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A LENGTH FOR ARTINIAN MODULES

ALI REZA ALEHAFTTAN∗

Abstract. In this paper we shall introduce a theory of length for Artinian modules over an

arbitrary ring (with identity), assigning to each Artinian module A an ordinal number len(A)

which will briefly be called the length of A. We also demonstrate for some familiar properties

of left Artinian ring be proved efficiently using length and arithmetic properties of ordinal

numbers.

1. Introduction

Gulliksen in [7] introduced and studied a length and a dimension for Noetherian modules
and these length and dimension were studied more and more deeply by Brookfield in [5] and
also he showed some of their applications in Noetherian rings. These two papers and some
works on Krull and Noetherian dimensions of modules such [1], [2], [3], [4], [9], [10] and [11]
motivated us to introduce and study a length and a dimension (that, is called length dimension)
for Artinian modules as the dual of length and dimension for Noetherian modules. These
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length and dimension carry important information about Artinian module A and denoted by
len(A) and l.dim(A) respectively. Being an ordinal, len(A) can be expressed as a polynomial
in ω with integral coefficients and ordinal exponents, ω denoting the first infinite ordinal.
Length and length dimension are really measures of the size of the lattice of all submodules
of an Artinian module ordered by inclusion. Suppose that A is an Artinian uniserial module,
meaning that L(A) is well ordered set with maximum element A and minimum element 0.
We define the length of A to the ordinal number represented by L(A) \ {A}. Using this
definition and the arithmetic of ordinal numbers we can then prove various properties of
Artinian uniserial modules. For example, we notice that if B is an Artinian uniserial module
and 0 −→ A −→ B −→ C −→ 0 is exact, then len(B) = len(C) + len(A). Consider the case
len(B) = len(C). Here len(B) = len(B)+ len(A), and since ordinal addition is cancellative on
the left, we get len(A) = 0 and A = 0. Expressed differently, this says that a homomorphism
λ : A −→ A is injective if and only if len(A) = len(λ(A)).
This definition of length in this paper extends the above definition for Artinian uniserial module
to all Artinian modules. It is natural because there is really only one possible way making
this extension. In short for an Artinian module A, we define len(B) = φ(0) where φ is the
smallest strictly increasing function from L(A) to ordinal numbers. The function φ can also
be defined inductively as follows: First set φ(A) = 0. Suppose, for and ordinal α, we have
already identified those submodules B of A such that φ(B) ≺ α. Then φ(B) = α if and only
if B is maximal among those submodules of A on which has not yet been defined.
Once again ordinal arithmetic comes into play. We will show that if 0 −→ A −→ B −→ C −→
0 is an exact sequence of Artinian modules, then len(C)+ len(A) � len(B) � len(C)⊕ len(A).
Here ⊕ is natural sum on ordinal numbers. The relationship between len(A) and l.dim(A)

is simple one. If A is a nonzero Artinian module, then len(A) can be writen uniquely in the
long normal form len(A) = ωγ1 + ωγ2 + · · · + ωγn where γ1 � γ2 � · · · � γn are ordinal
numbers. Then l.dim(A) = γ1. In fact the possible values of len(B) for a submodule B of
A, are determined by len(A). In particular, we have l.dim(B) = {−1, γ1, γ2, . . . , γn}. Thus
len(A) contains a lot more information about A than len(A).
Throughout this article, all rings are associative with 1 6= 0 and all modules are unital left
R−modules. The notation B ≤ A (resp, B < A) means B is a submodule (resp, proper
submodule) of A and The notation α � β (resp, α ≺ β) means β is an ordinal number less
(resp, strictly less) than α.
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2. Preliminaries

We will use lowercase Greek letters for ordinal numbers. The smallest infinite ordinal is
written by ω. We need the following results on ordinal numbers, for proofs and more details,
see [8] and [13].

Lemma 2.1. We have the following on ordinal numbers:

(1) Ordinal addition is associative but not commutative. For example ω + 1 6= 1 + ω = ω.
(2) Ordinal addition is cancelletive on the left: α + β = α + γ =⇒ β = γ. Also α + β �

α+ γ =⇒ β � γ.
(3) For the fix ordinal α, the map from ordinal numbers to itself given by β 7−→ α + β is

strictly increasing.
(4) If α � β, then β−α is the unique ordinal γ such that β = α+γ, hence β = α+(β−α).

