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SOME RESULTS ON UNIFORM MV-ALGEBRAS

FARZANEH RAJABISOTUDEH, NADER KOUHESTANI∗ AND GHOLAM REZA REZAEI

Abstract. In this paper, we study Tychonoff spaces and uniformities on MV-algebras. In

particular, we find some conditions under which an MV-algebra can be made into a Tychonoff

space. Also, we find uniformities that make an MV-algebra into a uniform MV-algebra. Next,

we discuss some algebraic and topological properties of uniform MV-algebras. More precisely,

we study the existence of closed ideals and closed filters, and examine the way these are related

to uniform MV-algebras. Furthermore, we obtain some results on the uniform continuity of

the operations and its consequences.

1. Introduction

Some of the concepts which are related to the notion of measure, like uniform convergence
and uniform continuity, can be easily defined in pseudo-metric spaces. But, such concepts
cannot be defined in topological spaces. In 1938, Weil [16] introduced uniform spaces as
spaces between pseudo-metric spaces and topological spaces. In 1948, Bourbaki presented a
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systematic theory for these spaces and determined their relationship to topological spaces.
Uniformities defined on algebraic structures are important research topics in mathematics, of
which three natural uniform structures on topological groups are the most important ones.

Algebraic structures related to logic are structures which have been introduced to the math-
ematics community around the second half of the last century, and their algebraic properties
have been studied. These include BCK-algebras, BCC-algebras, BL-algebras, MV-algebras,
etc. An important research topic of recent decades is the study of the aforementioned struc-
tures equipped with topology (see [11], [14] and [13]). Algebraic structures related to logic
which are endowed with uniformity have also been discussed in recent years. For example,
Khanegir et al. [12] introduced the notion of uniform BL-algebra and studied some of its
properties. See [15], [7] and [6] for some other examples.

MV-algebras are among the most important algebraic structures related to logic, which were
introduced by Chang [8] in 1958. These structures prove the completeness theorem for ℵ0-
valued Lukasiewicz logic. Barbieri and Weber introduced the notion of uniform MV-algebra
in [2], and studied submeasures, real-valued measures, and the uniformity generated by a
measure.

Our aim in this paper is to find some conditions under which a topology on an MV-algebra
can be made into a Tychonoff space. Also, we study the relation between uniformities and
algebraic properties of MV-algebras.

The paper is organized as follows. In Section 2, we recall some definitions and results
from the theories of MV-algebras and uniform spaces. In Section 3, we recall the definition
of Tychonoff spaces, and derive some conditions under which an MV-algebra can be made
into a Tychonoff space. Also, we study the way T0, T1, T2 and Urysohn spaces are related to
each other. In Section 4, we first recall the definition of uniform MV-algebras and then, in
Theorem 4.5, we find those uniformities that make an MV-algebra into a uniform MV-algebra.
Moreover, we investigate closed ideals and closed filters of uniform MV-algebras at the end of
this section. Finally, we prove the existence of a contravariant functor from the category of
uniform MV-algebras to the category of semigroups.

2. Preliminaries

In this section, we recall some definitions and results from the theories of MV-algebras and
uniform spaces.
MV-algebras

Recall from [10] that an MV-algebra is an algebra (A,⊕, ∗, 0) of type (2, 1, 0) such that for
every x, y ∈ A,
(M1) (A,⊕, 0) is a commutative monoid,
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(M2) x⊕ 0∗ = 0∗,
(M3) (x∗)∗ = x, and
(M4) (x∗ ⊕ y)∗ ⊕ y = (x⊕ y∗)∗ ⊕ x.

In an MV-algebra A, for every x, y ∈ A define
(M5) 1 := 0∗;
(M6) x⊙ y := (x∗ ⊕ y∗)∗;
(M7) x⊖ y := x⊙ y∗;
(M8) x → y := (x⊙ y∗)∗;
(M9) x⇝ y := (x⊕ y∗)∗.

In an MV-algebra A, for every x, y ∈ A we write x ≤ y if and only if x∗ ⊕ y = 1. It is
well-known that ≤ is a partial order on A, which gives A the structure of a distributive lattice,
where join and meet are defined by x∧ y = y ⊙ (y∗ ⊕ x) and x∨ y = x⊕ (y ⊖ x), respectively,
0 is the least element and 1 is the greatest element. By (M6) and (M7), x ≤ y ⇐⇒ x⊖ y = 0

for every x, y ∈ A.
If I is a subset of A and x ∈ A, then we denote the set {x ⋄ z : z ∈ I} by x ⋄ I, and the set
{z ⋄ x : z ∈ I} by I ⋄ x, where ⋄ ∈ {⊕,⊙,⊖,→,⇝}.

Proposition 2.1. [10] In an MV-algebra A, the following statements are true.
(M10) x⊕ x∗ = 1, x⊙ x∗ = 0.
(M11) (A,⊙, 1) is a commutative monoid.
(M12) x⊙ 0 = x⊙ x∗ = 0.
(M13) x⊕ y = 0 =⇒ x = y = 0.
(M14) x⊙ y = 1 =⇒ x = y = 1.
(M15) (x ∧ y)∗ = x∗ ∨ y∗, (x ∨ y)∗ = x∗ ∧ y∗.
(M16) x ≤ y ⇐⇒ y∗ ≤ x∗.
(M17) x ≤ y =⇒ x⊕ z ≤ y ⊕ z, x⊙ z ≤ y ⊙ z.
(M18) x⊙ y ≤ x ∧ y ≤ x ≤ x ∨ y ≤ x⊕ y.
(M19) x⊖ y ≤ x ≤ x⊕ y.
(M20) y ⊙ (x⊕ z) ≤ x⊕ (y ⊙ z).
(M21) z ⊙ x∗ ≤ (z ⊙ y∗)⊕ (y ⊙ x∗).
(M22) (z ⊕ y)⊙ y∗ ≤ z.
(M23) y ⊙ (z ⊕ y)∗ = 0.
(M24) (x∗ ⊙ y)∗ ⊙ y = (y∗ ⊙ x)∗ ⊙ x.
(M25) x⊙ (y ⊙ z) = (x⊙ y)⊙ z.
(M26) (x⊕ y)⊖ y ≤ y∗.
(M27) x⊙ z ≤ y ⇐⇒ x ≤ z∗ ⊕ y.
(M28) x⊙ (y → z) ≤ (x⊙ y) → (x⊙ z).
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(M29) (x1 → y1)⊙ (x2 → y2) ≤ (x1 ⊙ x2) → (y1 ⊙ y2).
(M30) (x⊖ y) ≤ y∗.
(M31) (x⊕ y)⊖ (a⊕ b) ≤ (x⊖ a)⊕ (y ⊖ b).
(M32) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x.
(M33) (x⊖ y)⊕ y = (y ⊖ x)⊕ x.
(M34) x⊙ (x∗ ⊕ y) = y ⊙ (y∗ ⊕ x).
(M35) x⊖ 0 = x, x⊖ x = 0⊖ x = x⊖ 1 = 0, 1⊖ x = x∗.
(M36) x⊕ x = x ⇐⇒ x⊙ x = x.
(M37) x⊕ (∧i∈Ixi) = ∧(x⊕ xi), x⊙ (∨i∈Ixi) = ∨(x⊙ xi).
(M38) x ≤ y ⇐⇒ x ∧ y = x ⇐⇒ x ∨ y = y.
(M39) (x ∧ y) ∧ z = x ∧ (y ∧ z), x ∧ (y ∧ z) = (x ∧ y) ∧ (x ∧ z).
(M40) (x → a)⊙ (b → y) ≤ (a → b) → (x → y).

