, S)) ≤ 19n.

Proof. Assume that G = Cay(D2n, S) is the Cayley graph on the dihedral group D2n and the
subset S = {x, x−1, y}. Let F be the minimum edge dominating set of G. Similar to the proof
of Theorem 3.16, we get the domination number of line graph of G as follows

γ(L(G)) ≤ 3n(1 + ln(5))

5
≃ 1.565n

Therefore using Lemma 2.3, we get

EEF (G) ≤ 4m− 2n+ |F |

≤ 4m− 2n+ n

= 4(6n)− 2(3n)− n = 19n.

For the lower bound, by applying Lemma 2.4 we get

EEF (G) ≥ 4(m− n+ s) + 2p

= 4(6n− 3n)

= 12n.
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