For any ordinal numbers α and β we have β = (α+ β)− α.
(5) αn = α+ α+ · · ·+ α︸ ︷︷ ︸

n times

when n ∈ N. Note: 2ω = ω 6= ω2.

Proposition 2.2. Any nonzero ordinal number α can be expressed uniquely in long normal
form

α = ωγ1 + ωγ2 + · · ·+ ωγn

where γ1 � γ2 � · · · � γn. By collecting together terms which have identical exponents, this
same frome can be written

α = ωγ1m1 + ωγ2m2 + · · ·+ ωγnmn

where γ1 � γ2 � · · · � γn and m1,m2, . . . ,mn ∈ N. This will call the short normal form.

Lemma 2.3. Suppose α, β and γ are ordinal numbers with α � 0 and m,n ∈ N ∪ {0}.

(1) β + α � α if and only if β + α = α

(2) α = ωγ for some ordinal number γ if and only if β + α = α for all β ≺ α.
(3) If β + ωγn ≺ ωγm, then β ≺ β + ωγ(m− n)

Definition 2.4. Let α and β be nonzero ordinal numbers. With suitable re-labeling, the
short normal forms for these ordinals can be written using the some strictly decreasing set of
exponents γ1 � γ2 � · · · � γn:

α = ωγ1m1 + ωγ2m2 + · · ·+ ωγnmn and β = ωγ1t1 + ωγ2t2 + · · ·+ ωγntn

where mi, ti ∈ N ∪ {0}. Now we define

α⊕ β = ωγ1(m1 + t1) + ωγ2(m2 + t2) + · · ·+ ωγn(mn + tn)

Lemma 2.5. Let α, β, α1, α2, . . . , αn, β1, β2, . . . , βn be ordinal numbers.

(1) α+ β � α⊕ β.
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(2) (α1 ⊕ β1) + (α2 ⊕ β2) + · · ·+ (αn ⊕ βn) � (α1 + α2 + · · ·+ αn)⊕ (β1 + β2 + · · ·+ βn).
(3) α1 + β1 + α2 + β2 + · · ·+ αn + βn � (α1 + α2 + · · ·+ αn)⊕ (β1 + β2 + · · ·+ βn).

Proposition 2.6. Suppose α⊕ β = α+ β = ωγ1 + ωγ2 + · · ·+ ωγn. Then α = 0 or β = 0 or
there is some 1 ⩽ i ⩽ n−1 such that α = ωγ1+ωγ2+ · · ·+ωγi and β = ωγi+1+ωγi+2+ · · ·+ωγn.

We need the following results on modules, for proofs, see [6] and [15].

Definition 2.7. An essential (or large) submodule of a module A is any submodule E which
has nonzero intersection with every nonzero submodule of A. We write E ≤e A to denote this
situation.

Definition 2.8. A uniform module is a nonzero module A such that the intersection of any
two nonzero submodules of A is nonzero or equivalently, every nonzero submodule of A is
essential in A.

Definition 2.9. A module A has finite Goldie dimension if A has an essential submodule
which is a finite direct sum of uniform submodules. Goldie dimension denoted by G−dim(A).

Lemma 2.10. Let A be a module and n a nonnegative integer. Then the following conditions
are equivalent:

(1) G− dim(A) = n.
(2) A contains a direct sum of n nonzero submodules but no direct sum of n + 1 nonzero

submodules.
(3) For every ascending chain A0 ≤ A1 ≤ A2 ≤ . . . of submodules of A there is integer m

such that Aj ≤e Aj+1 for every j ⩾ m.
(4) For every descending chain A0 ≥ A1 ≥ A2 ≥ . . . of submodules of A there is integer k

such that Ai+1 ≤e Ai for every i ⩾ k.

3. The Length of Artinian Modules

The following result is the counterpart of [5, Theorem 2.3].

Lemma 3.1. Let L(A) be lattice of submodules of Artinian R−module A and φ a function
from L(A) into ordinal numbers. Then the following are equivalent:

(1) φ is strictly increasing and for each strictly increasing function such ψ from L(A) into
ordinal numbers, φ(B) � ψ(B) for all B ≤ A.

(2) For all B ≤ A and ordinal number α, φ(B) = α if and only if B is minimal with
respect to property α � φ(D).