Definition 2.2. Let A be an MV-algebra.
(1) [8] A non-empty subset I of A is called an ideal if it satisfies the following conditions.
(I1) For every x, y ∈ I, x⊕ y ∈ I.
(I2) If x ∈ I and y ≤ x, then y ∈ I.

(2) [10] A non-empty subset F of A is called a filter if it satisfies the following conditions.
(F1) For every x, y ∈ F, x⊙ y ∈ F .
(F2) If x ∈ F and x ≤ y, then y ∈ F .

Proposition 2.3. [10] Let I and F be subsets of an MV-algebra A. Then, I is an ideal if and
only if the following conditions are satisfied.
(I3) 0 ∈ I.
(I4) y ∈ I and x⊖ y ∈ I imply x ∈ I.
Also, F is a filter if and only if the following conditions are satisfied.
(F3) 1 ∈ F .
(F4) x ∈ F and x → y ∈ F imply y ∈ F .

Proposition 2.4. [10] Let F be a filter and I be an ideal of an MV-algebra A. Then, the
following relations are congruence relations on A.

x
F≡ y ⇐⇒ x → y ∈ F and y → x ∈ F.

x
I≡ y ⇐⇒ x⊖ y ∈ I and y ⊖ x ∈ I.

Moreover, if x/F = {y ∈ A : x
F≡ y}, A/F = {x/F : x ∈ A}, x/I = {y ∈ A : x

I≡ y} and
A/I = {x/I : x ∈ A}, then both A/F and A/I are quotient MV-algebras with the operations

x/F ⊙ y/F = (x⊙ y)/F, x/I ⊕ y/I = (x⊕ y)/I, (x/F )∗ = x∗/F and (x/I)∗ = x∗/I.
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Uniform Spaces
Let X be a non-empty set. A uniformity on X is a non-empty family U of subsets of X×X

with the following properties.
(U1) △ = {(x, x) : x ∈ X} ⊆ U , for each U ∈ U .
(U2) If U ∈ U , then U−1 = {(x, y) ∈ X ×X : (y, x) ∈ U} belongs to U .
(U3) If U ∈ U , V ◦V ⊆ U for some V ∈ U , where V ◦V = {(x, y) : ∃z ∈ X s.t. (x, z), (z, y) ∈ V }.
(U4) If U, V ∈ U , then U ∩ V ∈ U .
(U5) If U ∈ U and U ⊆ V, then V ∈ U .
The pair (X,U) is called a uniform space.

Let (X,U) be a uniform space. Each element of U is called an entourage, and U ∈ U is
symmetric if U = U−1. A subfamily B of U is called a base for U if each member of U contains
a member of B. A subfamily S of U is called a subbase for U if the collection of all finite
intersections of members of S is a base for U . The set

τ = {G ⊆ X : ∀x ∈ G ∃U ∈ U s.t. U [x] ⊆ G},

where U [x] = {y ∈ X : (x, y) ∈ U}, is a topology on X which is called the uniform topology
on X induced by U . [9]

Lemma 2.5. [9] A non-empty family B of subsets of X × X is a base for the uniformity
U = {U ⊆ X ×X : ∃B ∈ B, B ⊆ U} if and only if the following statements are true.
(B1) △ = {(x, x) : x ∈ X} ⊆ U, for each U ∈ B.
(B2) If U belongs to B, then U−1 contains a member of B.
(B3) If U belongs to B, then there exists V in B such that V ◦ V ⊆ U .
(B4) If U and V are in B, then there exists W ∈ B such that W ⊆ U ∩ V .

Suppose that (X,U) and (Y,V) are uniform spaces. The product of (X,U) and (Y,V) is a
uniform space (Z,W) with the underlying set Z = X × Y and the uniformity W on Z whose
base consists of the sets

WU,V = {((x, y), (x′, y′)) ∈ Z × Z : (x, x′) ∈ U, (y, y′) ∈ V },

where U ∈ U and V ∈ V . The uniformity W is written as W = U × V .[9]

Definition 2.6. [9] Let f : (X,U) → (Y,V) be a map between uniform spaces. The map f is
uniformly continuous if for each V ∈ V , there exists U ∈ U such that (f(x), f(y)) ∈ V for all
(x, y) ∈ U, that is, (f × f)(U) ⊆ V. We denote f × f by f (2).

In Definition 2.6, if f is bijective and the maps f and f−1 are uniformly continuous, then
the map f is called a unimorphism, and X and Y are said to be uniformly equivalent. [9].
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3. Tychonoff spaces and MV-algebras

It is well-known that every Tychonoff space induces a uniformity. Hence, in this section,
we first recall the definition of Tychonoff spaces, and then find some conditions under which a
topology on an MV-algebra can make it into a Tychonoff space. For example in Propositions
3.3,3.4 and 3.6 we use locally compact sets to do this. In Propositions 3.8 and 3.9, we use
open neighborhoods of 0 and 1 to convert a topological MV-algebra to a Tychonff space.

Recall from [9] that a topological space (X, τ) is said to be
(i) a regular space if for each x ∈ U ∈ τ , there exists an open set H such that x ∈ H ⊆ H ⊆ U .
A regular T1-space is called a T3-space;
(ii) a normal space if for each closed set S and each open set U containing S, there is an open
set H such that S ⊆ H ⊆ H ⊆ U ;
(iii) a completely regular space if for every closed set F in X and for each x ∈ X not belonging
to F , there exists a continuous function f : X → [0; 1] such that f(x) = 0 and f(F ) = 1;
(iv) a Tychonoff space if it is a T1, completely regular space.

Lemma 3.1. Let I be an ideal in an MV-algebra A. Then, the following statements are true.
(i) y is the maximum of x

I if and only if x
I = y ⊖ I.

