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ON THE POWER GRAPHS OF FINITE GROUPS AND HAMILTON
CYCLE

ALIREZA DOOSTABADI∗, MOHAMMAD ALI HASHEMI AND MAYSAM YAGHOOBIAN

Abstract. The power graph P(G) of a finite group G is a graph whose vertex set is the

group G and distinct elements x, y ∈ G are adjacent if one is a power of the other, that is, x

and y are adjacent if x ∈ ⟨y⟩ or y ∈ ⟨x⟩. In this paper, we study existence of the Hamilton

cycle in the power graph of some finite nilpotent groups G with a cyclic subgroup as direct

factor when G is written as direct product Sylow p-subgroups. For this purpose we use of

cartesian product a spanning tree and a cycle. Finally, we determined values of n such that

P(Un) is Hamiltonian, where Un is a group consist of all positive integers less than n and

relatively prime to n under multiplication modulo n.

1. Introduction

The power graph P(G) of a groupG is a graph with elements ofG as its vertices such that two
distinct elements x and y are adjacent if y = xm or x = ym for some positive integerm. Clearly,
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two distinct elements x and y are adjacent if and only if x ∈ ⟨y⟩ or y ∈ ⟨x⟩. For a nonempty
set S of G, notation P(S) is induced subgraph of P(G) with vertex set S. The power graphs of
groups were brought up by Kelarev and Quinn [5, 6]. Subsequently Chakrabarty, Ghosh and
Sen [3] studied power graphs that are complete or Eulerian or Hamiltonian. A Hamilton path
in a graph is a path that meets every vertex, and a Hamilton cycle is a cycle that crosses every
vertex. A graph with a Hamilton cycle is called Hamiltonian. The power graph of a finite
group is connected, since each non identity element is adjacent to identity element. Also, it is
connected with removing one non-identity element. However, the proper power graph P∗(G)

obtained by deleting the identity element of G is not connected in general. A vertex cutset in a
graph Γ is a set of vertices whose deletion increases the number of connected components of Γ.
The vertex connectivity of a connected graph Γ is the minimum size of a vertex cutset, and will
be denoted by k0(Γ). Doostabadi and Farrokhi discussed [4] connectivity proper power graph
of some finite groups, particularly, nilpotent groups and show that nilpotent non p-groups have
connected proper power graph and hence they are 2-connected. Whether every Hamiltonian
graph is 2-connected, in this paper we focus on this type groups and will show that there is
Hamilton cycle with special conditions. Chakrabarty, Ghosh and Sen [3] stated this question
”Determine the values of n for which P(Un) is Hamiltonian?” as a open problem. In the last
section, will be answered to this question for a large number of positive integers. We follow
[2] for graph-theoretical terminology and notation not defined here.

2. Nilpotent groups with a cyclic subgroup as direct factor

Definition 2.1. The cartesian product G1□G2 of two graphs G1 and G2 is a graph such that

* the vertex set of G1□G2 is cartesian product V (G1)× V (G2); and
* any two vertices (u, u′) and (v, v′) are adjacent in G1□G2 if and only if either

. u = v and u′is adjacent with v′in G1, or

. u′ = v′ and u is adjacent with v in G2.

Lemma 2.2. Consider that H,K are finite groups with gcd(|H|, |K|) = 1. Then cartesian
product P(H)□P(K) is a spanning subgraph of P(H×K). Also, vertices (h, k) and (1, k′) are
adjacent in the graph P(H ×K).

Proof. It’s enough to show every edge of graph P(H)□P(K) is an edge in the graph P(H×K).
Assume that (h, k) ∼ (h′, k) is an edge of P(H)□P(K) for arbitrary k ∈ K, hence hm = h′ for
some positive integer m. We replace m with mt = m+t|H| where t ∈ Z. Since gcd(|H|, |K|) =
1, then congruence equationmt ≡ 1(module |K|) is solvable for t0 ∈ Z. Thus (h, k)mt0 = (h′, k)

and (h, k), (h′, k) are adjacent in the power graph of group H ×K for every element k ∈ K.
For the last part of lemma, suppose that kn = k′ for some positive integer n. We can find
positive integer n′ such that kn′

= k′ and |H| divides n′. Put n′ = m|H| and the other hand
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we must should have |k| | n′ − n = m|H| − n, but congruence equation m|H| ≡ n(module k)
has integer answer for m. Hence (h, k)n

′
= (1, k′).