(3) φ is strictly increasing and {α � φ(B)|α is an ordinal number} ⊆ φ({C ∈ L(A)|C ≤
B}).
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Proof. (1) =⇒ (2): Suppose that φ(B) = α, so α � φ(B). Since φ is strictly increasing,
for any D < B, we have φ(D) ≺ φ(B) = α. Hence B is minimal with respect to property
α � φ(D). Conversely; Suppose that B is minimal with respect to property α � φ(D). So
α � φ(B) and we define λ from L(A) into ordinal numbers by λ(B) = α and λ(E) = φ(E) for
all submodule E of A that E 6= B. Clearly ψ is strictly increasing and by hypothesis on φ we
have φ(B) � ψ(B). Therefore φ(B) = α.
(2) =⇒ (3): Suppose that C < B and φ(B) = α. Since B is minimal with respect to property
α � φ(D), we have φ(C) ≺ φ(B). Now let α � φ(D). But A is Artinian module and hence
L(A) is Artinian lattice, so there exists B ≤ D which is minimal with respect to property
α � φ(E). Therefore α = φ(B) as desired.
(3) =⇒ (1): Let ψ be strictly increasing function from L(A) into ordinal numbers. Suppose to
the contrary that there exists E ≤ A such that ψ(E) ≺ φ(E). Let B be chosen so that ψ(B) is
minimum with respect to property. For any C < B we have ψ(C) ≺ ψ(B), so φ(C) � ψ(C) ≺
ψ(B) ≺ φ(B). Thus we have an ordinal number α = ψ(B) such that α ≺ φ(B) but there is
no C < B with φ(C) = α. This is contradicts with {α � φ(B)|α is an ordinal number} ⊆
φ({C ∈ L(A)|C ≤ B}).

The following result is essentially the comment following Defnition 2.4, in [5].

Proposition 3.2. Let A be an R−module and L(A) be lattice of its submodules. If there
exists a strictly increasing function from L(A) to ordinal numbers, then A is Artinian and
there exists a function φ from L(A) into ordinal numbers.

Proof. Any strictly increasing function from L(A) to ordinal numbers, maps infinite decreasing
sequence in L(A) in ordinal numbers. Since no such sequence exist in ordinal numbers, there
are no infinite strictly decreasing sequence in L(A) either. Now we define

φ(B) = min{ψ(B)|ψ is strictly increasing function from L(A) into ordinal numbers}

for all B ≤ A. Since we are assuming that at least one strictly increasing function exists, φ
is well define by this equation. If B < C are submodules of A, then there is some strictly
increasing function from L(A) to ordinal numbers ψ such that ψ(C) = φ(C), so φ(B) �
ψ(B) ≺ ψ(C) = φ(C). Thus φ is itself strictly increasing function.

By Lemma 3.1 and Proposition 3.2 we have the following result.

Corollary 3.3. Let A be an R−module and L(A) be lattice of its submodules. If there exists a
strictly increasing function from L(A) to ordinal numbers then A is Artinian and there exists
a function φ from L(A) into ordinal numbers satisfying equivalent conditions in Lemma 3.1.
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Definition 3.4. The function introduced in the Corollary 3.3 will be called the length function
of R−module A and we define the length of A by len(A) = len(L(A)) = φ(A). In addition
if len(A) = ωγ1n1 + ωγ2n2 + · · · + ωγmnm we defin length dimension of A by l.dim(A) = γ1

and the length rank of A by l.rank(A) = n1 + n2 + · · ·+ nm, the number of ni will be called
γi − length of A, written lenγi(A). By convention l.dim(0) = −1 and l.rank(0) = 0.

The following result is the counterpart of [5, Theorem 2.5] and shows that the length function
of an Artinian module always exists.

Lemma 3.5. Let A be an Artinian module and B ≤ A. Then L(B) has length function.

Proof. Let φ define inductively as following

φ(0) = 0 and φ(C) = α if and only if C ≤ B and C is minimal in {D ≤ B|φ(D) ≮ α}

Suppose E ≤ B is minimal among submodules of B for which φ(E) undefined. Then for every
H < E, φ(H) is defined. Let α = sup{φ(H) + 1|H < E}. This is well defined since any set of
ordinal numbers has supremum. It is easy to check that E is minimal in {D ≤ B|φ(D) ≮ α}
and so φ(E) = α. This contradiction our assumption that φ(E) is undefined. Consequently,
φ is defined on all of L(B), and by Corollary 3.3, is the length function of B.

