
Algebraic Structures and Their Applications Vol. 10 No. 1 (2023) pp 113-130.

Research Paper

MINIMAL PRIME FILTERS OF COMMUTATIVE BE-ALGEBRAS

V. VENKATA KUMAR∗, MUKKAMALA SAMBASIVA RAO AND S. KALESHA VALI

Abstract. In this paper we introduced the concept of minimal prime filters in commutative

BE-algebras. A characterization theorem for minimal prime filters of BE-algebras is derived.

Some properties of minimal prime filters of a commutative BE-algebras are derived with the

help of congruences. A necessary and sufficient is derived for a pair of minimal prime filters

to become co-maximal.

1. Introduction

The notion of BE-algebras was introduced and extensively studied by H.S. Kim and Y.H.
Kim in [4]. These classes of BE-algebras were introduced as a generalization of the class of
BCK-algebras of K. Iseki and S. Tanaka [3]. Some properties of filters of BE-algebras were
studied by S.S. Ahn and Y.H. Kim in [1] and by B.L. Meng in [5]. In [12], A. Walendziak
discussed some properties of commutative BE-algebras. He also investigated the relationship
between BE-algebras, implicative algebras and J-algebras. In 2013, Borumand Saeid, Rezaei
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and Borzooei [2] extensively studied the properties of some types of filters in BE-algebras. In
[8], it is observed by A. Rezaei and et. al. that a KU–algebra is equivalent to the commuta-
tive self distributive BE–algebra. In 2018, Rezaei and Borumand Saeid [9] proved that any
self distributive commutative BE-algebras is a gi-algebra and any gi-algebra is strong and
transitive if and only if it is a commutative BE-algebra. In [6], Meng introduced the notion
of prime filters in BCK-algebras, and then gave a description of the filter generated by a set,
and obtained some of fundamental properties of prime filters. He also studied in [7], some
properties of prime ideals in BCK-algebras.

Motivated by the characterizations given by Rao in [10], the author introduced the notion
of prime filters in BE-algebras. Some properties of prime filters and maximal filters are then
studied. He characterized generalized prime filters of a commutative BE-algebra. In [11], some
properties of dual annihilator filters of commutative BE-algebras are studied. It is proved that
the class of all dual annihilator filters of a BE-algebra is a complete Boolean algebra. A set of
equivalent conditions is derived for every prime filter of a commutative BE-algebra to become
a maximal filter.

Filters are important substructures in a BE-algebra and play an important role. It is well
understood that filters are the kernels of congruences. Filter theory is crucial in the study of
any class of logical algebras. From a logical standpoint, different filters correspond to different
sets of valid formulas in an appropriate logic. Designing various types of filters in some
logical algebra, on the other hand, is also algebraically interesting. With this motivation, we
investigate the concept of a minimal prime filter of a commutative BE-algebra in this paper.
A characterization theorem is derived for minimal prime filters of commutative BE-algebras.
A set of equivalent conditions is derived for every prime filter of a BE-algebra to become a
minimal prime filter. Some properties of minimal prime filters of a commutative BE-algebra
are studied with the help of congruences. An equivalency is obtained between the minimal
prime filters of a commutative BE-algebra and the minimal prime filters of its quotient algebra
with respect to this congruence.

2. Preliminaries

In this section, we present certain definitions and results which are taken mostly from the
papers [1], [4], [10] and [12] for the ready reference of the reader.

Definition 2.1. [4] An algebra (X, ∗, 1) of type (2, 0) is called a BE-algebra if it satisfies the
following properties:

(1) x ∗ x = 1,
(2) x ∗ 1 = 1,
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(3) 1 ∗ x = x,
(4) x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X.

A BE-algebra X is called self-distributive if x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z) for all x, y, z ∈ X.
A BE-algebra X is called transitive if y ∗ z ≤ (x ∗ y) ∗ (x ∗ z) for all x, y, z ∈ X. Every self-
distributive BE-algebra is transitive. A BE-algebra X is called commutative if (x ∗ y) ∗ y =

(y ∗ x) ∗ x for all x, y ∈ X. Every commutative BE-algebra is transitive. For any x, y ∈ X,
define x∨ y = (y ∗ x) ∗ x. If X is commutative, then (X,∨) is a semilattice [12]. We introduce
a relation ≤ on a BE-algebra X by x ≤ y if and only if x ∗ y = 1 for all x, y ∈ X. Clearly ≤ is
reflexive. If X is commutative, then ≤ is transitive, anti-symmetric and hence a partial order
on X.

Definition 2.2. [1] A non-empty subset F of a BE-algebra X is called a filter of X if, for all
x, y ∈ X, it satisfies the following properties:

(1) 1 ∈ F ,
(2) x ∈ F and x ∗ y ∈ F imply that y ∈ F .

For any non-empty subset A of a transitive BE-algebra X, the set 〈A〉 = {x ∈ X | a1 ∗ (a2 ∗
(· · · ∗ (an ∗ x) · · · )) = 1 for some a1, a2, . . . an ∈ A} is the smallest filter containing A. For any
a ∈ X, 〈a〉 = {x ∈ X | an ∗x = 1 for some n ∈ N}, where an ∗x = a∗ (a∗ (· · · ∗ (a∗x) · · · )) with
the repetition of a is n times, is called the principal filter generated a. If X is self-distributive,
then 〈a〉 = {x ∈ X | a ∗ x = 1}. A proper filter P of a BE-algebra is called prime [10] if
〈x〉 ∩ 〈y〉 ⊆ P implies x ∈ P or y ∈ P for any x, y ∈ X. A proper filter M of a transitive
BE-algebra X is called maximal [10] if there exists no proper filter Q such that M ⊂ Q. Every
maximal filter of a commutative BE-algebra is prime.