The next theorem will characterize connectivity proper power graph of finite nilpotent
groups with using structure of Sylow p-subgroups.(see [4])

Theorem 2.3. Let G be a finite nilpotent group.

(1) if G is a p-group, then the number of connected components of P∗(G) is the same as
the number of subgroups of G of order p. In particular, P∗(G) is connected if and only
if G is a cyclic p-group or a generalized quaternion 2-group,

(2) if G is not a p-group and each of the Sylow p-subgroups of G is a cyclic p-group or a
generalized quaternion 2-group, then P∗(G) is connected and diam(P∗(G)) = 2.

(3) if G is not a p-group and G has a Sylow p-subgroup, which is neither a cyclic p-group
nor a generalized quaternion 2-group, then P∗(G) is connected and diam(P∗(G)) = 4.

The following theorem of Chakrabarty, Ghosh and Sen [3] will be used frequently in this
article.

Theorem 2.4. Let G be a finite group. Then graph P(G) is complete if and only if G is a
cyclic group of order 1 or pm, for some prime number p.

The following simple condition is necessary for deciding whether a given graph is Hamilton-
ian.(see [2])

Theorem 2.5. Let S be a set of vertices of a Hamiltonian graph Γ. Then c(Γ − S) ≤ |S|,
where c(Γ− S) is the number of connectivity components.

As a simple and immediate consequence of the above theoremes, we have:

Corollary 2.6. Let G be a finite p-group. Then power graph P(G) is Hamiltonian if and only
if G is cyclic.

Proof. Assume that graph P(G) is Hamiltonian. Hence proper power graph P∗(G) is connected
and it will be concluded that G is cyclic or a generalized quaternion 2-group Q2n by theorem
2.3. Let S be a subset of Q2n consists of elements identity and unique involution. It is easy
to see that c(P(Q2n)− S) > 2 and this is cotradiction by 2.5. Then G is cyclic. Conversely, if
G is a cyclic p-group by 2.4, the graph P(G) is complete and it has a Hamilton cycle.

In the following, we will pay more attention to finite nilpotent groups with cyclic subgroup
as a direct factor. The theorem of V. Batagelj and T. Pisanski in [1] is useful for finding
Hamilton cycle.
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Theorem 2.7. Let G = T□Cn be cartesian prouduct of an n-cycle Cn and a tree T with
maximum degree ∆(T ) ≥ 2. Then G possesses a Hamilton cycle if and only if ∆(T ) ≤ n.

Corollary 2.8. Suppose that H,K are groups such that gcd(|H|, |K|) = 1. If power graphs
P(H) and P(K) are Hamiltonian, then graph P(H ×K) is Hamiltonian, also.

Proof. It’s obviously by lemma 2.2 and theorem 2.7.

Theorem 2.9. The power graph of generalized quaternion group P(Q2n), (n ≥ 3) has a
spanning tree T with ∆(T ) = 2n−3 + 1.

Proof. Suppose that

Q2n = ⟨x, y | x2n−1
= y4 = 1, y2 = x2

n−2
, xy = x−1⟩

One can see that

Q2n =
{
xt | 1 ≤ t ≤ 2n−1

}∪2n−2∪
t=1

{
yxt, y−1xt

}
Now Z2n−1

∼= ⟨x⟩ ≤ Q2n , since the power graph P(⟨x⟩) is complete, then we can let the
Hamilton path

L : 1 ∼ x1 · · · ∼ x2
n−2

= y2

Moreover for every 1 ≤ t ≤ 2n−3, there are the following pathes in the graph P(Q2n):

Lt : 1 ∼ yxt ∼ y−1xt , L′
t : y

2 ∼ yxtx2
n−3 ∼ y−1xtx2

n−3

The union pathes L,Lt and L′
t is a spanning tree T with maximum degree ∆(T ) = 2n−3+1 =

deg(1) = deg(y2).