(ii) y is the minimum of x
I if and only if x

I = y ⊕ I.

Proof. (i) Let y be the maximum of x
I and z ∈ x

I = y
I . Then, (y → z)∗ = y ⊖ z ∈ I and

z = y ∧ z = y⊙ (y → z) ∈ y⊙ I∗ = y⊖ I. So, x
I ⊆ y⊖ I. If z ∈ y⊖ I, then z = y⊖ a for some

a ∈ I. Now,
z ⊖ y = (y ⊖ a)⊖ y = y ⊙ a∗ ⊙ y∗ = 0 ∈ I.

On the other hand, by (M24) and (M19), y ⊖ z = y ⊖ (y ⊖ a) = a⊖ (a⊖ y) ≤ a ∈ I. Hence,
z ∈ y

I = x
I .

Conversely, if x
I = y ⊖ I, then y = y ⊖ 0 ∈ y ⊖ I = x

I . If z ∈ x
I , then z = y ⊖ a for some

a ∈ I. The inequality z = y ⊖ a ≤ y implies y = maxx
I .

(ii) Let y be the minimum of x
I and z ∈ y ⊕ I. Then, there exists b ∈ I such that z = y ⊕ b.

By (M22), (y ⊕ b)⊖ y ≤ b ∈ I which implies that (y ⊕ b)⊖ y ∈ I. On the other hand,

y ⊖ (y ⊕ b) = y ⊙ (y ⊕ b)∗ = y ⊙ y∗ ⊙ b∗ = 0 ∈ I.

Hence, z = y ⊕ b ∈ y
I = x

I . Thus, y ⊕ I ⊆ x
I . If z ∈ x

I = y
I , then y = minx

I implies
z = y∨ z = y⊕ (y⊖ z) ∈ y⊕ I. So, x

I = y
I ⊆ y⊕ I. Conversely, let x

I = y⊕ I. It is obvious that
y ∈ y ⊕ I = x

I . If z ∈ x
I , then z = y ⊕ b ≥ y for some b ∈ I. Hence, y is the minimum of x

I .

Example 3.2. If X is a non-empty set, then (P (X),⊕, ∗, φ) is an MV-algebra, where P (X)

is the power set of X, ∗ : P (X) → P (X) is a map defined by B∗ = X \B and B⊕C = B ∪C,
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for every B,C ∈ P (X). Let a be an element of X. It is easy to see that the set I = {φ, {a}}
is an ideal of P (X). If B ∈ P (X), then B

I = {B} if a ∈ B and otherwise, B
I = {B,B ∪ {a}}.

Now, by Lemma 3.1, B
I = B ⊖ I = B ⊕ I if a ∈ B and otherwise, B

I = (B ∪ {a})⊖ I = B ⊕ I.

Proposition 3.3. Let τ be a Hausdorff topology on an MV-algebra A, and I be an open locally
compact ideal of A. Assume that for every a ∈ A, the set a

I has a maximum and a⊖ I, is an
open set. Then, (A, τ) is a Thychonoff space.

Proof. Let x ∈ A. By Lemma 3.1, there exists y ∈ A such that x
I = y ⊖ I. By the hypothesis,

the map ly(z) = y ⊖ z is an open map from I onto x
I . By [9, Theorem 3.3.15]], x

I is locally
compact. The identity A =

⋃
x∈A

x
I allows us to deduce that A is a union of open, locally

compact subspaces of A. By [9, Exercise 3.3.B], A is also locally compact. By [9, Theorem
3.3.1], (A, τ) is a Tychonoff space.

Proposition 3.4. Let τ be a topology on an MV-algebra A, and U be an open locally compact
neighborhood of 0 such that for any a ∈ A, U ⊕ a is an open neighborhood of a. Then, (A, τ)
is a Tychonoff space.

Proof. By [9, Theorem 3.3.15], the set U ⊕ a is an open, locally compact subset of A. Since
A =

⋃
a∈A U ⊕ a, by [9, Exercise 3.3.B], A is a locally compact space. Let a ̸= b. Then by

(M19), it is easy to prove that U ⊕ a∩U ⊕ b = φ. This shows that (A, τ) is a Hausdorff space.
By [9, Theorem 3.3.1], (A, τ) is a Tychonoff space.

Example 3.5. Define ⊕ : [0, 1]×[0, 1] −→ [0, 1] by x⊕y = min{x+y, 1}, and ∗ : [0, 1] −→ [0, 1]

by x∗ = 1−x. Then, ([0, 1],⊕, ∗, 0) is an MV-algebra which is called the standard MV-algebra
[8]. It is easy to prove that A = {0, 13 ,

2
3 , 1} is a subalgebra of [0, 1]. Let τ[0,1] be the discrete

topology on [0, 1] and B = {{0, 1/3}, {1/3, 2/3}, {2/3, 1}} be a subbase for a topology τA on
A. If τ is the Tychonoff topology on the MV-algebra A × [0, 1], then U = {0, 1/3} × {0} is
an open, locally compact neighborhood of (0, 0) in τ and for any (a, b) ∈ A × [0, 1], the set
U ⊕ (a, b) is an open neighborhood of (a, b). By Proposition 3.4, (A× [0, 1], τ) is a Tychonoff
space.

Proposition 3.6. Let I be a locally compact ideal in a Hausdorff MV-algebra (A, τ). Then,
(A, τ) is a Tychonoff space provided that for every a ∈ A \ {0}, the maps ra(x) = x ⊖ a and
la(x) = a ⊖ x are continuous, and the compactness of some S ⊆ A implies that of the sets
r−1
a (S) and l−1

a (S).

Proof. First we prove that for every a ∈ A\{0}, r−1
a (I) and l−1

a (I) are locally compact. To do
so, let a ∈ A and x ∈ r−1

a (I). Since I is locally compact, there is an open set V in A such that
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ra(x) ∈ V ⊆ V ⊆ I and V is compact in A. From the continuity of ra we infer that r−1
a (V ) is

open. Thus, by the hypothesis, r−1
a (V ) is compact. Hence, x ∈ r−1

a (V ) ⊆ r−1
a (V ) ⊆ r−1

a (V ) ⊆
r−1
a (I) and r−1

a (V ) is compact. Therefore, r−1
a (I) is locally compact. Similarly, l−1

a (I) is also
locally compact. The identity a

I = r−1
a (I)

⋂
l−1
a (I) implies that a

I is locally compact. Thus,
A =

⋃
a∈A

a
I is a union of open, locally compact subspaces of A. By [9, Exercise 3.3.B], (A, τ)

is locally compact. Now [9, Theorem 3.3.1] allows us to deduce that (A, τ) is a Tychonoff
space.

