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ON THE BASIC PROPERTIES OF THE COMPRESSED ANNIHILATOR
GRAPH OF Zn

G. GOLD BELSI AND S. KAVITHA∗

Abstract. For a commutative ring R, the compressed annihilator graph AGE(R) is defined

by, taking the equivalence classes of zero divisors of R as the vertex set and two distinct

vertices [a] and [b] are adjacent if and only if ann(a) ∪ ann(b) ⊂ ann(ab). In this paper,

we discuss some of the basic properties such as degree of the vertices, Eulerian, regularity,

domination number and planarity of AGE(Zn), where Zn is the ring of integer modulo n.

1. Introduction

To solve many mathematical problems, the study on graphs from algebraic structures was
initiated. Thereafter, a bulk of creations have been made related with algebraic graph theory
such as, analyzing the basic invariants of the graph, investigating its topological properties,
coloring of graphs, finding its spectral properties, investigating the interplay between the
graphs and the algebraic structures and so on. To condense the size of the zero-divisor graph,
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Anderson and LaGrange [2] introduced the compressed zero divisor graph. Analogously, Sh.
Payrovi and S. Babaei [8] established the study on the compressed annihilator graph of a ring
R, which was designated by AGE(R) and is defined by, taking the classes of zero divisors of
R determined by the annihilators as the vertices and two vertices a and b are connected by
an edge if and only if ann(a)∪ ann(b) ⊂ ann(ab). They studied some its basic properties and
the role of the 2- obsorbing ideals in AGE(R). Impressed by their works, we are concerned on
interpreting some of the basic invariants such as, degree of the vertices, Eulerian, regularity,
domination number, domination polynomial. Added with that, we characterize some of its
topological properties such as outer planar and planar of AGE(Zn), where Zn is the ring of
integer modulo n.
Throughout this article we take, n = pk11 pk22 . . . pkrr , where pi’s are distinct primes, ki’s are non
negative integers, s(k) = k1 + k2 + . . . + kr and p(k) =

∏r
i=1 ki, ki ≥ 1 for all i. For a deep

view on graph theory one can see [5] and for the algebraic concepts one can mention [6].

2. Basic properties of AGE(Zn)

Observation 2.1. Degree of the verices
Let us find out the degree of the vertices of AGE(Zn) where n = pk11 pk22 . . . pkrr .
The number of vertices in AGE(Zn) is

∏r
i=1(ki + 1)− 2.

Now we partition the vertex set into r disjoint sets namely, A1, A2, . . . , Ar, where
A1 = {[ptii ], 1 ≤ i ≤ r, 1 ≤ ti ≤ ki}
A2 = {[ptii p

tj
j ], 1 ≤ i, j ≤ r, 1 ≤ ti ≤ ki, 1 ≤ tj ≤ kj}

Similarly we can define the remaining sets.
Let Bj be the sub collection of Aj , 1 ≤ j ≤ r − 1, where
B1 = {[pkii ], 1 ≤ i ≤ r}
B2 = {[pkii p

kj
j ], 1 ≤ i, j ≤ r}

Similarly we can define the remaining sets. Now we are going to investigate the degree of the
vertices. In each set, for a vertex x, we count the number of vertices that are not adjacent
with x and we notate this by σ(x).
Let b ∈ Bt for some t, 1 ≤ t ≤ r − 1. Then b = [p

ki1
i1

p
ki2
i2

. . . p
kit
it

] where 1 ≤ ij ≤ r, 1 ≤ j ≤ t.
Then

(1) σ(b) =
r∏

i=1,i ̸=i1,i2,...,it

(ki + 1) +
t∏

l=1

(kil + 1)− 3

Let a1 = psj , s < kj ∈ A1/B1. Then

(2) σ(a1) =
r∏

i=1,i ̸=j

(ki + 1)
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Now we move on to At/Bt, 2 ≤ t ≤ r − 1

Let a2 = pl1i1p
l2
i2
. . . pltit ∈ At/Bt for some t where 1 ≤ ij ≤ r, 1 ≤ lt ≤ kt, 1 ≤ j ≤ t. Suppose

a2 has m places, namely j1, j2, . . . , jm, 1 ≤ jq ≤ r, 1 ≤ q ≤ m in which the power of pi is ki

where 1 ≤ m ≤ t− 1, then

(3) σ(a2) =

r∏
i=1,i ̸=j1,j2,...,jm

(ki + 1) +
m∏
l=1

(kjl + 1)− 3

Suppose a2 has all its powers < ki, then

(4) σ(a2) =
r∏

i=1,i ̸=i1,i2,...,it

(ki + 1)