Theorem 2.10. The maximum degree every spanning tree in the power graph of generalized
quaternion group is at least 2n−3 + 1.

Proof. By structure of the group Q2n in previous theorem, let S = {1, y2} and P(Q2n) = Γ. It
can see that the number of connected componnets of a graph Γ−S, indeed, C(Γ−S) = 2n−2+1.
If T is a spanning tree in the graph Γ, then

C(T − S) ≥ C(Γ− S) = 2n−2 + 1.

Since the subgraph T is connected, hence every component of T − S is adjacent with at least
one vertex of S. Thus

degT (1) + degT (y
2) ≥ C(T − S) ≥ 2n−2 + 1
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and this conclude that degT (1) ≥ 2n−3 + 1 or degT (y
2) ≥ 2n−3 + 1 and therefore ∆(T ) ≥

2n−3 + 1.

Definition 2.11. For a given finite group G, we may define the directed power graph P⃗(G)

as a directed graph with vertex set G, in which there is an arc from x to y (x → y) if x ̸= y

and y = xm for some positive integer m.

Theorem 2.12. Assum that G = Zm × Q2n and m is odd positive integer. Then the power
graph P(G) is Hamiltonian if and only if m > 2n−3.

Proof. Suppose that m > 2n−3. By lemma 2.2, the graph P(Zm)□P(Q2n) is a spanning
subgraph of P(G). It is enough to show that P(Zm)□P(Q2n) is a Hamiltonian graph. The
power graph P(Q2n) has a spanning tree T with ∆(T ) = 2n−3 + 1, and the other hand the
graph P(Zm) has a Hamilton cycle Cm. Now, by theorem 2.7 the graph P(G) is Hamiltonian.
Conversely, By structure Q2n in the previous theorem, for every 1 ≤ t ≤ 2n−2 we define subsets
of G as the following such that partition the group G:

Ft = Zm × {yxt, y−1xt}, K = Zm × {1} ∪ Zm × {y2}

We claim that for edge g ∼ g′ in the graph P(G) and 1 ≤ t′ ≤ 2n−2, if g ∈ Ft′ , then
g′ ∈ Ft′ ∪ K. For proof, consider two cases g → g′ or g ← g′. In the first case the result is
clear. For the second case put g′ = (g′1, g

′
2) ∈ G. Hence there exists a positve integer l such

that g = g′l = (g′1
l, g′2

l). Where g′2
l ∈ {yxt, y−1xt}, it can see that g′2 ∈ {yxt, y−1xt}.

Now, assume that P(G) has a Hamilton cycle as following:

C : 1 = c1 ∼ c2 ∼ · · · ∼ c2nm ∼ c1

Put it = max{i | ci ∈ Ft}, ut = cit+1 and if it0 = 2nm for some 1 ≤ t0 ≤ 2n−2, let ut0 = c1. By
above discussion, we have {ut | 1 ≤ t ≤ 2n−2} ⊆ K. Thus 2n−2 ≤ |K| = 2m and since m is
odd, then m > 2n−3.

Theorem 2.13. Suppose that G =
∏r

i=1 Pi×Zn such that for every 1 ≤ i ≤ r, Pi is a finite pi

group where pi’s are distinct primes and gcd(pi, n) = 1. Let Ti be spanning tree of the power
graph P(Pi) with at least maximum degree ∆(Ti) and moreover ∆(T1) ≥ ∆(T2) ≥ · · · ≥ ∆(Tr).
Now, if for every i, ∆(Ti) ≤ n×|Pr|× |Pr−1|× · · ·× |Pi+1| then P(G) is a Hamiltonian graph.