Proposition 3.7. Let I be a family of ideals in an MV-algebra A which is closed under
intersection. Also, assume that for any x ̸= y,
(i) there exists I ∈ I such that y /∈ I ⊕ x, and
(ii) for every I, J ∈ I, if I ⊕ x

⋂
J ⊕ y ̸= φ, then either x ∈ J ⊕ y or y ∈ I ⊕ x.

Then, there exists a topology τ on A such that (A, τ) is a Tychonoff space and ⊕ is continuous.

Proof. Since I is a family of ideals, it is easy to show that for any I ∈ I and x ∈ I, I ⊕ x is in
the set τ = {G ⊆ A : ∀x ∈ G ∃I ∈ I such that I ⊕ x ⊆ G}. Since τ is closed under arbitrary
unions and intersections, it is a topology on A. If x ̸= y, then by (i), x /∈ J ⊕ y and y /∈ I ⊕ x

for some I, J ∈ I. Hence x /∈ K ⊕ y and y /∈ K ⊕ x, where K = I
⋂
J ∈ I. Therefore, (A, τ)

is a T1-space. By the definition of τ , the continuity of ⊕ is clear. Now, we show that for every
x ∈ A and I ∈ I, I ⊕ x is closed in (A, τ). Let x ∈ A, I ∈ I and y ∈ I ⊕ x. If y = x, then it
is clear that y ∈ I ⊕ x. Let y ̸= x. By (i), x /∈ J ⊕ y for some J ∈ I. Since J ⊕ y is an open
neighborhood of y, J ⊕ y

⋂
I ⊕ x ̸= φ. So, y ∈ I ⊕ x. Now, the set {I ⊕ x : x ∈ A, I ∈ I}

is a base for τ whose all elements are open and closed sets in (A, τ). Therefore, (A, τ) is a
Tychonoff space.

Proposition 3.8. Let (A, τ) be a topological MV-algebra and let for any a ∈ A, ra(x) = x⊖ a

be an open map from A into A. Then, (A, τ) is a Tychonoff space if for each x ̸= 0 and any
open neighborhood U of 0, there exists an open set V such that 0 ∈ V ⊆ V ⊆ U , V is compact
and x /∈ V .

Proof. First, we prove that (A, τ) is a Hausdorff space. Let x ̸= y. Without loss of generality,
assume that x⊖ y ̸= 0. Let U be an open neighborhood of 0. By the hypothesis, there exists
an open set V such that 0 ∈ V ⊆ V ⊆ U , V is compact and x⊖ y /∈ V . Since ⊖ is continuous,
there exist open sets U1 and U2 such that x ∈ U1, y ∈ U2 and U1 ⊖ U2 ⊆ A \ V . Now, it is
easy to show that U1

⋂
U2 = φ. Thus, (A, τ) is a Hausdorff space. Now, we prove that (A, τ)

is locally compact. To see this, let x ∈ U ∈ τ . If x = 0, then by the hypothesis, there exists
V ∈ τ such that 0 ∈ V ⊆ V ⊆ U and V is compact. If x ̸= 0, then from x ⊖ 0 = x ∈ U we
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obtain an open neighborhood W of 0 such that x⊖W ⊆ U . Let V be an open set such that
0 ∈ V ⊆ V ⊆ W and V is compact. Since rx is an open and continuous map, the set x ⊖ V

is an open neighborhood of x and x ⊖ V is a compact set. Since (A, τ) is Hausdorff, the set
x ⊖ V is closed. Moreover, the set x⊖ V is also compact because x⊖ V ⊆ X ⊖ V = x ⊖ V .
The relation

x⊖ V ⊆ x⊖ V ⊆ x⊖ V ⊆ x⊖W ⊆ U

implies that (A, τ) is locally compact. By [9, Theorem 3.3.1], (A, τ) is a Tychonoff space.

Proposition 3.9. Let τ be a topology on an MV-algebra A such that → is continuous. More-
over, assume that for every a ∈ A, λa(x) = x → a is an open map from A into A. Then, (A, τ)
is a Tychonoff space if for each x ̸= 1 and any open neighborhood U of 1, there exists an open
set V such that 1 ∈ V ⊆ V ⊆ U , V is compact and x /∈ V .

Proof. Let x∗ ∈ U ∈ τ. Since x → 0 ∈ U and → is continuous, there exists V ∈ τ such that
x ∈ V, and V ∗ = V → 0 ⊆ U. Hence ∗ is continuous and clearly, it is a homeomorphism. By
(M7) and (M8), ⊖ = ∗◦ → and ra = ∗ ◦λa, for every a ∈ A. So, ⊖ is continuous and the map
ra(x) = x⊖ a is open. Let 0 ̸= x ∈ U ∈ τ. Then, 1 ̸= x∗ ∈ U∗. By the hypothesis, there exists
V ∈ τ such that 1 ∈ V ⊆ V ⊆ U∗, V is compact and x∗ /∈ V . Thus, 0 ∈ V ∗ ⊆ V

∗
= V ∗ ⊆ U ,

V ∗ is compact and x /∈ V ∗. Therefore, by Proposition 3.8, (A, τ) is a Tychonoff space.

4. Uniform MV-algebras

In this section, we recall the notion of uniform MV-algebra. Moreover, we find some unifor-
mities under which the operations of MV-algebras are uniformly continuous. Proposition 4.10
reveals a connection between Tychonoff spaces and uniform MV-algebras. Also, we discuss
the existence of closed ideals, closed filters, and a contravariant functor from the category of
uniform MV-algebras to the category of semigroups.

Let A be an MV-algebra and U be a uniformity on A. By Definition 2.6,
(i) the operation ⊕ : (A×A,U×U) → (A,U) is uniformly continuous if for every W ∈ U , there
exist U, V ∈ U such that U ⊕ V ⊆ W , or equivalently, (x⊕ y, x′ ⊕ y′)∈ W for every (x, x′)∈ U

and (y, y′)∈ V ;
(ii) the map ∗ : (A,U) → (A,U) is uniformly continuous if for every W ∈ U , there exists
V ∈ U such that (x, y) ∈ V implies (∗(x), ∗(y)) ∈ W .
The pair (A,U) is called a uniform MV-algebra if ⊕ and ∗ are uniformly continuous. [2]

Example 4.1. (i) Let ([0, 1],⊕, ∗, 0) be the standard MV-algebra. The family {Uε}ε>0 is a
base for a uniformity U on A, where Uε = {(x, y) ∈ [0, 1]× [0, 1] : |x− y| < ε}. If W ∈ U , then
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Uε ⊆ W for some ε > 0, and |x∗ − y∗| = |1− x− 1+ y| = |y− x| < ε for every (x, y) ∈ Uε. So,
(x∗, y∗) ∈ W . Thus, ∗ is uniformly continuous. Now, we show that ⊕ is uniformly continuous.
To see this, assume that Uε ∈ U and (x, y), (x′, y′) ∈ Uε/2. Then, the following steps show that
Uε/2 ⊕ Uε/2 ⊆ Uε and so, ⊕ is uniformly continuous.
Step 1. If x+ x′ < 1 and y + y′ < 1, then

|x⊕ x′ − y ⊕ y′| = |x+ x′ − y − y′| ≤ |x− y|+ |x′ − y′| < ε/2 + ε/2 = ε.