Theorem 2.3. [10] Let S be a ∨-closed subset of a commutative BE-algebra X. If F is a
filter of X such that F ∩ S = ∅, then there exists a prime filter P of X such that F ⊆ P and
P ∩ S = ∅.

Theorem 2.4. [10] If X is a self-distributive and commutative BE-algebra, then
(1) x ≤ y implies 〈y〉 ⊆ 〈x〉,
(2) 〈x〉 ∩ 〈y〉 = 〈x ∨ y〉 for all x, y ∈ X.

Theorem 2.5. [10] If X is a self-distributive and commutative BE-algebra, then the following
are equivalent:

(1) P is prime;
(2) for any x, y ∈ X, x ∨ y ∈ P implies x ∈ P or y ∈ P ;
(3) for any two filters F and G of X, F ∩G ⊆ P implies F ⊆ P or G ⊆ P .
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For any non-empty subset A of a commutative BE-algebra X, the dual annihilator [11] of
A is defined as A+ = {x ∈ X | x∨ a = 1 for all a ∈ A}. Clearly A+ is a filter of X. Obviously
X+ = {1} and {1}+ = X. For A = {a}, we simply denote {a}+ by (a)+.

Proposition 2.6. [11] Let X be a commutative BE-algebra and x, y, z ∈ X. Then (x∗y)∨z ≤
(x ∨ z) ∗ (y ∨ z).

Proposition 2.7. [11] For any two filters F,G of a commutative BE-algebra X, we have
(1) F ∩ F+ = ∅,
(2) F ⊆ F++,
(3) F+++ = F+,
(4) F ⊆ G implies G+ ⊆ F+,
(5) (F ∨G)+ = F+ ∩G+,
(6) (F ∩G)++ = F++ ∩G++.

Corollary 2.8. [11] For any two elements a, b of a commutative BE-algebra X, we have

(1) (〈a〉)+ = (a)+,
(2) 〈a〉 ⊆ (a)++,
(3) a ≤ b implies (a)+ ⊆ (b)+.

3. Minimal prime filters of BE-algebras

In this section, the notion of minimal prime filters is introduced in BE-algebras. An equiv-
alent condition is derived for every prime filter of a BE-algebra to become a minimal prime
filter.

Definition 3.1. Let F be a filter and P a prime filter of a commutative BE-algebra X such
that F ⊆ P . Then P is called a minimal prime filter belonging to F if there exists no prime
filter Q such that F ⊆ Q ⊂ P .

In a BE-algebra X, the minimal prime filters belonging to {1} are simply called minimal
prime filters of X. In the other version, a minimal prime filter of a BE-algebra is the minimal
element of the partial order set of all prime filters. Thus a prime filter P of X is a minimal
prime filter if for any prime filter F of X such that F ⊆ P , then P = F .

Example 3.2. Let X = {1, a, b, c} be a set. Define a binary operation ∗ on X as follows:

∗ 1 a b c

1 1 a b c

a 1 1 a c

b 1 1 1 c

c 1 a b 1

∨ 1 a b c

1 1 1 1 1

a 1 a a 1

b 1 a b 1

c 1 1 1 c
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Then (X, ∗,∨, 1) is a commutative BE-algebra. Consider the subset P = {1, c} of X. Clearly
P is a prime filter of X. Observe that the improper filter {1} is not prime because of a ∨ c =
1 ∈ {1} but neither a ∈ {1} nor c ∈ {1}. Therefore P is a minimal prime filter of X. Similarly,
we observe that G = {1, a, b} is another minimal prime filter of X.

Proposition 3.3. Let F be a proper filter of a commutative BE-algebra X. Then every prime
filter of X, containing F , contains at least a minimal prime filter belonging to F .

Proof. Let P be a prime filter of X such that F ⊆ P . Consider the collection

T = {Q | Q is a prime filter of X such that F ⊆ Q ⊆ P}.

Clearly P ∈ T and hence T 6= ∅. Let {Qα}α∈∆ be a chain of elements in T. Since {Qα}α∈∆
is a chain, we get that

∩
α∈∆

Qα is a prime filter of X. Since F ⊆ Qα ⊆ P for all α ∈ ∆, it

is clear that F ⊆
∩
α∈∆

Qα ⊆ P . Hence
∩
α∈∆

Qα is a lower bound for {Qα}α∈∆. Therefore by

Zorn’s lemma, T has a minimal element, say Q0. Therefore Q0 is a minimal prime filter such
that F ⊆ Q0 ⊆ P .

By taking F = {1}, we get the following easy consequence:

Corollary 3.4. Every prime filter of a commutative BE-algebra X contains at least a minimal
prime filter.

Proposition 3.5. Let F be a proper filter of a commutative BE-algebra X. Then F is the
intersection of all minimal prime filters of X, belonging to F .

Proof. Since F is contained in every minimal prime filter of X, belonging to F and so contained
in the intersection of all minimal prime filters belonging to F . To prove the converse, let x /∈ F .
Then by Corollary 3.4 (F is the intersection of all prime filters containing F ), there exists a
prime filter P of X such that F ⊆ P and x /∈ P . Then there exists a minimal prime filter M
of X such that F ⊆ M ⊆ P . Since x /∈ P , we get x /∈ M . Hence M is a minimal prime filter
of X, belonging to F , such that x /∈M . Thus x is not in the intersection of all minimal prime
filters of X, belonging to F .

If we take F = {1} in the above proposition, the following is a direct consequence.

Corollary 3.6. Let X be a commutative BE-algebra. Then the intersection of all minimal
prime filters of X is equal to {1}.