Proof. By using of induction and 2.7, proof is clear.
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Example 2.14. Assume that G = Z7 × Z2 × Z2. One can see that power graph Z2 × Z2

is not Hamiltonian. But, we can find a Hamiltonian cycle in P(G). Suppose that G =

{it, jt, kt, lt : t = 1, 2 . . . 7} such that |i2| = 1, |j2| = |k2| = |l2| = 2 and for i ̸= 2, we have
|it| = 7, |jt| = |kt| = |lt| = 14.

i1
i2

i3

i4

i5
i6

i7

j1
j2

j3

j4 j5
j6

j7

l1
l2

l3

l4

l5
l6

l7

k1
k2

k3

k4

k5
k6

k7

This example, guides us to find groups which that whose power graphs have Hamilton cycle
by theorem 2.7. In the next theorem we will offer the Hamilton cycle in these power graphs. If
G is a finite p-group of exponent p, then the power graph P(G) is union of complete subgraphs
of order p that are intersect only in identity element. Hence the graph P(G) has a spanning
tree T of maximum degree n, where n is the number of cyclic subgroups of order p.

Theorem 2.15. Suppose that P is a finite p-group of exponent prime number p and Zq is
cyclic group of prime order q. If q at least equals to the number of disjoint cyclic subgroups of
order p, then P(P × Zq) is Hamiltonian.

Proof. Put G = P × ⟨y⟩, |y| = q, It is clear that the number of disoint cyclic subgroups of
order p and pq is equal and it is t = (pm− 1)/(p− 1). Also, assume that ⟨(x1, 1)⟩, . . . , ⟨(xt, 1)⟩
is all of subgroups of order p. For i = 1, 2, . . . , t, set ⟨y⟩ = {y1, y2, . . . , yt, yt+1, . . . , yq = 1} and
Zi = ⟨(xi, yi)⟩ \ ⟨(xi, 1)⟩ ∪ ⟨(1, yi)⟩. Since cyclic subgroup of order q is cyclic, then elements
of order p are adjacent to elements of order q. For i = 1, 2, . . . , t � j = 1, 2, . . . q, induced
power graph on the set Zi and graphs P(⟨(xi, 1)⟩),P(⟨(1, yj)⟩) are complete. We can find the
following cycle Hamiltonian:

(1, y1) ∼ P l(Z1 \ {z1}) ∼ (x1, 1) ∼ P l(⟨(x1, 1)⟩) ∼ (x1, 1)
−1 ∼ z1

∼ (1, y2) ∼ P l(Z2 \ {z2}) ∼ (x2, 1) ∼ P l(⟨(x2, 1)⟩) ∼ (x2, 1)
−1 ∼ z2

...

∼ (1, yt) ∼ P l(Zt \ {zt}) ∼ (xt, 1) ∼ P l(⟨(xt, 1)⟩) ∼ (xt, 1)
−1 ∼ zt

∼ (1, yt+1) ∼ (1, yt+2) ∼ · · · ∼ (1, yq = 1).
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where P l(⟨(x1, 1)⟩) is a path Hamiltonian between the vertices (x1, 1) and (x1, 1)
−1 at the

graph P(⟨(x1, 1)⟩).

3. Spanning tree in the power graph of finite abelian p-group

As stated in the theorem 2.7 the existance spanning tree is usefull for finding Hamilton cycle
in the graph. In this section, we focus on the power graph of finite abelian p-group.

Definition 3.1. Let G be a finite p-group. The subgroup Ωi(G) is the subgroup generated
by all elemets of order dividing pi; that is,

Ωi = ⟨g : gp
i
= 1⟩

.

Lemma 3.2. If G is a finite abelian p-group, that is, G =
∏t

i=1 Zpmi , then

(1) |Ω1(G)| = pt,

(2) The number of cyclic subgroup of order p is pt − 1

p− 1
.

Proof. It’s clear.