Step 2. If x+ x′ < 1 and y + y′ ≥ 1, then

|x⊕ x′ − y ⊕ y′| = |x+ x′ − 1| ≤ |y + y′ − x− x′| ≤ |y − x|+ |y′ − x′| < ε/2 + ε/2 = ε.

Step 3. If x+ x′ ≥ 1 and y + y′ < 1, the proof is similar to that of Step 2.
Step 4. If x+ x′ ≥ 1 and y + y′ ≥ 1, then |x⊕ x′ − y ⊕ y′| = |1− 1| = 0 < ε.

(ii) Let A = {0, 1/4, 2/4, 3/4, 1}. Define ⊕ : A × A −→ A by x ⊕ y = min{x + y, 1}, and
∗ : A −→ A by x∗ = 1− x. Then, (A,⊕, ∗, 0) is an MV-algebra [8]. Put U1 = △,

U2 = {(x, y) : |x− y| < 1/4}, U3 = {(x, y) : |x− y| < 1/2},

U4 = {(x, y) : |x− y| < 3/4} and U5 = {(x, y) : |x− y| < 1} = A×A.

It is easy to see that U = {U ⊆ X ×X : There exists i such that Ui ⊆ U} is a uniformity on
A such that Ui−1 ⊕ Ui−1 ⊆ Ui, ∀i ≥ 2. Also, U∗

i ⊆ Ui for every i ≥ 1. These relations prove
that ⊕ and ∗ are uniformly continuous. Therefore, (A,⊕, ∗,U) is a uniform MV-algebra.

Proposition 4.2. Let A be an MV-algebra and U be a uniformity on it. If ∗ is uniformly
continuous, then the following conditions are equivalent.
(i) The operation ⊕ is uniformly continuous.
(ii) The operation ⊙ is uniformly continuous.
(iii) The operation ⊖ is uniformly continuous.
(iv) The operation → is uniformly continuous.

Proof. By (M6), (M7), (M8) and (M9), ⊙ = ∗◦⊕◦(∗×∗), ⊖ = ⊙◦(I×∗) and →= ∗◦⊙◦(I×∗),
where ◦ is the composition operator and I is the identity map. Now the proof is clear because
the composition of uniformly continuous functions is uniformly continuous.

Theorem 4.3. Let U be a uniformity on an MV-algebra A. The uniform continuity of each
of the operations ⊖, → and ⇝ implies that (A,U) is a uniform MV-algebra.

Proof. First assume that ⊖ is uniformly continuous and U ∈ U . Since ⊖ is uniformly contin-
uous, there exist V1 and V2 in U such that V1 ⊖ V2 ⊆ U. Let V = V1 ∩ V2 and (x, y) ∈ V ∗.

Then x∗ ∈ V1, y
∗ ∈ V2 and (x, y) = (1, 1) ⊖ (x∗, y∗) ∈ V1 ⊖ V2 ⊆ U. Hence V ∗ ⊆ U, which
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implies that ∗ is uniformly continuous. By Proposition 4.2, (A,U) is a uniform MV-algebra.
Now, if → is uniformly continuous and U ∈ U , then V1 → V2 ⊆ U for some V1, V2 ∈ U . Put
V = V1 ∩ V2 and choose (x, y) from V ∗. Then, (x, y) = (x∗, y∗) → (0, 0) ∈ V1 → V2 ⊆ U.

This allows us to deduce that ∗ is uniformly continuous and so, by Proposition 4.2, (A,U) is
a uniform MV-algebra. The proof of other case is similar.

Example 4.4. Consider A = {0, 1/n, 2/n, . . . , (n − 1)/n, 1} as a subalgebra of the standard
MV-algebra [0, 1]. If U0 = △ and Ui = {(x, y) : |x−y| < 1/n}, then the set U = {U ⊆ X×X :

There exists i such that Ui ⊆ U} is a uniformity on A such that Ui⊖U1 ⊆ Ui, ∀i ≥ 1. Hence,
⊖ is uniformly continuous and by Proposition 4.3, (A,U) is a uniform MV-algebra.

Theorem 4.5. Let I be a compact ideal in a Hausdorff topological MV-algebra (A, τ). If the
set A

I is finite and for each x ∈ A, the set x
I has a maximum (minimum), then there exists a

uniformity U on A such that (A,U) is a uniform MV-algebra.

Proof. Assume that for every x ∈ A, the set x
I has a maximum. Then, by Lemma 3.1, x

I = y⊖I

for each x ∈ A, where y is the maximum of x
I . Since ⊖ is continuous, x

I is compact. By the fact
that A

I is finite, we conclude that A is compact. By [9, Theorem 8.3.13], (A, τ) is a Tychonoff
space. Since A is compact, the operations ⊕ and ∗ are uniformly continuous. The proof of
other case is similar.

Theorem 4.6. Let (A, τ) be a Hausdorff topological MV-algebra, and F be a compact filter of
A. If A

F is finite and for each x ∈ A, the set x
F has a maximum, then there exists a uniformity

U on A such that (A,U) is a uniform MV-algebra.

Proof. Since A
F is finite, there exist x1, . . . , xn ∈ A such that A

F = x1
F

⋃
...
⋃ xn

F . Let yi be the
maximum of xi

F , for i = 1, . . . , n. If z ∈ xi
F , then z = yi ∧ z = yi ⊙ (yi → z) ∈ yi ⊙ F . Hence,

xi
F ⊆ yi ⊙ F . This implies that A = y1 ⊙ F

⋃
...
⋃
yn ⊙ F . Since ⊙ is continuous and F is

compact, A is also compact. By [9, Theorem, 8.3.13], there exists a uniformity U on A such
that τ is the topology induced by U . Thus, ⊕ and ∗ are uniformly continuous.

Theorem 4.7. Let τ be a topology on an MV-algebra A such that (A, τ) is compact, and
assume that ⊖ is continuous at (x, x), for every x ∈ A. Let I be a family of open ideals in A

that is closed under intersection and for each 0 ̸= x ∈ A, there exists I ∈ I such that 0 /∈ x
I .