In Proposition 3.5, it is observed that every proper filter of a BE-algebra X can be decom-
posed as the intersection of all minimal prime filters of X, belonging to F .
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Theorem 3.7. (Unique decomposition theorem) Let F be a proper filter of a commutative
BE-algebra X. If there exist positive integers m and n such that

F = P1 ∩ P2 ∩ · · · ∩ Pm and F = Q1 ∩Q2 ∩ · · · ∩Qn

are two representations of distinct minimal prime filters of X, belonging to F , then m = n,
and for any Pi in the first expression there is Qj in the second expression such that Pi = Qj.

Proof. Let Pi(i = 1, 2, . . . ,m) be a minimal prime filter in the first representation. Clearly
F ⊆ Pi. By the second representation, we have Q1 ∩ (Q2 ∩ · · · ∩Qn) ⊆ Pi. Since Pi is prime,
we get

Q1 ⊆ Pi or Q2 ∩ · · · ∩Qn ⊆ Pi.

IfQ1 ⊆ Pi, then the minimality of Pi provides that Pi = Q1. IfQ1 ⊈ Pi, thenQ2∩· · ·∩Qn ⊆ Pi.
Repeating the same argument, we finally get that there exists j ∈ {2, 3, . . . ,m} such that
Pi = Qj . It remains to show that m = n. Note that Pi, P2, . . . , Pm are distinct, the preceding
argument actually implies m ≤ n. If we begin with the second representation, by the entirely
similar argument, we will obtain n ≤ m. Therefore m = n.

Corollary 3.8. If a proper filter F of a commutative BE-algebra X can be expressed as the
intersection of a finite number of distinct minimal prime filters of X, belonging to F , then
such representation is unique except their occurring order.

In the following theorem, minimal prime filters are characterized.

Theorem 3.9. Let F be a filter and P a prime filter of a self-distributive and commutative
BE-algebra X such that F ⊆ P . Then P is a minimal prime filter belonging to F if and only
if for each x ∈ P , there exists y /∈ P such that x ∨ y ∈ F .

Proof. Assume that P is a minimal prime filter belonging to a filter F of X. Let a ∈ P . Put
S0 = {a ∨ x | x ∈ X − P}. Consider S = S0 ∪ (X − P ) and a ∈ S. We first observe that S is
a ∨-closed subset of X. Let x, y ∈ S. Then we have the following cases:
Case I : Suppose x, y ∈ S0. Then there exists a0, b0 ∈ X−P such that x = a∨a0 and y = a∨b0.
Hence x ∨ y = (a ∨ a0) ∨ (a ∨ b0) = a ∨ (a0 ∨ b0). Since P is prime, we get a0 ∨ b0 ∈ X − P .
Hence x ∨ y ∈ S0. Therefore x ∨ y ∈ S.
Case II : Suppose x, y ∈ X − P . Since P is prime, we get x ∨ y ∈ X − P ⊆ S.
Case III : Suppose x ∈ S0 and y ∈ X − P . Then x = a ∨ a0 for some a0 ∈ X − P . Since P
is prime, we get a0 ∨ y ∈ X − P . Hence x ∨ y = (a ∨ a0) ∨ y = a ∨ (a0 ∨ y) ∈ S0. Therefore
x ∨ y ∈ S.
Case IV : Suppose x ∈ X − P and y ∈ S0. Then y = a ∨ b0 for some b0 ∈ X − P . Hence
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x ∨ y = x ∨ (a ∨ b0) = a ∨ (x ∨ b0) ∈ S0 because of x ∨ b0 ∈ X − P .
From the above cases, we obtain that S is a ∨-closed subset of X. Therefore S is a ∨-closed
subset with X − P ⊆ S and a ∈ S. By Theorem 2.3, we get

F ∩ S = ∅ ⇒ there exists a prime filter Q such that F ⊆ Q and Q ∩ S = ∅

⇒ Q ∩ (X − P ) = ∅ and a /∈ Q

⇒ Q ⊆ P and a /∈ Q

⇒ Q ⊊ P

which is a contradiction to the minimality of P . Hence F ∩ S 6= ∅. Choose z0 ∈ F ∩ S. Hence
z0 ∈ S0 ∪ (X − P ). Suppose z0 ∈ X − P . Since F ⊆ P , we get X − P ⊆ X − F and hence
z0 ∈ X − F . Hence z0 /∈ F , which is a contradiction. Hence z0 /∈ X − P . Thus z0 ∈ S0.
Therefore a ∨ x = z0 ∈ F for some x ∈ X − P .

Conversely, assume the condition. Let Q be a prime filter of X such that F ⊆ Q ⊂ P .
Choose a ∈ P−Q. Then by the assumed condition, there exists x /∈ P such that a∨x ∈ F ⊆ Q.
Since Q is prime and a /∈ Q, we get x ∈ Q ⊂ P , which is a contradiction. Therefore P is a
minimal prime filter belonging to F .

Corollary 3.10. Let X be a self-distributive and commutative BE-algebra. A prime filter P
of X is a minimal prime filter if and only if for each x ∈ P , there exists y /∈ P such that
x ∨ y = 1.

4. Characterization of Minimal prime filters

In this section, some properties of minimal prime filters of BE-algebras are observed. Char-
acterization theorems are derived for minimal prime filters of commutative BE-algebras.

Definition 4.1. For any filter P of a commutative BE-algebra X, define the set O(P ) as

O(P ) = {x ∈ X | x ∨ a = 1 for some a /∈ P} =
∪
a/∈P

(a)+.

In general, if P is a filter, then O(P ) need not be a filter.