Notation 1. For a finite abelian p-group G and every 1 ̸= k ∈ N, put Xk = Ωk \ Ωk−1, X1 =

Ω1 \ {1}. We use of Γ1,Γ2, . . . ,Γn where show the connected componnents of proper power
graph P∗(G). It is proved that the number connected components of P∗(G) is equal to number
of cyclic subgroups of order p (see Theorem 2.6 [4]). Also for each 1 ≤ i1 ≤ n, we state
X1

(i1) = X1 ∩ Γi1 ,Ki1 = ⟨X1
(i1)⟩ and Zi1 = Ω1

Ki1
. For cyclic subgroup H of order pk, k ≥ 1

containned in Γi1, we define the set Y (i1,H)
k+1 consists of cyclic subgroups M of order pk+1 which

have H as a subgroup, that is,

Y
(i1,H)
k+1 = {M ≤ G : M = ⟨y⟩,H ⊆M, |M | = pk+1}

By the above notation, for every 1 ≤ i1 ≤ n, it’s clearly that |Ki1 | = p, |Zi1 | = pt−1 and if
H is cyclic subgroup of G, then H ⊆ Γi1 if and only if Ki1 ⊆ H. Also, the following theorem
states if Y (i1,H)

k+1 ̸= ∅, then |Y (i1,H)
k+1 | = pt−1. Actually, size of the set Y (i1,H)

k+1 is not dependent
on k and i1.

Theorem 3.3. For every k ≥ 1 and 1 ≤ i1 ≤ n, we have either |Zi1 | = |Y
(i1,H)
k+1 | = pt−1 or

|Y (i1,H)
k+1 | = 0.
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Proof. Suppose that |Y (i1,H)
k+1 | ̸= 0 for some i1, we show that |Y (i1,H)

k+1 | = pt−1. Whether
|Y (i1,H)

k+1 | ̸= 0, there exists cyclic subgroup M0 = ⟨y0⟩ in Y
(i1,H)
k+1 . One can see that M0 ⊆ Γi1 .

Let φ be the map defined as follows:

φ : Zi1 −→ Y
(i1,H)
k+1

gKi1 −→ ⟨gy0⟩,

We show that φ is a well-defined bijection. It’s obviously, (gy0)p = yp0 ∈ H for every g ∈ Ω1.
Since cyclic subgroups of a cyclic group is unique, then φ(gKi1) ∈ Y

(i1,H)
k+1 . If gKi1 = g′Ki1 ,

then g−1g′ ∈ Ki1 , since Ki1 ⊆ H ⊆ M0 = ⟨y0⟩, there exists positve integer r such that
g−1g′ = yrp

k

0 where gcd(p, r) = 1. Hence g′y0 = gyrp
k+1

0 = (gy0)
rpk+1 and g′y0 ∈ ⟨gy0⟩. Thus

⟨g′y0⟩ = ⟨gy0⟩ and φ is a well-defined map.
For every ⟨y⟩ = M ∈ Y

(i1,H)
k+1 , we have ypr = yp0 where gcd(r, p) = 1, hence yry−1

0 ∈ Ω1 and so
φ(yry−1

0 Ki1) = ⟨yry−1
0 y0⟩ = ⟨yr⟩ = ⟨y⟩.Therefor the map is onto.

Finally, we prove φ is one-to-one. Assume that φ(gKi1) = φ(g′Ki1), hence ⟨gy0⟩ = ⟨g′y0⟩,
then g′y0 = (gy0)

r where gcd(r, p) = 1. So, g′g−r = yr−1
0 , but g′g−r ∈ Ω1 and we conclude

yr−1
0 ∈ Ki1 and g′Ki1 = grKi1 ,on the other hand |y0r−1||p, hence p|r − 1 and there exists the
integer s such that ps = r− 1. Now, gr = gps+1 = g and gKi1 = g′Ki1 . The proof is complete.