Then, there exists a uniformity U on A such that (A,U) is a uniform MV-algebra.
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Proof. It is easy to prove that the set B = {x
I : I ∈ I, x ∈ A} is a base for the topology

τ0 = {V ⊆ A : ∀x ∈ V ∃I ∈ I such that
x

I
⊆ V }.

Let x ∈ A, I ∈ I and y = x
I . Then, y

I

⋂ x
I ̸= φ. This implies that y ∈ x

I . So, x
I is both open

and closed in (A, τ0). On the other hand, (A, τ0) is a T1-space. In fact, if x ̸= y, then x⊖y ̸= 0

or y⊖x ̸= 0. Assume that x⊖y ̸= 0. By the hypothesis, 0 /∈ x⊖y
I for some I ∈ I. This implies

that x /∈ y
I and y /∈ x

I . Thus, (A, τ0) is a T1 space that has a base of open and closed sets.
Hence, (A, τ0) is a Tychonoff space. By [9, Theorem 8.1.2], the topology τ0 is the topology
induced by a uniformity U . The relations x

I ⊕ y
I = x⊕y

I and (xI )
∗ = x∗

I allow us to deduce that
⊕ and ∗ are continuous in (A, τ0). Now, we show that τ is finer than τ0. Let x ∈ V ∈ τ0.
Then, there exists an ideal I ∈ I such that x ∈ x

I ⊆ V . Since x ⊖ x = 0 ∈ I ∈ τ and ⊖ is
continuous at (x, x) in (A, τ), there exists U ∈ τ such that x ∈ U and U ⊖ U ⊆ I. Let z ∈ U .
Then, z ⊖ x and x⊖ z are in I. So z ∈ x

I ⊆ V , which implies that x ∈ U ⊆ V. Hence, V ∈ τ .
Now, since τ0 ⊆ τ and (A, τ) is compact, (A, τ0) is also compact. By [9, Theorem 8.3.13],
there exists a uniformity U on A that induces τ0, and (A,U) is a uniform MV-algebra.

Theorem 4.8. Let τ be a compact topology on MV-algebra A, and suppose that → is continuous
at (x, x). If F is a family of open filters that is closed under intersection and for any 1 ̸= x ∈ A,
there exists F ∈ F such that 1 /∈ x

F , then there is a uniformity U on A such that (A,U) is a
uniform MV-algebra.

Proof. Similar to the proof of Theorem 4.7, we can show that the set τ0 = {U ⊆ A : ∀x ∈
U ∃F ∈ F , x ∈ x

F ⊆ U} is a topology on A such that (A, τ0) is a Thychonoff topological
MV-algebra and τ0 ⊆ τ . Hence, (A, τ0) is a compact space and by [9, Theorem 8.3.13], there
exists a uniformity U on A that induces τ0, and (A,U) is a uniform MV-algebra.

In the sequel, we are going to discuss Tychonoff spaces and uniform MV-algebras. One
knows that every Tychonoff space generates a uniformity, and it is clear that any uniform
MV-algebra is a completely regular space. We show that a uniform MV-algebra is a Tychonoff
space if it satisfies the equivalence conditions of Lemma 4.9. To begin with, we fix our notation
as follows.
Notation. In a uniform MV-algebra (A,U), we denote the closure of U [x] by U [x] in the
topology induced by U .

Lemma 4.9. The following conditions are equivalent in a uniform MV-algebra (A,U).
(i) For each x ̸= 0, there exists U ∈ U such that 0 ̸∈ U [x].
(ii) For any x ̸= 1, there exists U ∈ U such that 1 ̸∈ U [x].
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(iii) For every x ̸= 1, there exist U, V ∈ U such that U [x] ∩ V [1] = φ.
(iv) For every x ̸= 0, there exist U, V ∈ U such that U [x] ∩ V [0] = φ.
(v) For any x ̸= y, there exist U, V ∈ U such that U [x] ∩ V [y] = φ.

Proof. (i ⇒ ii) Let x ̸= 1. Then, 1 ⊖ x = x∗ ̸= 0. By (i), there exists U ∈ U such that
0 ̸∈ U [1⊖ x]. Since ⊖ is continuous, there exist entourages V and W such that V [1]⊖W [x] ⊆
U [1⊖ x]. If z ∈ V [1] ∩W [x], then 0 = z ⊖ z ∈ V [1]⊖W [x] ⊆ U [1⊖ x], a contradiction. Now,
1 ̸∈ W [x] follows from V [1] ∩W [x] = φ.

(ii ⇒ iii) If x ̸= 1, then by (ii) there exists U ∈ U such that 1 ̸∈ U [x]. From x⊕ 1∗ ∈ U [x]

we obtain entourages U1 and U2 such that U1[x] ⊕ U2[1]
∗ ⊆ U [x]. If z ∈ U1[x] ∩ U2[1], then

1 = z ⊕ z∗ ∈ U1[x] ⊕ U2[x]
∗ ⊆ U [x], a contradiction. Hence, U1[x] ∩ U2[1] = φ. Now, since

1 → x = x ∈ U1[x], there exist V,W ∈ U such that V [1] → W [x] ⊆ U1[x]. If z ∈ V [1] ∩W [x],

then there exist nets {xi : i ∈ I} and {yi : i ∈ I} in V [1] and W [x], respectively, that converge
to z. Thus, {xi → yi : i ∈ I} is a net in V [1] → W [x] that converges to 1. This allows us to
deduce that 1 ∈ U1[x], a contradiction. Therefore, V [1] ∩W [x] = φ.

(iii ⇒ iv) Suppose that x ̸= 0. Since x → 0 ̸= 1, we can find entourages U1 and U2 such
that U1[x → 0]∩U2[1] = φ. From x → 0 ∈ U1[x → 0] it follows that U [x] → V [0] ⊆ U1[x → 0],
for some U, V ∈ U . If z ∈ U [x]∩V [0], then there exist nets {xi : i ∈ I} and {yi : i ∈ I} in U [x]

and V [0], respectively, that converge to z. Now, {xi → yi : i ∈ I} is a net in U1[x → 0] that
converges to 1. Hence 1 ∈ U1[x → 0], a contradiction. Therefore, U [x] ∩ V [0] = φ.