Example 4.2. Let X = {1, a, b, c, d} be a set. Define a binary operation ∗ on X as follows:

∗ 1 a b c d

1 1 a b c d

a 1 1 1 1 d

b 1 c 1 c d

c 1 b b 1 d

d 1 a b c 1

∨ 1 a b c d

1 1 1 1 1 1

a 1 a b c 1

b 1 b b 1 1

c 1 c 1 c 1

d 1 1 1 1 d
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Then clearly (X, ∗,∨, 1) is a commutative BE-algebra. Consider the filter P = {1, d} of X.
Now O(P ) = {x | x ∨ y = 1 for some y /∈ P} = {1, b, c, d}, which is not a filter of X.

In the following, we can observe that O(P ) is a filter for a prime filter P .

Proposition 4.3. Let P be a filter of a self-distributive and commutative BE-algebra X. If
P is a prime filter of X, then O(P ) is a filter containing P .

Proof. Clearly 1 ∈ O(P ). Let x, x ∗ y ∈ O(P ). Then x ∨ a = 1 and (x ∗ y) ∨ b = 1 for some
a, b ∈ X − P . Put c = a ∨ b. Then 1 = x ∨ a ≤ x ∨ c and 1 = (x ∗ y) ∨ b ≤ (x ∗ y) ∨ c. Hence
x ∈ (c)+ and x ∗ y ∈ (c)+. Since (c)+ is a filter, we get y ∈ (c)+. Thus y ∨ c = 1. Since
a /∈ P, b /∈ P and P is prime, we get c = a ∨ b /∈ P . Thus y ∈ O(P ). Therefore O(P ) is a filter
of X. Now, let x ∈ O(P ). Then there exists some t /∈ P such that x ∨ t = 1. Since x ∨ t ∈ P

and t /∈ P , it imply that x ∈ P . Therefore O(P ) ⊆ P .

Corollary 4.4. Let P be a prime filter of a self-distributive and commutative BE-algebra X.
Then x ∈ O(P ) if and only if there exists a ∈ X − P such that x ∨ a = 1.

Proposition 4.5. Let P be a prime filter of a self-distributive and commutative BE-algebra
X. Then every minimal prime filter belonging to O(P ) is contained in P .

Proof. Let Q be a minimal prime filter belonging to O(P ). Suppose Q ⊈ P . Choose x ∈ Q−P .
Since Q is a minimal prime filter belonging to O(P ), by Theorem 3.9, there exists y /∈ Q such
that x ∨ y ∈ O(P ). Hence y ∨ (x ∨ z) = (x ∨ y) ∨ z = 1 for some z /∈ P . Since P is prime, we
get that x ∨ z /∈ P . Hence y ∈ O(P ) ⊆ Q, which is a contradiction. Therefore Q ⊆ P .

Proposition 4.6. Let P be a prime filter of a self-distributive and commutative BE-algebra
X. Then O(P ) is the intersection of all the minimal prime filters contained in P .

Proof. Let P be a prime filter of X. By Zorn’s lemma, we can observe that P contains a
minimal prime filter. Let {Sα}α∈∆ be a family of all minimal prime filters contained in P .
Let x ∈ O(P ). Then there exists a /∈ P such that x ∨ a = 1. Since each Sα ⊆ P and a /∈ P ,
we get a /∈ Sα for all α ∈ ∆. Since x ∨ a ∈ Sα and a /∈ Sα for all α ∈ ∆, we get x ∈ Sα for
all α ∈ ∆. Hence x ∈

∩
α∈∆

Sα. Therefore O(P ) ⊆
∩
α∈∆

Sα. Conversely, let x /∈ O(P ). Clearly

x 6= 1. Consider S = {
n∨
i=1

xi | xi ∈ (X − P ) ∪ {x}, n ∈ N}. Then clearly S is closed under

∨, X − P ⊆ S and x ∈ S. Suppose 1 ∈ S. Then

1 =
n∨
i=1

xi where xi ∈ (X − P ) ∪ {x}
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Suppose xi ∈ X −P for all i = 1, 2, ..., n. Then
n∨
i=1

xi = 1 ∈ P . Since P is prime, it yields that

xi ∈ P for some i = 1, 2, ..., n, which is a contradiction. Hence at least one xi = x. Suppose
that xi = x for all i = 1, 2, ..., n. Then x =

n∨
i=1

xi = 1, which is a contradiction. Hence there

exists at least one xi 6= x. Therefore 1 = x1 ∨ x ∨ x2 or 1 = x1 ∨ x or 1 = x ∨ x2 where
x1, x2 ∈ X − P .
Case I: Suppose x1 ∨ x∨ x2 = 1. Then x ∈ (x1 ∨ x2)+ and x1 ∨ x2 /∈ P . Therefore x ∈ O(P ),
which is a contradiction.

Case II: Suppose x1 ∨ x = 1. Then x ∈ (x1)
+ and x1 /∈ P . Hence x ∈ O(P ), which is a

contradiction.
Case III: Suppose x ∨ x2 = 1. Then x ∈ (x2)

+ and x2 /∈ P . Hence x ∈ O(P ), which is a
contradiction.
Hence 1 /∈ S, which gives 〈1〉 ∩ S = ∅. Then there exists a prime filter Q such that 〈1〉 ⊆ Q

and S ∩Q = ∅. Since x ∈ S, we get x /∈ Q. Hence

Q ∩ S = ∅ ⇒ Q ∩ (X − P ) = ∅ and x /∈ Q

⇒ Q ⊆ P and x /∈ Q

Consider K = {Qi | Qi is a prime filter , Qi ⊆ P and x /∈ Qi}. Clearly Q ∈ K. Let {Qα}α∈∆
be a chain in K. Then clearly

∩
α∈∆

Qα ∈ K. Hence by Zorn’s Lemma, K contains a minimal

element, say M . Clearly M is a minimal prime filter of X. Therefore M is a minimal prime
filter such that M ⊆ P and x /∈M . Hence x /∈

∩
α∈∆

Sα. Therefore
∩
α∈∆

Sα ⊆ O(P ).