Definition 3.4. By the above theorem for every 1 ≤ i1 ≤ n, if |Y (i1,Ki1
)

2 | ̸= 0, then |Y (i1,Ki1
)

2 | =
pt−1. Hence put Y

(i1,Ki1
)

2 = {M1,M2, . . . ,Mpt−1}. Now, we define X
(i1,i2)
2 as the set of

generators of Mi2 for every 1 ≤ i2 ≤ pt−1. Put Ki1,i2 = ⟨X(i1,i2)
2 ⟩. Similarly, if Y (i1,Ki1,i2

)
3

is non-empty set, then Y
(i1,Ki1,i2

)
3 = {M ′

1,M
′
2, . . . ,M

′
pt−1} and again we can define X

(i1,i2,i3)
3

as the set of generators of M ′
i3

for every 1 ≤ i3 ≤ pt−1. BY induction, the set X
(i1,i2,...,ik)
k is

defined.

Theorem 3.5. For every k ≥ 1, 1 ≤ i1 ≤ n and 1 ≤ i2, i3, . . . , ik ≤ pt−1, the following is
established:

(1) X
(i1,i2,...,ik)
k ⊆ Xk

(2) (X
(i1,i2,...,ik)
k )p = X

(i1,i2,...,ik−1)
k−1

(3) X
(i1,i2,...,ik)
k is a partition of Xk

(4) The power graph P(X(i1,i2,...,ik)
k ) is complete.

Proof. It’s underestood obviously.

Theorem 3.6. Suppose that G is a finite abelian p-group with representation G =
∏t

i=1 Zpmi

and put n =
∑t−1

i=0 p
i, we have the following cases:



Alg. Struc. Appl. Vol. 10 No. 1 (2023) 73-85. 81

(1) If subgraph T is a spanning tree of P(G), then ∆(T ) ≥ n

(2) There exists a spanning tree T0 of P(G) with ∆(T0) = n.

Proof. (1) Since the identity element is a cut-vertex of the graph P(G) and the number of
connectivity components is n, then degT (1) ≥ n and this show that ∆(T ) ≥ n.

(2) We construct the spanning tree T0 with ∆(T0) = n. For this purpose, let G =

{1}
∪

k∈NXk. By above theorems, G = {1} ∪ X
(i1,i2,...,ik)
k where the union changes

on all indexes 1 ≤ i1 ≤ n and 1 ≤ i2, i3, . . . , ik ≤ pt−1. Note that it is possible for some
cases X(i1,i2,...,ik)

k is empty. Now, if the set X(i1,i2,...,ik)
k ̸= ∅, put

X
(i1,i2,...,ik)
k = {g(i1,...,ik)0 , g

(i1,...,ik)
1 . . . , g(i1,...,ik)r }.

In the following, we determine the edges of tree T0 in the three parts:

(1) Wether, the subgraph P(X(i1,i2,...,ik)
k ) is complete, then there exists the path

g
(i1,...,ik)
0 ∼ g

(i1,...,ik)
2 ∼ · · · ∼ g(i1,...,ik)r ∼ g

(i1,...,ik)
1

for every 1 ≤ i1 ≤ n and 1 ≤ i2, i3, . . . , ik ≤ pt−1.
(2) For one edge between the vertex sets Xk and Xk+1, consider the edge g

(i1,...,ik)
1 ∼

g
(i1,...,ik+1)
0 ,

(3) The edges between X1 and identity element is defined with adjacency gi10 and 1,
that is, gi10 ∼ 1, for every 1 ≤ i1 ≤ n.

Firstly, subgraph T0 is connected. Since for every g ∈ G, there exists k ∈ N such that
g = g

(i1,...,ik)
l ∈ X

(i1,i2,...,ik)
k . We can find the following path that connected vertices

gl, 1 in the spanning subgraph T0:

gl ∼ · · · ∼ g
(i1,...,ik)
0 ∼ g

(i1,...,ik−1)
1 ∼ · · · ∼ g

(i1,...,ik−1)
0 ∼ · · · ∼ gi10 ∼ 1.