The following result is the counterpart of [5, Lemma 2.6].

Lemma 3.6. Let A be an Artinian module with length function φ. Then we have the following:

(1) For all B ≤ A, len(L(B)) = φ(B).
(2) For all submodules C ≤ B of A, len(L(C)) + len(BC ) � len(L(B)).
(3) For any ordinal number α � len(A), there is some B ≤ A such that φ(B) = α.
(4) If M is an Artinian module and Φ : L(A) −→ L(M) is a strictly increasing function,

then len(A) � len(M).

Proof. (1). It is easy to see that the restriction of φ to L(B) is a strictly increasing and

{α � φ|L(B)(C)|α is an ordinal number} ⊆ φ|L(B)({D ∈ L(B)|D ≤ C})

So φ|L(B) is length function and in particular, φ(B) = φ|L(B)(B) = len(B).
(2). Let ψ be the length function of L(B). Define τ from L(BC ) into ordinal numbers by
τ(D) = ψ(D)− ψ(C). The fuction τ is a strictly increasing, so

len(L(BC )) � τ(B) = ψ(B)− ψ(C) = len(L(B))− len(L(C))

Hence, len(L(C))+len(BC ) � len(L(B)). (3). It is follows immediately from following property
of φ:

{α � φ(B)|α is an ordinal number} ⊆ φ({C ∈ L(A)|C ≤ B})
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(4). Let ψ be the length function of M . Then the function ψ◦φ is a strictly increasing function
from L(A) into ordinal numbers, so from Lemma 3.1(1), φ(B) � ψ(φ(B)) for all B ≤ A. In
particular, len(A) = φ(A) � ψ(φ(A)) � ψ(M) = len(M).

It is easy to check that if (P,⩽) and (P ′,⩽′) are two partially ordered set, then (P ×P ′,⩽′′)

is a partially ordered set with order given by (p1, p
′
1) ⩽′′ (p2, p

′
2) ⇐⇒ p1 ⩽ p2 and p

′
1 ⩽′ p′2.

Also the above partially ordered is considerd for the direct product of the two sets involved.

Lemma 3.7. If A is an Artinian module, then f : L(A) × L(A) −→ L(A) × L(A) given by
f(B,C) = (B ∩ C,B + C), is strictly increasing.

Proof. Suppose that (B1, C1) ⩽ (B2, C2) with f(B1, C1) = f(B2, C2). ThenB1 ≤ B2, C1 ≤ C2,
B1 ∩ C1 = B2 ∩ C2 and B1 + C1 = B2 + C2. So

B2 = (B2+C2)∩B2 = (B1+C1)∩B2 = B1+(C1∩B2) ⊆ B1+(B2∩C2) = B1+(B1∩C1) = B1

Hence B1 = B2, and by symmetry C1 = C2. Thus (B1, C1) = (B2, C2). Now Suppose
that (B1, C1) < (B2, C2). Since f is an increasing function, we have f(B1, C1) ⩽ f(B2, C2).
From above argument f(B1, C1) = f(B2, C2) is imposible, and so we must have f(B1, C1) <

f(B2, C2).

The following result is the counterpart of [5, Theorem 3.2].

Proposition 3.8. If A is an Artinian module and B, C are its submodules, then we have the
following:

(1) len(B) + len(AB ) � len(L(A)) � len(B)⊕ len((AB )).
(2) len(B ∩ C) + len(B + C) � len(B) + len(C) � len(B ∩ C)⊕ len(B + C).
(3) len( A

B∩C ) + len( A
B+C ) � len(B)⊕ len(C) � len( A

B∩C )⊕ len( A
B+C ).

Proof. 1. The first inequality is directly from Lemma 3.6(2). To prove the second inequality,
consider the restriction of the map in Lemma 3.7 to the domain L(A) × {B}. This map is
strictly increasing and its image is contained in L(B)× L(AB ). from Lemma 3.6(4) we get

len(A) = len(L(A)× {B}) � len(L(B)× L(AB )) = len(B)⊕ len(AB ).