Now let us move on to Ar. Let a3 ∈ Ar. Suppose a3 has s places in which the power of pi is
ki namely j1, j2, . . . , js where 1 ≤ s ≤ r − 1, then

(5) σ(a3) =

s∏
i=1

(kji + 1)

Suppose a3 has all its powers less than ki, then it will adjacent with all the other vertices.

Remark 2.2. ([8, Example 2.8]) Suppose p is a prime number and n ≥ 2, then AGE(Zpn+1) ∼=
Kn

Theorem 2.3. AGE(Zn) is regular if and only if 2 ≤ s(k) ≤ 3

Proof. Suppose s(k) = 2 then AGE(Zn) is either K1 or K2.
Suppose s(k) = 3 then AGE(Zn) is either K2, C4 or Figure 1, which are regular.
Suppose s(k) ≥ 4.
Case 1: ki = 1 for all i.
Let Ai be the collection of vertices defined as in Observation 2.1. If r is odd then |Ai| =
|Ar−i|, 1 ≤ i ≤ r−1

2 and the degree of each vertex in the above collection is (2i − 1)(2r−i − 1).
If r is even then |Ai| = |Ar−i|, 1 ≤ i ≤ r−2

2 and we have a midterm A r
2

and the degree of each
vertex in the above collection is (2i − 1)(2r−i − 1). From this we can easily see that AGE(Zn)

is non regular for s(k) ≥ 4.

Case 2: ki ≥ 2 for all i. Then

deg[p1] = k1

r∏
i=2

(ki + 1)− 2

and

deg[p1p2] = (k1 + k2 + k1k2)

r∏
i=3

(ki + 1)− 2
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which are not same.

Case 3: ki = 1 for some i , say k1 and kj ≥ 2 ∀ i ̸= 1. Then

deg[p1] =
r∏

i=2

(ki + 1)− 2

and

deg[p1p2] = (2k2 + 1)

r∏
i=3

(ki + 1)− k2

which are not same.

Case 4: Atleast two kj ’s are one, say k1 = k2 = 1 and kj ≥ 2 ∀ i ̸= 1, 2. Then

deg[p1] =
r∏

i=2

(ki + 1)

and

deg[p1p2] = 3[
r∏

i=3

(ki + 1)− 1]

which are not same. The proof is complete.

Theorem 2.4. AGE(Zn) is Eulerian if and only if ki = 1 for some i and kj’s are even for
i ̸= j or all the kj’s are even.

Proof. Assume that AGE(Zn) is Eulerian. Suppose ki is odd for some i, 2 ≤ i ≤ r. When
t = 1, equation (1) of Observation 2.1, will yield that the degree is odd.
Suppose exactly one ki is odd, say k1 with k1 ≥ 3 and all the other kj ’s are even, then also
equation (2) of Observation 2.1, will yield that the deg[p1] must be odd.
Conversely suppose ki is even for all i, 1 ≤ i ≤ r, then by equations (1) − (5) of Observation
2.1, we obtain that the degree of each vertex is even. Also suppose k1 = 1 and kj is even for
j ̸= 1, then by equations (1) − (5) of Observation 2.1, we will receive that the degree of each
vertex is even. The proof is complete.

We notate the domination number of a graph G by γ(G). The following theorem gives the
domination number of AGE(Zn).

Theorem 2.5. Let n ≥ 4. Then
(i)γ(AGE(Zn)) = 1 if and only if n = p1p2 or pk11 pk22 . . . pkrr with ki ≥ 2 for all 1 ≤ i ≤ r

(ii)γ(AGE(Zn)) = 2 otherwise
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Proof. (i) suppose ki ≥ 2 for all i, then the vertex [pl11 p
l2
2 . . . plrr ] where li < ki, 1 ≤ i ≤ r will

adjacent with all the other elements. Hence γ(AGE(Zn)) = 1.
(ii) In this case, the vertices [pkii ] for some i and [

∏r
j=1i ̸=j p

kj
i ] will cover all the vertices. Hence

γ(AGE(Zn)) ≤ 2. From Observation 2.1, we know that there exist no dominating vertex,
except the vertices described in (i). Hence γ(AGE(Zn)) = 2.