(iv ⇒ v) Let x ̸= y and assume that x ⊖ y ̸= 0. By (iv), there exist U1, U2 ∈ U such that
U1[x⊖ y] ∩ U2[0] = φ. Since x ⊖ y ∈ U1[x ⊖ y], there are entourages W1 and W2 such that
W1[x]⊖W2[y] ⊆ U1[x⊖y]. If z ∈ W1[x]∩W2[y], then there exist nets {xi : i ∈ I} and {yi : i ∈ I}
in W1[x] and W2[y], respectively, that converge to z. Now, {xi⊖yi : i ∈ I} is a net in U1[x⊖y]

that converges to 0. Hence 0 ∈ U1[x⊖ y], a contradiction. Therefore, W1[x] ∩W2[y] = φ.

(v ⇒ i) The proof is straightforward.

Proposition 4.10. Let (A,U) be a uniform MV-algebra. If τ is the topology induced by U ,
then (A, τ) is a Tychonoff space if and only if it satisfies one of the conditions of Lemma 4.9.

Proof. If (A, τ) is a Tychonoff space, it is a T1 space and so, for any x ̸= 0 there exists U ∈ U
such that 0 ̸∈ U [x]. Hence, (A,U) satisfies (i) of Lemma 4.9. Conversely, let (A,U) satisfy
condition (i) of Lemma 4.9 and x ̸= y. Without loss of generality assume that x⊖y ̸= 0. Then
0 ̸∈ U [x ⊖ y], for some U ∈ U . Since ⊖ is continuous, there exist entourages V and W such
that V [x]⊖W [y] ⊆ U [x⊖ y]. Then V [x] ∩W [x] = φ because 0 ̸∈ U [x⊖ y]. Therefore, (A,U)
is a T2-space, which implies that (A, τ) is a Tychonoff space.
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Proposition 4.11. Every uniform MV-algebra (A,U) has a base B such that U∗ = U , for
any U ∈ B. Moreover, U∗ ∈ U for each U ∈ U .

Proof. Let B0 be a base for U and B = {U ∩U∗ : U ∈ B0}. It is clear that W ∗ = W for every
W ∈ B. We show that B is a base for U . Let U ∈ U . Since ⊖ is uniformly continuous, there
exists V ∈ B0 such that V ⊆ V ⊖ V ⊆ U and V ∗ = (1, 1)⊖ V ⊆ V ⊖ V ⊆ U. Hence, V ∩ V ∗ is
an element of B which is contained in U.

Proposition 4.12. Assume that (A,U) is a uniform MV-algebra in which ra(x) = x ⊖ a is
an open map from A to A, for any a ∈ A. Then, all ideals and filters are closed in A.

Proof. Let W be a subset of A such that x ∈ W and x ≤ y imply y ∈ W. Let x ∈ W and
V ∈ U . Then (V [1]⊖ x∗) ∩W is a non-empty set, because V [1]⊖ x∗ is an open neighborhood
of x. Hence, z ⊖ x∗ ∈ W for some z ∈ V [1]. By (M18), z ⊖ x∗ ≤ x. So, x ∈ W. Thus, W = W.

This implies that every filter is closed in A. Since ∗ is a homeomorphism, every ideal is also
closed.

Proposition 4.13. Let (A,U) be a uniform MV-algebra, and assume that for any a ∈ A,

la(x) = a⊖ x is an open map from A to A. Let H be a subset of A which satisfies

if net{xr} converges to a point of H, then xr is in H, for some r.

If H is an ideal or a filter, then so is H.

Proof. Let H be an ideal. Clearly, 0 is in H. Let x ⊖ y and y be in H. Then, U [x] ⊖ y is an
open neighborhood of x ⊖ y. Hence, there exist u ∈ U [x] and h ∈ H such that h = u ⊖ y. If
{ar} is a net in H that converges to y, then the net {u ⊖ ar} converges to u ⊖ y = h ∈ H.

By the hypothesis, u ⊖ ar ∈ H for some r. Since H is an ideal, u ∈ H. Hence U [x] ∩ H is
non-empty and so, x ∈ H.

Now, let H be a filter. Then, H∗ is an ideal. If {xr} is a net that converges a point of H∗,

then the net {x∗r} converges a point of H. So x∗r ∈ H for some r, which implies that xr ∈ H∗.

By the above paragraph, H∗ = H
∗ is an ideal. Hence, H is a filter.

Proposition 4.14. Let I be an ideal and F be a filter in a uniform MV-algebra (A,U). If 0
and 1 are interior points of I and F in I and F , respectively, then I is an ideal and F is a
filter.
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Proof. Let 1 be an interior point of F and x ∈ F \ F. Then, there exists W ∈ U such that
x → x = 1 ∈ F ∩ W [1] ⊆ F. Since → is uniformly continuous, there exists an entourage U

such that F ∩U [x] → F ∩U [x] ⊆ F ∩W [1] ⊆ F. If f ∈ F ∩U [x]∩F, then the facts f → x ∈ F

and f ∈ F allow us to deduce that x is in F, a contradiction. Hence, x ∈ F ∩ U [x] ⊆ F \ F.
Therefore, F is closed in F and so, F = F is a filter in A.

Now, since ∗ is a homeomorphism, the proof of the other case is straightforward.

Now, we are going to prove that every uniform MV-algebra has at least one closed ideal and
one closed filter. To do so, we first recall the definition of submeasures on MV-algebras.
A submeasure on an MV-algebra A is an increasing map N : A → R+ such that N(x ⊕ y) ≤
N(x) +N(y), for every x, y ∈ A.[2]
If P (X) is the MV-algebra introduced in Example 3.2, then the map N : P (X) → R+ defined
by N(A) = card(A) is a submeasure on P (X).

The first part of the proof of the following proposition is similar to [1, Lemma 3.3.10].

Proposition 4.15. Every uniform MV-algebra has at least one closed ideal and one closed
filter.

Proof. Let (A,U) be a uniform MV-algebra and U ∈ U . Since ⊕ is uniformly continuous, for
each n ≥ 0 there exists an entourage Wn such that Wn+1[0] ⊕ Wn+1[0] ⊆ Wn[0] ⊆ U [0]. For
any n ≥ 0, suppose that Un = Wn[0] ⊆ A. Let V (1) = U0, n ≥ 0 and assume that V (m

2n )

are defined for each m = 1, 2, 3, . . . , 2n such that 0 ∈ V (m
2n ). Then, put V ( 1

2n+1 ) = Un+1,
V ( 2m

2n+1 ) = V (m
2n ) for m = 1, 2, 3, . . . , 2n and for each m = 1, 2, 3, . . . , 2n − 1, V (2m+1

2n+1 ) =

V (m
2n ) ⊕ Un+1 = V (m

2n ) ⊕ V ( 1
2n+1 ). Also, we define V (m

2n ) = A, when m > 2n. By induction
on n we prove that for any m > 0 and n ≥ 0,

(∗) V (
m

2n
)⊕ V (

1

2n
) ⊆ V (

m+ 1

2n
).