2. To prove the first inequality we apply (1) to the lattices L(B + C) and L(C). This yields
len(B + C) � len(B) ⊕ len(B+C

C ) and len(B ∩ C) + len( C
B∩C ) � len(C) respectively. From

Lemma 3.7 we also have len(B+C
B ) = len( C

B∩C ). Hence

len(B ∩ C) + len(B + C) � len(B ∩ C) + (len(B)⊕ len(B+C
B )) =

len(B ∩ C) + (len(B)⊕ len( C
B∩C )) � len(B)⊕ len(C)
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We have also used the fact that α+(β⊕γ) � (α+β)⊕γ which follows from Lemma 2.5(2). To
prove the second inequality, consider the restriction of the map in Lemma 3.7 to the domain
L(B)×L(C). This map is strictly increasing and its image is contained in L(B∩C)×L(B+C),
and so from Lemma 3.6(4) we get

len(B)⊕ len(C) � len(B ∩ C)⊕ len(B + C)

3. Proof is similar to that of (2).

Corollary 3.9. Let A be an Artinian module, l.dime(A) = γ and B ≤ A. Then we have the
following:

(1) l.dim(A) = max{l.dim(B), l.dim(AB )}.
(2) lenγ(A) = lenγ(B) + lenγ(

A
B ).

By part (2) of Lemma 2.3, part (3) of Lemma 3.6 and part (1) of Proposition 3.8 we have
the following result.

Corollary 3.10. Let A be a nonzero Artinian module. Then the following are equivalent:

(1) len(A) = ωγ for some ordinal number γ.
(2) len(AB ) = len(A) for all B < A.
(3) l.dim(B) ≺ l.dim(A) for all B < A.

By Proposition 3.8(1) part (3) and Corollary 3.9 we have the following result.

Corollary 3.11. Let 0 −→ B −→ A −→ C −→ 0 be an exact sequence of Artinian modules
and l.dim(A) = γ.

(1) len(C) + len(B) � len(A) � len(C)⊕ len(B)

(2) l.dim(A) = max{l.dim(B), l.dim(C)}.
(3) lenγ(A) = lenγ(B) + lenγ(C)

The following result is the counterpart of [5, Corollary 4.2].

Proposition 3.12. If A and B are Artinian modules and f : A −→ B is a homomorphism,
then f is injective if and only if len(A) = len(f(A)).

Proof. We have short exact sequence 0 −→ ker(f) −→ A −→ f(A) −→ 0. So from Corollary
3.11(1), len(f(A)) + len(ker(f)) � len(A). If len(A) = len(f(A)), then we can cancel from
this inequality to get len(ker(f)) = 0 and hence ker(f) = 0. The converse implication is clear
since if f is injective, then A ' f(A).

The following result is the counterpart of [5, Lemma 3.5].
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Lemma 3.13. Let A be an Artinian module. Suppose α and β are ordinal numbers such that
α+ β = α⊕ β. Then len(A) = α+ β if and only if there is some submodule B of A such that
len(B) = α and len(AB ) = β.

Proof. Let len(A) = α+ β. From Lemma 3.6(3), there is some B ⊆ A such that len(B) = α.
From Proposition 3.8(1), α + len(AB ) � α + β = α ⊕ β � α ⊕ len(AB ). Cancellation in first
inequality gives len(AB ) � β. Cancellation in second inequality gives β � len(AB ). Hence
len(AB ) = β. Conversely; This follows directly from Proposition 3.8(2).

Definition 3.14. A nonzero Artinian module A is called γ−l.atomic if len(A) = ωγ . A is
called l.atomic if it is a γ−l.atomic for some γ. An l.atomic series for an Artinian module A,
is a sequence

0 = A0 < A1 < A2 < · · · < An−1 < An = A

such that Ai
Ai−1

is γi−l.atomic for all i, and γn � γn−1 � · · · � γ2 � γ1.

The following result is the counterpart of [5, Lemma 3.8].

Lemma 3.15. Let A ba an Artinian module. Then the following are equivalent:

(1) len(A) = ωγ1 + ωγ2 + · · ·+ ωγn.
(2) A has l.atomic series 0 = A0 < A1 < A2 < · · · < An−1 < An = A with Ai

Ai−1
is

γi−l.atomic for i = 1, 2, . . . , n.

Proof. If len(A) = ωγ1 + ωγ2 + · · · + ωγn , then from Lemma 2.6 and Lemma 3.13, there is
B ≤ A such that len(AB ) = ωγn and len(B) = ωγ1 + ωγ2 + · · · + ωγn−1 . In paticular, A

B is
γn−l.atomic. A simple induction then shows that A has an l.atomic series. The convers is
clear by definition.