Observation 2.6. Domination polynomial of AGE(Zn)

The domination polynomial D(G, x) of a graph G is described as follows [1]:

(6) D(G, x) =

|V (G)|∑
i=γ(G)

d(G, i)xi

where d(G, i) = |D(G, i)|, D(G, i) is the collection of dominating sets of size i of G.

Now let us discuss about the dominating polynomial of AGE(Zn). We know that, a domi-
nating vertex of AGE(Zn) is a product of all the r primes and the power of each prime number
must be less than ki, 1 ≤ i ≤ r. Hence we have
d(AGE(Zn), 1) =

∏r
i=1(ki − 1), ki ≥ 2, ∀ i.

Next we move on to D(AGE(Zn), 2). From the structure on AGE(Zn) we have analyzed that
a dominating set of size m has the elements that are the partitions of the r distinct prime
numbers(including their powers) into m distinct parts. Since each combination has p(k) pos-
sibilities we have,

d(AGE(Zn), 2) =

p(k)
((

r
1

)
+
(
r
2

)
+ . . .

(
r
r
2

))
if r is even

p(k)
((

r
1

)
+
(
r
2

)
+ . . .

(
r

r−1
2

))
if r is odd

Next, let us discuss about D(AGE(Zn), 3). First let us write down the partitions of r into 3

distinct parts. The possible partitions are

1 1 r − 2

1 2 r − 3

...
...

...

1
r

2
− 1

r

2
if r is even

1
r − 1

2

r − 1

2
if r is odd(7)
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2 2 r − 4

2 3 r − 5

...
...

...

2
r − 2

2

r − 2

2
if r is even

2
r − 1

2
− 1

r − 2

2
if r is odd(8)

3 3 r − 6

3 4 r − 7

...
...

...

3
r − 2

2
− 1

r − 2

2
if r is even

3
r − 3

2

r − 3

2
if r is odd(9)

Also the partition ends with any one of the following pattern:
If r is divisible by 3, then the partition ends with

r

3

r

3

r

3
(r1)

Suppose r − 1 is divisible by 3, then the partition ends with
r − 1

3

r − 1

3

r − 1

3
+ 1(r2)

Suppose r − 2 is divisible by 3, then the partition ends with the following two patterns:
r − 2

3

r − 2

3

r − 2

3
+ 2

r − 2

3

r − 2

3
+ 1

r − 2

3
+ 1(r3)

Let d(i) denotes the number of domination sets of AGE(Zn) of type equation (i). Now

d(7) =

p(k)
(
r
1

)∑ r
2
−1

i=1

(
r−1
i

)
if r is even

p(k)
(
r
1

)∑ r−1
2

i=1

(
r−1
i

)
if r is odd

d(8) =

p(k)
(
r
2

)∑ r−2
2

i=1

(
r−2
i

)
if r is even

p(k)
(
r
2

)∑ r−1
2

−1

i=1

(
r−2
i

)
if r is odd
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d(9) =

p(k)
(
r
3

)∑ r−2
2

−1

i=1

(
r−3
i

)
if r is even

p(k)
(
r
3

)∑ r−3
2

i=1

(
r−3
i

)
if r is odd

and

d(r1) = p(k)

(
r
r
3

)(
r − r

3
r
3

)
d(r2) = p(k)

(
r

r−1
3

)(
r − r−1

3
r−1
3

)

d(r3) = p(k)

(
r

r−2
3

)((
r − r−2

3
r−2
3

)
+

(
r − r−2

3
r−2
3 + 1

))

Now d(AGE(Zn), 3) = d(7) + d(8) + . . . + d(ri) for some i, 1 ≤ i ≤ 3. Similarly we can
calculate d(AGE(Zn), t), for t ≥ 4.
Now D(AGE(Zn), r) has the elements {[pl11 ], [p

l2
2 ], . . . , [p

lr
r ], 1 ≤ ii ≤ ki, 1 ≤ i ≤ r}. Hence

d(AGE(Zn), r) = p(k).
Also adding any set of t vertices (other than the vertices in D(AGE(Zn), r)) with a set of
D(AGE(Zn), r) will produce a dominating set of size r + t, 1 ≤ t ≤ n− r. Hence

d(AGE(Zn), r + 1) = p(k)