The following corollary is a direct consequence of the above theorem.

Corollary 4.7. Let X be a self-distributive and commutative BE-algebra. A prime filter P
of X is minimal if and only if O(P ) = P .

Proof. Assume that P is minimal. By the main theorem, it is clear that O(P ) = P . Conversely,
assume that O(P ) = P . Let x ∈ P = O(P ). Then there exists y /∈ P such that x ∨ y = 1.
Therefore P is minimal.

Theorem 4.8. Let F and G be two filters of a commutative BE-algebra X. Then F ∨ G =

〈F ∪G〉 = {x ∈ X | a∗ (b∗x) = 1 for some a ∈ F and b ∈ G } is the smallest filter containing
containing both F and G.

Proof. Clearly 1 ∈ F ∨G. Let x, x ∗ y ∈ F ∨G. Then there exists a, c ∈ F and b, d ∈ G such
that a ∗ (b ∗ x) = 1 and c ∗ (d ∗ (x ∗ y)) = 1. Hence x ∗ (c ∗ (d ∗ y)) = 1. Thus x ≤ c ∗ (d ∗ y).
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Therefore 1 = a ∗ (b ∗ x) ≤ a ∗ (b ∗ (c ∗ (d ∗ y))) = a ∗ (c ∗ (b ∗ (d ∗ y))). Since a, c ∈ F , we get
b ∗ (d ∗ y) ∈ F . Put f = b ∗ (d ∗ y).

b ∗ (d ∗ (f ∗ y)) = f ∗ (b ∗ (d ∗ y))

= (b ∗ (d ∗ y)) ∗ (b ∗ (d ∗ y))

= 1 ∈ G

Since b, d ∈ G, it infers f∗y ∈ G. Put g = f∗y. Hence f∗(g∗y) = g∗(f∗y) = (f∗y)∗(f∗y) = 1.
Therefore y ∈ F ∨ G. Therefore F ∨ G is a filter of X. Let x ∈ F . Clearly x ∗ (1 ∗ x) = 1.
Hence x ∈ F ∨G. Therefore F ⊆ F ∨G. Similarly, we get G ⊆ F ∨G. Let H be a filter of X
such that F ⊆ H and G ⊆ H. Let x ∈ F ∨G. Then there exists a ∈ F ⊆ H and b ∈ G ⊆ H

such that a ∗ (b ∗ x) = 1 ∈ H. Since a, b ∈ H, we get x ∈ H. Hence F ∨ G ⊆ H. Therefore
F ∨G is the smallest filter of X such that F ⊆ H and G ⊆ H.

In view of the above theorem, it can be observed that the class F(X) of all filters of
a commutative BE-algebra X forms a semi-lattice with respect to the operation ∨. In the
following theorem, a sufficient condition is derived for the class of filter of the form (x)+, x ∈ X

to become a sub semi-lattice of (F(X),∨).

Theorem 4.9. Let X be a self-distributive and commutative BE-algebra. If every prime filter
contains a unique minimal prime filter, then

(1) for any prime filter P, O(P ) is a prime filter,
(2) for any a, b ∈ X, a ∨ b = 1 implies (a)+ ∨ (b)+ = X.

Proof. (1). Let P be a prime filter of X. Then P contains a unique minimal prime filter, say
Q. Then by Proposition 4.3, we get O(P ) = Q. Therefore O(P ) is a minimal prime filter of
X.
(2). Let a, b ∈ X be such that a∨ b = 1. Suppose (a)+ ∨ (b)+ 6= X. Then there exists a prime
filter P such that (a)+ ∨ (b)+ ⊆ P . Hence a /∈ O(P ) and b /∈ O(P ). Since O(P ) is prime, we
get that 1 = a ∨ b /∈ O(P ), which is a contradiction. Therefore (a)+ ∨ (b)+ = X.

Let X be a self-distributive and commutative BE-algebra and PF (X) denote the set of
all prime filters of X. For any A ⊆ X, let K(A) = {P ∈ PF (X) | A ⊈ P} and for any
x ∈ X,K(x) = K({x}).

Lemma 4.10. Let X be a self-distributive and commutative BE-algebra and x, y ∈ X. Then
(1) K(x) ∩K(y) = K(x ∨ y),
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(2) K(x) = ∅ ⇔ x = 1,
(3)

∪
x∈X

K(x) = PF (X).

Proof. (1). Let P ∈ PF (X) be such that P ∈ K(x)∩K(y). Then x /∈ P and y /∈ P . Since P is
prime, we get x∨y /∈ P . Hence P ∈ K(x∨y). Therefore K(x)∩K(y) ⊆ K(x∨y). Conversely,
assume that P ∈ PF (X) and P ∈ K(x∨ y). Hence x∨ y /∈ P . If x ∈ P , then x∨ y ∈ P . Thus
x /∈ P . Therefore P ∈ K(x). Similarly, we get P ∈ K(y). Hence P ∈ K(x) ∩K(y).
(2). Since {1} ⊆ P for all P ∈ PF (X), it is obvious.
(3). Let P ∈ PF (X). Since P is a proper filter, there exists a ∈ X such that a /∈ P . Hence
P ∈ K(a) ⊆

∪
x∈X

K(x). Therefore PF (X) ⊆
∪
x∈X

K(x). Clearly
∪
x∈X

K(x) ⊆ PF (X). Therefore∪
x∈X

K(x) = PF (X).

In the following theorem, a set of equivalent conditions is derived for every prime filter of a
commutative BE-algebra to become a minimal prime filter.