Also, it’s obvious that T0 is without cycle. secondly, we show that ∆(T0) = n. It’s nec-
essary which we know about vertex degrees of T0. But degT0(1) = n, degT0(g

(i1,...,ik)
j ) =

2 when j ̸= 0, 1 and it is 1 or 2 if j = 0. Finally,

degT0(g
(i1,...,ik)
1 ) = 1 + |Y

(i1,K(i1,...,ik))

k+1 | ≤ 1 + pt−1.

whether, 1 + pt−1 ≤ 1 + p+ p2 + · · ·+ pt−1 = n, hence for every g ∈ G, degT0(g) ≤ n.
Then ∆(T0) = n and proof is complete.
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4. Hamilton cycle in the graph P(Un′)

The subset Un′ of Zn′ consists of the elements of Zn′ which are relatively prime to n′; it is
a group under multiplication mod n′. Chakrabarty, Ghosh and Sen [3] considered the power
graph P(Un′) and described properties of it such as complete and planar graph, also they
stated open problem about existence Hamilton cycle in it. Now, in this section we will try to
answer this question. The structure of the group Un′ is as following:
Let n′ = 2mpα1

1 pα2
2 . . . pαn

n be a natural number, where pi’s are distinct odd primes, αi ≥ 0 for
all i = 1, 2, . . . , n. Then

(Un′ , .) ∼= (U2m × Up
α1
1
× · · · × Upαn

n
).

Also, group (Un, .) enables us to consider it as a direct prouduct of additive cyclic groups.

(Un′ , .) ∼=



(Zφ(p
α1
1 ) × Zφ(p

α2
2 ) × . . .× Zφ(pαn

n ),+) m = 0, 1

(Z2 × Zφ(p
α1
1 ) × Zφ(p

α2
2 ) × . . .× Zφ(pαn

n ),+) m = 2

(Z2 × Z2m−2 × Zφ(p
α1
1 ) × Zφ(p

α2
2 ) × . . .× Zφ(pαn

n ),+) m > 2

Notation 2. Suppose that G = Zφ(p
α1
1 ) × Zφ(p

α2
2 ) × . . . × Zφ(pαn

n ) where pi’s are prime and
2 < p1 < . . . < pn. We introduce the following symbols for the next theorems:

(1) Sq is Sylow q-subgroup G with orders qnq when q divide |G|.
(2) Let π(G) be the set all prime numbers that dividing |G| and we define For every

q ∈ π(G):
(3) Iq = {p ∈ π(G) : p > q}.
(4) zq = |{1 ≤ j ≤ n : q|pj − 1}|.
(5) If Iq = ∅, then put tq = 0 otherwise, tq = |

∏
p∈Iq Sp| − 1.

(6) If q = pi and αi ≥ 2, then put lq =
qzq+1 − 1

q − 1
= 1 + q + · · · + qzq otherwise,lq =

qzq − 1

q − 1
= 1 + q + · · ·+ qzq−1.

Now, we are ready to state the following theorem:

Theorem 4.1. Suppose that G = Zφ(p
α1
1 ) ×Zφ(p

α2
2 ) × . . .×Zφ(pαn

n ) where pi’s are distinct odd
prime numbers and for every q ∈ π(G) we have tq ≥ lq − 1, then

(1) the power graph P(G) is Hamiltonian.
(2) if t2 ≥ 2n+1 − 2, then power graph P(Z2 ×G) is Hamiltonian.
(3) if t2 ≥ 2n+2 − 2, then power graph P(Z2 × Z2m ×G) is Hamiltonian.
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Proof. (1) Let q′ = maxπ(G), it can see that Iq′ = ∅, tq′ = 0 and hence zq′ = 0 or 1. If
zq′ = 0, then q′ = pi with αi ≥ 2 for some 1 ≤ i ≤ n. Thus, Sq′ = Spi = Z

p
αi−1
i

. Now,
assume that zq′ = 1, then there exists unique prime number pj such that q′|pj − 1. If
q′ ̸= pi for every i, then Sq′ = Zq′

nq′ , otherwise q′ = pi for some i and we must be
have αi = 1. Again we get Sq′ = Zq′

nq′ . Hence in each case, the power graph P(S′
q) is

complete and it’s Hamiltonian.
In the following, suppose that q ∈ π(G) \ {q′} and graph P(

∏
p∈Iq Sp) is Hamiltonian.