The following result is the counterpart of [5, Theorem 3.9].

Theorem 3.16. Let A be an Artinian module with l.atomic series

0 = A0 < A1 < A2 < · · · < An−1 < An = A

with Ai
Ai−1

is γi−l.atomic for all i = 1, 2, . . . , n. Let B ⊆ A and set Bi = B + Ai for i =
1, 2, . . . , n. Then for i = 1, 2, . . . , n, len(Bi−1

Bi
) is either zero or ωγi. Further, the sequence

0 = B0
B < B1

B < B2
B < · · · < Bn−1

B < Bn
B = A

A

after removal of duplicate entries, is an l.atomic series for A
B .

Proof. We have Ai+Bi−1

Bi−1
' Ai∩Bi−1

Ai
for i = 1, 2, . . . , n. Since

Ai +Bi−1 = Ai + (Ai−1 +B) = Ai +B = Bi
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and

Ai ∩Bi−1 = Ai ∩ (Ai−1 +B) = Ai−1 + (Ai ∩B)

we get Bi−1

Bi
' Ai−1+(Ai∩B)

Ai
. We Also have Ai ≤ Ai−1+(Ai∩B) ≤ Ai, and so Bi−1

Bi
is isomorphic

to a final segment of Ai−1

Ai
. Because Ai−1

Ai
is γi−l.atomic, Corollary 3.10(2) applies and either

Bi−1 = Bi or len(Bi−1

Bi
) = ωγi . The claime that 0 = B0

B < B1
B < B2

B < · · · < Bn−1

B < Bn
B = A

A ,
after removal of duplicate entries, is an l.atomic series for A

B is then clear.

From this theorem we see that the factors in an l.atomic series for A
B have lengths which

are among the lengths of factors of l.atomic series of A. By Combining this with Lemma 3.13
we have the following result.

Corollary 3.17. Let A be an Artinian module with len(A) = ωγ1n1 + ωγ2n2 + · · · + ωγtnt.
Then for B ≤ A, len(AB ) = ωγ1m1+ω

γ2m2+ · · ·+ωγtmt, for some mi ∈ N0 such that mi � ni

for all i. In particular if B ≤ A we have the following:

(1) l.rank(AB ) � l.rank(A) with equality if and only if len(AB ) = len(A).
(2) l.dim(AB ) ∈ {−1, γ1, γ2, . . . , γt}.

By Lemmas 2.5, 3.6(3) and 3.15 and Corollary 3.17 we have the following result.

Proposition 3.18. Let A be an Artinian module.

(1) For every ordinal α � len(A) there exists a submodule B ≤ A such that len(AB ) = α.
(2) Suppose len(A) = ωγ1 + ωγ2 + · · · + ωγn in long normal form. Then for ordinals

α = ωγ1 + ωγ2 + · · · + ωγi and β = ωγi+1 + ωγi+2 + · · · + ωγn, for some 0 ⩽ i ⩽ n − 1

there exists a submodule B ≤ A such that len(AB ) = α and len(B) = β.
(3) Suppose len(A) = ωγ1m1 + ωγ2m2 + · · ·+ ωγnmn in short normal form. Then for any

submodule B ≤ A we have len(B) = ωγ1t1 + ωγ2t2 + · · ·+ ωγntn for some ti ∈ N0 such
that ti ⩽ mi for all i. In particular, l.dim(B) ∈ {−1, γ1, γ2, . . . , γn}.

Proposition 3.19. Let A and B be an Artinian modules.

(1) If B ≤ A, then l.rank(B) � l.rank(A) with equality if and only if len(A) = len(B).
(2) l.rank(A⊕B) = l.rank(A) + l.rank(B).
(3) G− dim(A) ⩽ l.rank(A).

Proof. 1. Immediate from Corollary 3.17.
2. From Lemma 3.8(2), len(A ⊕ B) = len(A) ⊕ len(B), so l.rank(A ⊕ B) = l.rank(A) +

l.rank(B).
3. Any nonzero module has nonzero length rank, so if A contains a direct sum of G− dim(A)
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nonzero submodules, the using (1) and (2), we must have G− dim(A) ⩽ l.rank(A).

4. Some Applications in Artinian Rings

The following result is the counterpart of [5, Lemma 5.3].

Lemma 4.1. Let I and J be l.atomic left ideals in a left Artinian ring R.