Theorem 4.11. Let X be a self-distributive and commutative BE-algebra X. Then the
following are equivalent:

(1) For any P,Q ∈ PF (X) with P 6= Q, there exist x, y ∈ X such that
P ∈ K(x);Q ∈ K(y) and K(x) ∩K(y) = ∅,

(2) for each P ∈ PF (X), P is the unique member of PF (X) such that
O(P ) ⊆ P ,

(3) every prime filter is minimal,
(4) every prime filter is maximal.

Proof. (1) ⇒ (2): Assume that PF (X) satisfies the condition (1). Let P ∈ PF (X). Clearly
O(P ) ⊆ P . Suppose Q ∈ PF (X) such that Q 6= P and O(P ) ⊆ Q. By the condition (1),
there exists x, y ∈ X such that P ∈ K(x), Q ∈ K(y) and K(x ∨ y) = K(x) ∩ K(y) = ∅.
Hence x /∈ P, y /∈ Q. Since K(x ∨ y) = ∅, by Lemma 4.10(2), we get x ∨ y = 1. Therefore
y ∈ O(P ) ⊆ Q, which is a contradiction to that y /∈ Q. Hence P = Q. Therefore P is the
unique member of PF (X) such that O(P ) ⊆ P .
(2) ⇒ (3): Assume the condition (2). Let P be a prime filter of X. Suppose P is not minimal.
Let Q be a prime filter in X such that Q ⊆ P . Hence O(Q) ⊆ Q ⊆ P , which is a contradiction
to the assumption. Therefore P is a minimal prime filter in X.
(3) ⇒ (4): Since every maximal filter is prime, it is clear.
(4) ⇒ (1): Assume that every prime filter is maximal. Let P and Q be two distinct elements
of PF (X). Hence O(Q) ⊈ P . Choose x ∈ O(Q) such that x /∈ P . Since x ∈ O(Q), there exists
y /∈ Q such that x ∈ (y)+. Hence x ∨ y = 1. Thus it yields, P ∈ K(x), Q ∈ K(y). Since
x ∨ y = 1, we get that K(x) ∩K(y) = K(x ∨ y) = ∅.
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5. Congruences and minimal prime filters

In this section, some properties of minimal prime filters of a self-distributive and commu-
tative BE-algebras are studied with the help of congruences. An equivalency is obtained
between the minimal prime filters of a BE-algebra and its quotient algebra with respect to
this congruence.

Definition 5.1. Let S be any subset of a commutative BE-algebra X and x, y ∈ X. Define
a binary relation ψS on X by (x, y) ∈ ψS if and only if x ∨ a = y ∨ a for some a ∈ S.

Obviously, the above relation ψS is reflexive and symmetric on the BE-algebra X. In
general, the relation ψS is not transitive and hence it is not an equivalence relation on X.

Example 5.2. In Example 4.2, consider the subset S = {c, d} of X. It is easy to check that
for x, y ∈ X, (x, y) ∈ ψS if and only if x ∨ t = y ∨ t for some t ∈ S. Also, observe that ψS is
not transitive because of (a, b) ∈ ψS and (b, d) ∈ ψS but (a, d) /∈ ψS .

In the following result, it is observed that the above binary relation ψS is an equivalence
relation on X.

Proposition 5.3. Let S be a ∨-closed subset of a commutative BE-algebra X. Then ψS is
an equivalence relation on X.

Proof. Clearly ψS is reflexive and symmetric. Let (x, y), (y, z) ∈ ψS . Then x ∨ a = y ∨ a and
y∨ b = z∨ b for some a, b ∈ S. Now x∨a∨ b = y∨a∨ b = a∨y∨ b = a∨ z∨ b = z∨a∨ b. Since
a ∨ b ∈ S, we get (x, z) ∈ ψS . Hence ψS is transitive and so ψS is an equivalence relation.

In a commutative BE-algebra X, it is observed in Proposition 2.6 that (x ∗ y) ∨ z ≤
(x ∨ z) ∗ (y ∨ z) for all x, y, z ∈ X. Here after by a commutative BE-algebra, we mean a
commutative BE-algebra with the equality i.e. ∨ is right distributive over the operation ∗.

Example 5.4. Let X = {1, a, b, c} be a set. Define a binary operation ∗ on X as follows:

∗ 1 a b c

1 1 a b c

a 1 1 b c

b 1 a 1 c

c 1 a b 1

∨ 1 a b c

1 1 1 1 1

a 1 a 1 1

b 1 1 b 1

c 1 1 1 c

Then (X, ∗,∨, 1) is a commutative BE-algebra. It can be easily verified that (x ∗ y) ∨ z =

(x ∨ z) ∗ (y ∨ z) for all x, y, z ∈ X. Hence ∨ is right distributive over ∗.
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Under the presence of the above property, it is observed in the following theorem that the
relation ψS is a congruence on X.

Proposition 5.5. Let S be a ∨-closed subset of a commutative BE-algebra X. If ∨ is right
distributive over the operation ∗, then ψS is a congruence on X.

Proof. Let (x, y), (z, w) ∈ ψS . Then x ∨ a = y ∨ a and z ∨ b = w ∨ b for some a, b ∈ S. Now

(x ∗ z) ∨ (a ∨ b) = (x ∨ (a ∨ b)) ∗ (z ∨ (a ∨ b))

= ((x ∨ a) ∨ b) ∗ (a ∨ (z ∨ b))

= ((y ∨ a) ∨ b) ∗ (a ∨ (w ∨ b))

= (y ∨ (a ∨ b)) ∗ (w ∨ (a ∨ b))

= (y ∗ w) ∨ (a ∨ b).