(
n− p(k)

1

)
d(AGE(Zn), r + 2) = p(k)

(
n− p(k)

2

)
d(AGE(Zn), n− 2) = p(k)

(
n− p(k)

n− p(k)− 2

)
Also any set of n− 1 vertices of AGE(Zn) is a dominating set. Hence d(AGE(Zn), n− 1) = n

and d(AGE(Zn), n) = 1. Now substituting the values of d(AGE(Zn), i), 1 ≤ i ≤ n in equation
(6), we get the domination polynomial of AGE(Zn).

bb

b b

b

b

[p1] [p2] [p3]

[p1p2][p1p3][p2p3]

Figure 1: AGE(Zp1p2p3)
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3. Planarity of AGE(Zn)

A graph is called outer planar if the graph can be drawn in the plane without any crossings
so that all the vertices should be in the outer face of the embedding. A planar graph is the one
which can be embedded on the plane in a manner that no two edges cannot intersect except
at their starting point. In this section we characterize the values of n for which AGE(Zn) is
outer planar or planar.

Theorem 3.1. [7, Theorem 1] A graph G is outer planar if and only if it contains no subgraph
homeomorphic to K2,3 or K4.

Theorem 3.2. AGE(Zn) is outer planar if and only if n = pk11 , 2 ≤ k1 ≤ 4, p1p2 or p21p2

Proof. We know that, AGE(Zp1p2)
∼= K2 and AGE(Zp21p2

) ∼= C4. Then the proof is clear by
Remark 2.2 and Theorem 3.1.
Suppose AGE(Zn) is outer planar. Let r ≥ 3 with ki ≥ 1 ∀ 1 ≤ i ≤ r. Then the collection of
vertices {[p1], [p2], [p3], [p1p2], [p1p3], [p2p3]} will form a subdivision of K2,3, which is a contra-
diction. Hence r ≤ 2.
Suppose k1 ≥ 3. Then the {[p1], [p2], [p21], [p31], [p1p2], [p21p2]} will form a subdivision of K2,3,
which is a contradiction. Hence k1, k2 ≤ 2. Suppose k1 = k2 = 2, then also the following
collection {[p2], [p21], [p22], [p1p2], [p1p22]} will yield a K2,3. Hence n = p1p2 or p21p2

Theorem 3.3. [4, Kuratowski] A graph G is planar if and only if it contains no subdivision
of K5 or K3,3.

For a non-negative integer n, let Sn denote the sphere with n handles. The genus of a graph
G, denoted by g(G), is the minimum integer n such that G can be embedded in Sn.

Theorem 3.4. ([4, Theorem 4.4.4]) Let G be a connected graph with n ≥ 3 vertices and q

edges. Then g(G) ≥
⌈ q
6 − n

2 + 1
⌉

Theorem 3.5. AGE(Zn) is planar if and only if n = p51 or p1p2p3

Proof. Suppose r ≥ 4. Then the collection of vertices {[p1], [p2], [p3], [p4], [p1p3], [p2p4]} will
form a k3,3, which is a contradiction. Hence r ≤ 3.
Case 1: r = 3

Suppose any one of ki, say k1 ≥ 2. Then the subgraph AGE(Zp21p2p3
) of AGE(Zn) contains 10

vertices and 29 edges. Then by Theorem 3.4, g(AGE(Zp21p2p3
)) ≥ 1, which is a conflict. Hence

n = p1p2p3.
Case 2: r = 2

Suppose k1 ≥ 3, then the collection {[p1], [p2], [p1p2], [p21], [p31], [p21p2]} will produce a K3,3,
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a contradiction. Hence k1 ≤ 2. Suppose k1 = k2 = 2 then also the set of vertices
{[p1], [p2], [p21], [p22], [p21p2], [p1p22]} will generate a K3,3, which is a mismatch.
Case 3: r = 1

The proof is straightforward by Theorem 3.3 and Remark 2.2. Also the converse is clear by
Figure 1.
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