First notice that if m + 1 > 2n, then (∗) is obviously true. Let m < 2n. If n = 1, then m is
also equal to 1. So, V (12)⊕ V (12) = U1 ⊕ U1 ⊆ U0 = V (1). Assume that (∗) holds for some n.
We verify it for n + 1. If m = 2k, then by the definition of V (2m+1

2n+1 ), V ( m
2n+1 ) ⊕ V ( 1

2n+1 ) =

V ( 2k
2n+1 )⊕ V ( 1

2n+1 ) = V ( k
2n )⊕ V ( 1

2n+1 ) = V (2k+1
2n ). Now, suppose that m = 2k + 1 < 2n+1 for

some x ≥ 0. Then,

V (
m

2n+1
)⊕ V (

1

2n+1
) = V (

2k + 1

2n+1
)⊕ Un+1 = V (

k

2n
)⊕ Un+1 ⊕ Un+1 ⊆ V (

k

2n
)⊕ Un = V (

k

2n
)⊕ V (

1

2n
).

But, by the assumption of induction, V ( m
2n+1 )⊕ V ( 1

2n+1 ) ⊆ V (k+1
2n ) = V (m+1

2n+1 ). If r ≥ 0, then
V̂ (r) = {x : ∃y ∈ V (r) such that x ≤ y} is a subset of A containing 0 such that for any
x, y ∈ V̂ (r), x ≤ z ≤ y implies z ∈ V̂ (r). It is easy to verify that the map f : A −→ R defined
by f(x) = inf{r : x ∈ V̂ (r)} is a bounded, increasing function with f(0) ̸= f(1) = 1. Now, the
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map N : A −→ R+ defined by N(x) = sup{f(x⊕ z)− f(z) : z ∈ A} is a non-zero submeasure
such that N(0) = 0, and the set IN = {x : N(x) = 0} is an ideal of A. To prove that IN is
closed, it is enough to show that N is continuous. First, let us prove that for any n ≥ 0,

{x : N(x) <
1

2n
} ⊆ Ûn ⊆ {x : N(x) ≤ 2

2n
},

where Ûn = {x : ∃y ∈ Un such that x ≤ y}. Notice that f(0) = 0. Hence N(x) < 1
2n

implies f(x) = f(x ⊕ 0) − f(0) ≤ N(x) < 1
2n . Thus, for some r ≥ 0, x ∈ V̂ (r) and r < 1

2n .
Since V (r) ⊆ V ( 1

2n ) = Un, it is easy to see that x ∈ V̂ (r) ⊆ V̂ ( 1
2n ) = Ûn. Now, let x ∈ Ûn.

Then, there exists x′ ∈ Un such that x ≤ x′. Clearly, for any z ∈ A, there exists k ≥ 0 such
that k−1

2n ≤ f(z) ≤ k
2n . Since z ∈ V̂ ( k

2n ), there exists z′ ∈ V ( k
2n ) such that z ≤ z′. From

condition (∗) it follows that z′ ⊕ x′ ∈ V ( k
2n ) ⊕ V ( 1

2n ) ⊆ V (k+1
2n ), and from z ⊕ x ≤ z′ ⊕ x′ we

deduce that z ⊕ x ∈ V̂ (k+1
2n ). Hence, f(x ⊕ z) − f(z) ≤ k+1

2n − k−1
2n = 2

2n . This implies that
N(x) ≤ 2

2n . Let ε > 0 be arbitrary. Then, there exists n ≥ 1 such that 2
2n < ε. Now, the

relation Un ⊆ Ûn ⊆ {x : N(x) ≤ 2
2n } allows us to deduce that N is continuous at 0. To prove

the continuity of N on A, take b ∈ A and assume that ε > 0 is arbitrary. For arbitrary x in A,

by (M33), (b⊖ x)⊕ x = (x⊖ b)⊕ b ≥ b. So, N(b) ≤ N(b⊖ x) +N(x). This inequality implies
that | N(x)−N(b) |≤ max{N(b⊖x), N(x⊖ b)}. Since N is continuous at 0, there exists n ≥ 0

such that N(x) < ε, for any x ∈ Un. Since ⊖ is continuous and b ⊖ b = 0 ∈ Un, there exists
an open neighborhood V of b such that b ⊖ V ⊆ Un and V ⊖ b ⊆ Un. Thus for each x ∈ V,

| N(x)−N(b) |≤ max{N(b⊖x), N(x⊖ b)} < ε, which implies that N is continuous at b. Now,
the continuity of N and the identity IN = N−1(0) imply that IN is closed in A. Since ∗ is a
homeomorphism, the filter I∗N is a closed filter of A.

At the end of this paper, we are going to show that a contravariant functor exists from the
category of uniform MV-algebras to the category of monoids. Let C be the category whose
objects are uniform MV-algebras, and hom(A,B) denote the set of all MV-homomorphisms
f : A → B that are also uniformly continuous. We also use M to denote the category of
monoids.

Proposition 4.16. There exists a contravariant functor from the category of uniform MV-
algebras to the category of monoids.

Proof. Let (A,U) be a uniform MV-algebra, and N(A) be the set of all submeasures on A.

Then, N(A) is a monoid with 0(x) = 0 as the identity element under the operation (N1 +

N2)(x) = N1(x)+N2(x). Now, the map N : C → M that assigns to any uniform MV-algebra A

the monoid (N(A),+, 0) is a contravarint functor. In fact, if f : (A,U) → (B,V) is a morphism
in C, then it is easy to prove that the map N (f)(N2) = N2◦f is a morphism from (N(B),+, 0)



Alg. Struc. Appl. Vol. 10 No. 1 (2023) 95-112. 111

to (N(A),+, 0) in M. Let f : (A,U) → (B,V) and g : (B,V) → (C,W) be morphisms in C.

If N ∈ N(C), then N (g ◦ f)(N) = N ◦ g ◦ f = N (f)(N ◦ g) = N (f) ◦ N (g)(N). Hence
N (g ◦ f) = N (f) ◦ N (g). If I : (A,U) → (A,U) is the identity map, then for any N ∈ N(A),
N (I)(N) = N ◦ I = N, which implies that N (I) is the identity morphism in M.

Conclusion

In this paper, we studied the relationship betweenTychonoff spaces, uniform spaces and
MV-algebras. In the third section, we provided conditions under which an MV-algebra could
be made into a Tychonoff space. In Section 4, after studying the uniform continuity of the
operations, we examined the relationship between MV-algebras and uniform spaces. Since a
close relationship exists between uniform and quasi-metric spaces, researchers can study the
relationship between MV-algebras and quasi-metric spaces.
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