Hence (x ∗ z, y ∗ w) ∈ ψS . Therefore ψS is a congruence on X.

For any commutative BE-algebra X where ∨ is right distributive over ∗, it is clear that the
quotient algebra X/ψS

is also a commutative BE-algebra and a BE-semilattice with respect
to the following operations.

[x]ψS
∗ [y]ψS

= [x ∗ y]ψS
and [x]ψS

∨ [y]ψS
= [x ∨ y]ψS

where [x]ψS
is the congruence class of x modulo ψS . It can be routinely verified that the

mapping Ψ : X −→ X/ψS
defined by Ψ(x) = [x]ψS

is an epimorphism.

Lemma 5.6. Let S be a ∨-closed subset of a self-distributive and commutative BE-algebra
X. Then the following conditions hold:

(1) [1]ψS
is the unit element of X/ψS

,
(2) If G is a filter of X/ψS

, then Ψ−1(G) is a filter of X,
(3) If P is a prime filter of X/ψS

, then Ψ−1(P ) is a prime filter of X.

Proof. (1). It is clear.
(2). Let G be a filter of X/ψS

. From condition (1), we get that [1]ψS
is a unit element of X/ψS

.
Let x, x∗y ∈ Ψ−1(G). Then [x]ψS

= Ψ(x) ∈ G and [x]ψS
∗ [y]ψS

= Ψ(x)∗Ψ(y) = Ψ(x∗y) ∈ G.
Since G is a filter of X/ψS

, we get [y]ψS
∈ G. Hence y ∈ Ψ−1(G). Therefore Ψ−1(G) is a filter

of X.
(3). Let x, y ∈ X and x ∨ y ∈ Ψ−1(P ). Then [x]ψS

∨ [x]ψS
= [x ∨ y]ψS

= Ψ(x ∨ y) ∈ P . Since
P is prime in X/ψS

, we get Ψ(x) = [x]ψS
∈ P or Ψ(y) = [y]ψS

∈ P . Hence x ∈ Ψ−1(P ) or
y ∈ Ψ−1(P ). Therefore Ψ−1(P ) is prime.
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Definition 5.7. Let S be a ∨-closed subset of a commutative BE-algebra X. For any filter
F of X, define F = {[x]ψS

| x ∈ F}.

By the nature of congruences of BE-algebras, it can be easily observed that F is a filter
in X/ψS

whenever F is a filter in X. In general, this fact may not hold for prime filters of
BE-algebras. Unless, X is self-distributive and commutative BE-algebra.

Proposition 5.8. Let P be a prime filter and S a ∨-closed subset of a self-distributive and
commutative BE-algebra X such that P ∩ S = ∅. Then

(1) x ∈ P if and only if [x]ψS
∈ P ,

(2) P ∩ S = ∅,
(3) If P is a prime filter of X, then P is a prime filter of X/ψS

.

Proof. (1). Let x ∈ P . Then clearly [x]ψS
∈ P . Conversely, let [x]ψS

∈ P . Then we get
[x]ψS

= [t]ψS
for some t ∈ P . Hence (x, t) ∈ ψS . Thus, it yields x ∨ a = t ∨ a ∈ P for some

a ∈ S. Since P ∩S = ∅, we get a /∈ P . Hence x ∈ P . Therefore x ∈ P if and only if [x]ψS
∈ P .

(2). Suppose P ∩ S 6= ∅. Then choose [x]ψS
∈ P ∩ S where x ∈ X. Then by condition (1), we

get that x ∈ P and [x]ψS
∈ S. Hence we get

[x]ψS
∈ S ⇒ [x]ψS

= [y]ψS
for some y ∈ S

⇒ (x, y) ∈ ψS

⇒ x ∨ a = y ∨ a for some a ∈ S

⇒ x ∨ a ∈ S since y ∨ a ∈ S

⇒ x ∨ a ∈ P ∩ S since x ∈ P

which is a contradiction to P ∩ S = ∅. Therefore, it concludes that P ∩ S = ∅.
(3). Since P is a filter of X, it is clear that P is a filter in X/ψS

. Since P is a proper filter in
X, by (1), we get that P is a proper filter in X/ψS

. Let [x]ψS
, [y]ψS

∈ X/ψS
. Then we have

[x]ψS
∨ [y]ψS

∈ P ⇒ [x ∨ y]ψS
∈ P

⇒ x ∨ y ∈ P from (1)

⇒ x ∈ P or y ∈ P

⇒ [x]ψS
∈ P or [y]ψS

∈ P

Therefore P is a prime filter in X/ψS
.

Proposition 5.9. Let S be a ∨-closed subset of a self-distributive and commutative BE-algebra
X and P a prime filter of X such that P ∩ S = ∅. Then the mapping P 7→ P is an order
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isomorphism of the set of all prime filters of X disjoint from S onto the set of all prime filters
of X/ψS

.

Proof. Let P,Q be two prime filters of X such that P ∩ S = ∅ and Q ∩ S = ∅. Then by
Proposition 5.8(1), we get that P ⊆ Q ⇔ P ⊆ Q. Let P be a prime filter of X such that
P ∩ S = ∅. Then by Proposition 5.8(3), we get that P is a prime filter of X/ψS

. Let R be a
prime filter of X/ψS

. Consider P = {x ∈ X | [x]ψS
∈ R}. Since R is a filter of X/ψS

, we get that
P is a filter of X. Let x, y ∈ X such that x∨ y ∈ P . Then [x]ψS

∨ [y]ψS
= [x∨ y]ψS

∈ R. Since
R is prime, we get either [x]ψS

∈ R or [y]ψS
∈ R. Hence either x ∈ P or y ∈ P . Therefore P

is a prime filter of X. Clearly P = R. Suppose P ∩S 6= ∅. Choose a ∈ P ∩S. Then [a]ψS
∈ R

and a ∈ S. Let [y]ψS
∈ X/ψS

be an arbitrary element. Now for any a ∈ S and y ∈ X, we have
the following:

a ∨ y = a ∨ y ∨ a ⇒ (y, y ∨ a) ∈ ψS

⇒ [y]ψS
= [y ∨ a]ψS

⇒ [y]ψS
= [y]ψS

∨ [a]ψS
∈ R since R is a filter

⇒ [y]ψS
∈ R

Hence we get X/ψS
⊆ R, which is a contradiction. Thus, it infers that P ∩ S = ∅. Therefore

P 7→ P is an order isomorphism from the set of all prime filters of X which are disjoint from
S onto the set of all prime filters of X/ψS

.