(1) If IJ 6= 0 and len(I) � len(J), then len(I) = len(J) and there is some x ∈ J such
that I ' Ix, len(I) = len(Ix) = len(Rx) = len(J) and len(I ⊕ ann(x)) = len(R).

(2) If I2 6= 0, then there is some ∈ I such I ' Ix, len(I) = len(Ix) = len(Rx) and
len(I ⊕ ann(x)) = len(R).

(3) If I is nil, then I2 = 0.

Proof. 1. Let x ∈ J be chosen so that 0 6= Ix ≤ J . Since J is l.atomic we have len(J) =

len(Ix) = len(R). Now we define epimorhism f : I −→ Ix by f(r) = rx. Since Ix = f(I), we
also have len(Ix) � len(I) and so len(I) = len(Ix) = len(Rx) = len(J) and from Proposition
3.12 f is injective, so I ' Ix, I ∩ann(x) = 0 and len(I⊕ann(x)) is a left ideal of R. From the
exact sequence 0 −→ ann(x) −→ R −→ Rx −→ 0 we get len(R) � len(Rx) ⊕ len(ann(x)) =

len(I ⊕ ann(x)).
2. It is clear from 1.
3. Suppose, contrary to the claim, that I2 6= 0. Then from (2), there is x ∈ I such that
f : I −→ Ix defined by f(r) = rx is an isomorphism. But this is impossible since xn = 0 for
some n ∈ N, and hence fn = 0.

The following result is the counterpart of [5, Theorem 5.4].

Proposition 4.2. Let R be a semiprime left Artinian ring, and I a left ideal such that
len(I) = ωγ1 + ωγ2 + · · · + ωγn in long normal form. Then there are x1, x2, . . . , xn ∈ I such
that

(1) len(Rx1 ⊕Rx2 ⊕ · · · ⊕Rxn) = len(I).
(2) len(Rxi) = ωγi for i = 1, 2, . . . , n.
(3) xiixj = 0 whenever i < j with i, j = 1, 2, . . . , n.

And if x = x1 + x2 + · · ·+ xn we also have

(4) f : I −→ Ix by f(r) = rx is injective.
(5) I ' Ix and len(I) = len(Rx) = len(Ix).
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(6) len(I ⊕ ann(x)) = len(R).

Proof. From Proposition 3.18(2), the left ideal I contains an l.atomic ideal In of length ωγn .
Since R is semiprime, I2n 6= 0, and from Lemma 4.1(2) there is some xn ∈ In such that
len(Inxn) = len(Ixn) = len(Rxn) = ωγn and ann(xn) ∩ Rxn = 0. Let J = ann(xn) ∩ I.
Then J ⊕ Rxn ≤ I, so that len(J) ⊕ ωγn � len(I). From short exact sequence 0 −→ J −→
I −→ Ixn −→ 0 we get len(I) � len(J) ⊕ len(Ixn) = len(J) ⊕ ωγn . Thus we have len(I) =
len(J) ⊕ ωγn . Canceling ωγn from this equation we get len(J) = ωγ1 + ωγ2 + · · · + ωγn−1 ,
and so, l.rank(J) = n − 1 ≺ l.rank(I) = n. By induction there are x1, x2, . . . , xn−1 ∈ In

satisfying the above conditions with respect to J . We claim that x1, x2, . . . , xn satisfy these
conditions with respect to I. By induction we have J ∩ ann(x1, x2, . . . , xn−1) = 0. We
also have R(x1, x2, . . . , xn−1) ∩ Rxn ≤ J ∩ Rxn = 0, from which it follows that ann(x) =

ann(x1, x2, . . . , xn−1) ∩ ann(xn). A simple calculation then yields I ∩ ann(x) = 0. Claims 4,
5, 6 follows from this as the proof of Proposition 3.18(2). The remaining claims are easy to
check.

The following result is the counterpart of [5, Corollary 5.5].

Proposition 4.3. Let R be a semiprime left Artinian ring, a I a left ideal and r ∈ R.

(1) len(ann(r)) = len(R) if and only if r = 0.
(2) ann(r) = 0 if and only if len(Rr) = len(R) if and only if r is regular.
(3) I is essential in R if and only if len(I) = len(R) if and only if I contains a regular

element.
(4) If I is nill, then I = 0.
(5) G− dime(I) = l.rank(I).