Sylow q-subgroup Sq has form Sq = Z
p
αi−1
i
×Zqβ1 × . . .×Z

q
βzq when q = pi and αi ≥ 2

for some 1 ≤ i ≤ n, otherwise it is Zqβ1 × . . .× Z
q
βzq .

By theorem 3.6, power graph P(Sq) has a spanning tree with ∆(T ) = lq respectively.
On the other hand,
|
∏

p∈Iq Sp| = tq+1 ≥ lq−1+1 = lq = ∆(T )Hence∆(T ) ≤ |P(
∏

p∈Iq Sp| and by theorem
2.7, the spanning subgraph P(Sq)□P(

∏
p∈Iq Sp) of power graph P(Sq ×

∏
p∈Iq Sp) is

Hamiltonian. Also, it is easy that conclude the power graph of finite group G is
Hamiltonian, by induction.

(2,3) If q = 2, then zq = n and S2 = Z2β1 × . . . × Z2βn . Therefore Sylow 2-subgroups of
Z2 ×G and Z2 × Z2m ×G are H = Z2 × S2 and K = Z2 × Z2m × S2,respectively. On
the other hand, the power graphs P(H) and P(K) have spanning trees with maximum
degrees 2n+1 − 1 and 2n+2 − 1, respectively. Now, if t2 ≥ 2n+1 − 2 or 2n+2 − 2, then it
is easy to see |

∏
p∈I2 Sp| = t2 + 1 ≥ 2n+1 − 2 + 1 or 2n+2 − 2 + 1 and this proof cases

(2), (3).

Corollary 4.2. Suppose that G = Zφ(p
α1
1 ) × Zφ(p

α2
2 ) × . . .× Zφ(pαn

n ) where pi’s are prime and
2 < p1 < . . . < pn. If for every 1 ≤ i ≤ n we had αi ≥ 2 , then power graphs P(G) and
P(Z2 ×G) are Hamiltonian.

Proof. For every q ∈ π(G), there exists 0 ≤ i ≤ n such that pi ≤ q < pi+1 where p0 = 2. Thus,
zq ≤ n− i and

lq ≤
qn−i+1 − 1

q − 1
= 1 + q + · · ·+ qn−i.

On the other hand, since αi ≥ 2 we have |Iq| ≥ n− i. Hence

tq = |
∏
p∈Iq

Sp| − 1 ≥ −1 +
n−i∏

j=i+1

P
nj

j ≥ −1 + (1 + q)n−i ≥ −1 + (1 + q + · · ·+ qn−i) ≥ −1 + lq.

Therfore condition’s before theorem is hold and P(G) is Hamiltonian. For the second part,

t2 ≥
n∏

i=1

pi − 1 ≥ −1 + (1 + 2)n ≥ −1 + (2n + 2n + · · ·+ 1) ≥ 2n+1 − 1.
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Then P(Z2 ×G) is Hamiltonian.

Corollary 4.3. Suppose that G = Un′,

(1) If n′ = m2 for some m ∈ N , then P(G) is Hamiltonian.
(2) There is d ∈ N such that Un′

d

and Un′d are Hamiltonian.

Proof. (1) It is clear that for every prime divisor q of n′, q2 divides n′. Then by corollary
4.2, P(G) is Hamiltonian.

(2) n′ = pα1
1 × · · · × pαn

n where pi’s are distinct primes.
Put d =

∏
j∈I pj where I = {1 ≤ i ≤ n | αi = 1}. It can see that Un′

d

and Un′d are
Hamiltonian by corollary 4.2.
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