The following corollary is a direct consequence of the above theorem.

Corollary 5.10. For any ∨-closed subset S and P a prime filter of a self-distributive and
commutative BE-algebra X such that P ∩ S = ∅, the above map P 7→ P induces a one-to-one
correspondence between the set of all minimal prime filters of X which are disjoint from S and
the set of all minimal prime filters of X/ψS

.

Two filters F and G of a BE-algebra X are called co-maximal if F ∨ G = X. Clearly any
two distinct maximal filters of a commutative BE-algebra are co-maximal but not any two
minimal prime filters.

Example 5.11. Let X = {1, a, b, c} be a set. Define a binary operation ∗ on X as follows:

∗ 1 a b c

1 1 a b c

a 1 1 b b

b 1 a 1 a

c 1 1 1 1

∨ 1 a b c

1 1 1 1 1

a 1 a 1 a

b 1 1 b b

c 1 a b c
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Then (X, ∗,∨, 1) is a commutative BE-algebra. Clearly F = {1, a} and G = {1, b} are two
distinct maximal filters of X. Observe that F ∨G = {1, a, b, c} = X. Therefore F and G are
co-maximal.

Example 5.12. Let X = {1, a, b, c, d, e} be a set. Define a binary operation ∗ on X as follows:

∗ 1 a b c d e

1 1 a b c d e

a 1 1 b d b c

b 1 a 1 d a d

c 1 e 1 1 1 a

d 1 1 1 b 1 b

e 1 b 1 1 1 1

∨ 1 a b c d e

1 1 1 1 1 1 1

a 1 a 1 b a a

b 1 1 b b b b

c 1 b b c d c

d 1 a b d d d

e 1 a b c d e

Then (X, ∗,∨, 1) is a commutative BE-algebra. Clearly F = {1, a} and G = {1, b} are two
distinct minimal prime filters of X. Observe that F ∨G = {1, a, b, d} 6= X. Therefore F and
G are not co-maximal.

In the following, we obtain an equivalent condition for two minimal prime filters to become
co-maximal.

Theorem 5.13. Let S be a ∨-closed subset of a self-distributive and commutative BE-algebra
X. Then any two distinct minimal prime filters of X are co-maximal if and only if any two
distinct minimal prime filters of X/ψS

are co-maximal.

Proof. Assume that any two distinct minimal prime filters of X are co-maximal. Let P1, P2 be
two distinct minimal prime filters of X/ψS

. Then by above corollary, there exist two minimal
prime filters Q1 and Q2 of X such that Q1∩S = ∅ and Q2∩S = ∅. Also Q1 = P1 and Q2 = P2.
Since P1 and P2 are distinct, we get that Q1 and Q2 are distinct. By the assumption, we get
that Q1 ∨Q2 = X. Hence for any x ∈ X, we can have

a ∗ (b ∗ x) = 1 where a ∈ Q1 and b ∈ Q2

Since a ∈ Q1, we get [a]ψS
∈ Q1 = P1. Similarly, we get [b]ψS

∈ Q2 = P2. Hence we get

[a]ψS
∗ ([b]ψS

∗ [x]ψS
) = [a ∗ (b ∗ x)]ψS

= [1]ψS

Thus, for any x ∈ X, we obtained [x]ψS
∈ P1 ∨ P2. Hence P1 ∨ P2 = X/ψS

.
Conversely, assume that any two distinct minimal prime filters of X/ψS

are co-maximal. Let
P be a prime filter of X. Suppose P contains two distinct minimal prime filters, say P1 and P2.
Consider S = X −P . Then clearly S is a ∨-closed subset of X such that P1 ∩S = ∅ = P2 ∩S.
Then by Corollary 5.10, we get that P1 and P2 are distinct minimal prime filters in X/ψS

such



Alg. Struc. Appl. Vol. 10 No. 1 (2023) 113-130. 129

that P1, P2 ⊆ P . Thus P is containing two distinct minimal prime filters of X/ψS
, which is

a contradiction. Hence P contains a unique minimal prime filter. Therefore any two distinct
minimal prime filters of X are co-maximal.

6. Conclusion

In this paper, the notion of minimal prime filters is introduced in commutative BE-algebras.
A characterization theorem is derived for minimal prime filters of commutative BE-algebras.
A set of equivalent conditions is derived for every prime filter of a BE-algebra to become a
minimal prime filter. Some properties of minimal prime filters of a commutative BE-algebra
are studied with the help of congruences. An equivalency is obtained between the minimal
prime filters of a commutative BE-algebra and the minimal prime filters of its quotient al-
gebra with respect to this congruence. We think such results are very useful for the further
characterization of minimal prime filters in terms of congruences of this structure.

In the following diagram we show the relationships between some filters. The notion “A→
B”, means “A should be B”.

Dual annihilator Regular filter

Minimal prime filterPrime filter

non dense

minimal

s-condition
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