Proof. 1. Applying Proposition 4.2(6) to the left ideal Rr, we see that there is some s ∈ R

such that Rr ∩ ann(s) = 0. But if f : R −→ R is homomorphism by f(x) = sx, then
ann(sr) = f−1(ann(r)), so from Lemma 4.1(2), we have len(ann(sr)) = len(R), and in
particular, ann(sr) is essential in R. Thus Rr = 0 and r = 0.
2. Suppose len(Rr) = len(R). Then by Proposition 3.12, the homomorphism f : R −→ R

by f(x) = rx is injective and hence ann(r) = 0. Further, if rs = 0 for some s ∈ R, then
Rr ≤ ann(s), and so len(ann(s)) = len(R) and then, by (1), s = 0. Thus r is regular. The
remainder claims are easy.
3. If I is essential, then from Proposition 4.2(6), I contains an element x such that ann(x) = 0.
from 92), x is regular. The remainder claims are easy.
4. From Lemma 4.1(4), there is some x ∈ I such that f : I −→ Ix by f(a) = ax is a
monomorphism. Since xn = 0 for some n ∈ N, we have fn = 0 and hence I = 0.
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5. From Lemma 4.1(1), I contains a direct sum of l.rank(I) nonzero submodules, and so
l.ran(I) ⩽ G− dime(I). The opposite inequalty is Proposition 3.19(3).

The following result is the counterpart of [5, Theorem 5.6].

Proposition 4.4. If R is a left Artinian prime ring, then len(RR) = ωγn where γ = l.dim(RR)

and n = G− dim(RR). Further, for an Artinian module A and m ∈ N we have

(1) ωγn � len(A) if and only if A has a submodule isomorphic to a direct sum of m
l.atomic left ideals.

(2) (len(RR))m � len(A) if and only if A has a submodule isomorphic to Rm.

Proof. First we notice that for any tow l.atomic left ideals I and J of R we have IJ 6= 0 6= JI

and so from Lemma 4.1(1), len(I) = len(J), I has a submodule isomorphic to J , and vice versa.
If len(RR) = ωγ1 +ωγ2 + · · ·+ωγn in long normal form, then from Proposition 4.2(1), there are
l.atomic left ideals of length ωγ1 , ωγ2 , . . . , ωγn . From above we must have γ1 = γ2 = · · · = γn

and so we can write len(RR) = ωγn as required. This means in particular, that any l.atomic
left ideal of R has length ωγ .
(1). Proof by induction on m, the case m = 0 being trivial. Suppose 0 < m and ωγm �
len(A). Then by Proposition 3.18(1) there is some submodule B ≤ A uch that len(AB ) = ωγ .
using Corollary 3.11(1), we have ωγm � len(A) � len(AB ) ⊕ len(B) = ωγ ⊕ len(B), so by
cacellation ωγ � len(B). By induction, B contains a submodule isomorphic to a direct sum
of m− 1 l.atomic left ideals. Let a ∈ A \ B. Then len(Ra+B

B ) = ωγ . from the exact sequence
0 −→ ann(a + B) −→ R −→ Ra+B

B −→ 0 and llary 3.11(1) we get len(Ra+B
B ) + len(ann(a +

B)) � len(R), that is , ωγ + len(ann(a + B)) � ωγ(n − 1) ≺ len(R). From Proposition
4.3(3), ann(a + B) is not essential in R, and there is an l.atomic left ideal I of R such that
I ∩ ann(a+B) = 0. The map f : I −→ Ia+B

B by f(y) = y(a+B) is then an isomorphism, so
for any u ∈ I, ua ∈ B implies that u = 0. Thus Ia ∩ B = 0, and Ia ' Ia+B

B ' I is l.atomic.
Since Ia ∩B = 0, A contains a direct sum of m l.atomic modules.
(2). In view of (1), to prove (2), it suffices to show that any direct sum on n l.atomic ideals,
contains a submodule isomorphic to R. Since for any tow l.atomic left ideals I and J of R I

has a submodule isomorphic to J , and vice versa, it suffices to show this for any particular
direct sum of n l.atomic left ideals. Now from Proposition 4.2(1), there are l.atomic left ideals
I1, I2, . . . , In such that len(I1 ⊕ I2 ⊕ · · · ⊕ In) = len(R), and x ∈ I1 ⊕ I2 ⊕ · · · ⊕ In such that
Rx ' R. Thus this in particular direct sum contains a submodule isomorphic to R as required.
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