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SOME REMARKS ON (INC(R))c

KRISHNA L. PUROHIT, JAYDEEP PAREJIYA∗, MAHESH M. PARSANIA

Abstract. Let R be a commutative ring with identity 1 ̸= 0 which admits atleast two

maximal ideals. In this article, we have studied simple, undirected graph (INC(R))c whose

vertex set is the set of all proper ideals which are not contained in J(R) and two distinct

vertices I1 and I2 are joined by an edge in (INC(R))c if and only if I1 ⊆ I2 or I2 ⊆ I1. In this

article, we have studied some interesting properties of (INC(R))c.

1. Introduction

The rings considered in this article are commutative with identity 1 ̸= 0 which admits atleast
two maximal ideals. The idea of associating a graph with certain subsets of a commutative
ring and exploring the interplay between the ring-theoretic properties of a ring and the graph-
theoretic properties of the graph associated with it began with the work of I. Beck in [8].

For a commutative ring R, we denote the set of all maximal ideals of R by Max(R). We
denote the cardinality of a set A using the notation |A|. Let R be a ring. Then V (I) =
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{J ∈ I(R) : J ⊆ I}; where I(R) denotes the set of all proper ideals of R. The graphs
considered in this article are undirected. Let G = (V,E) be a simple graph. Recall from [7]
that the complement of G, denoted by Gc is a graph whose vertex set is V and two distinct
u, v ∈ V are joined by an edge in Gc if and only if there exists no edge in G joining u and v.
Let R be a ring with |Max(R)| ≥ 2. Inspired by the research work done on the comaximal
graph and comaximal ideal graph of algebraic structures in [2, 12, 13, 14, 15, 18, 19, 23, 25]
and the research work done on the annihilating-ideal graph of a ring in [9, 10, 21], Ye and
Wu [26] introduced and investigated an undirected graph associated with R whose vertex set
equals {I ∈ I(R) : I ⊈ J(R)} and distinct vertices I1, I2 are joined by an edge if and only
if I1 + I2 = R. Ye and Wu called the graph introduced and studied by them in [26] as the
comaximal ideal graph of R and denoted it using the notation C (R).

Visweswaran and Parejiya [22] introduced an undirected graph structure associated with
R denoted by INC(R), whose vertex set equals {I ∈ I(R) : I ⊈ J(R)} and distinct vertices
I1, I2 are joined by an edge if and only if I1 and I2 are not comparable under the inclusion
relation. Motivated by this research work, we have discussed some properties of (INC(R))c in
this article.

We give brief of the theorems, proved in this article. In Theorem 3.1, we have proved that if
R is a ring with |Max(R)| = 2 then (INC(R))c is a disconnected graph with two components.
In Theorem 3.2, we have showed that if R is a ring with |Max(R)| = n; n ≥ 3, n ∈ N then
(INC(R))c is connected and diam((INC(R))c) = 3. In Theorem 4.1, we have proved that if
R is a ring with |Max(R)| ≥ 4 then (INC(R))c is not a bipartite graph. In Theorem 4.2,
we have proved that for a ring R with |Max(R)| = 3, (INC(R))c is bipartite if and only if
R ∼= F1 × F2 × F3; where F1, F2 and F3 are fields. In Theorem 4.3, we have investigated that
if R is a ring with |Max(R)| = 2, then (INC(R))c is a bipartite graph if and only if R is ring
isomorphic to one of the following rings:- (i) F1 × F2; where Fi is a field for each i ∈ {1, 2}.
(ii) R1 × F2; where (R1,m1) is SPIR with m1 ̸= (0) but m2

1 = (0) and F2 is a field. (iii)
F1 ×R2; where F1 is a field and (R2,m2) is SPIR with m2 ̸= (0) but m2

2 = (0). (iv) R1 ×R2;
where (Ri,mi) is SPIR with mi ̸= (0) but m2

i = (0) for each i ∈ {1, 2}. In Theorem 4.4, we
have proved that for a ring R with |Max(R)| ≥ 2, (INC(R))c is bipartite if and only if one
of the following conditions hold:- (i) R ∼= F1 × F2 × F3; where F1, F2 and F3 are fields. (ii)
R ∼= F1 × F2; where Fi is a field for each i ∈ {1, 2}. (iii) R ∼= R1 × F2; where (R1,m1) is
SPIR with m1 ̸= (0) but m2

1 = (0) and F2 is a field. (iv) R ∼= F1 × R2; where F1 is a field
and (R2,m2) is SPIR with m2 ̸= (0) but m2

2 = (0). (v) R ∼= R1 ×R2; where (Ri,mi) is SPIR
with mi ̸= (0) but m2

i = (0) for each i ∈ {1, 2}. In Theorem 4.5, we have investigated that
for a ring R with |Max(R)| ≥ 2, (INC(R))c is not a complete bipartite graph. In Theorem
5.1, we have proved that (INC(R))c is not a split graph if R is a ring with |Max(R)| ≥ 3. We



Alg. Struc. Appl. Vol. 9 No. 2 (2022) 181-198. 183

have proved in Theorem 6.1 that for a ring R with |Max(R)| ≥ 4, girth((INC(R))c) = 3. In
Theorem 6.2, we have shown that for a ring R with |Max(R)| = 3, girth((INC(R))c) ≤ 6.
Illustration 1 shows that upper bound of the inequality in Theorem 6.2 is obtained by a ring
R ∼= F1 × F2 × F3; where Fi is a field ∀i ∈ {1, 2, 3}. In Theorem 6.3, we have investigated
that for a ring R with |Max(R)| = 3, girth((INC(R))c) = 6 if and only if R ∼= F1 × F2 × F3;
where Fi is a field ∀i ∈ {1, 2, 3}. In Theorem 7.1, we have shown that for a ring R with
|Max(R)| = n, n ≥ 5 and n ∈ N, (INC(R))c) is not planar. Theorem 7.2 (7.3 resp.) gives the
characterization of rings R with |Max(R)| = 3 (|Max(R)| = 4 resp.) for which (INC(R))c)

is planar. In Theorem 8.1, we have proved that (INC(R))c is not complemented if R is a
ring with |Max(R)| = 4. In Theorem 8.2 (and 8.3 resp.), we have characterized rings R with
|Max(R)| = 3 (|Max(R)| = 2 resp.) for which (INC(R))c is complemented. Corollary 8.4
gives characterization of ring R for which (INC(R))c is complemented. Corollary 8.5 depicts
that (INC(R))c is uniquely complemented if and only if R ∼= R1 ×R2; where (Ri,mi) is SPIR
with mi ̸= (0) but m2

i = (0) for each i ∈ {1, 2}.

2. Preliminaries

It is useful to recall the following definitions and results from graph theory. Let G = (V,E)

be a graph. Let a, b ∈ V , a ̸= b. Recall that the distance between a and b, denoted by d(a, b) is
defined as the length of a shortest path in G between a and b if such a path exists, otherwise
d(a, b) = ∞. We define d(a, a) = 0. Let G be a simple graph. Then the complement Gc of G is
defined by taking V (Gc) = V (G) and making two vertices u and v adjacent in Gc if and only
if they are non-adjacent in G [7]. A graph G is said to be connected if for any distinct a, b ∈ V ,
there exists a path in G between a and b. Recall from [7] that the diameter of a connected
graph G = (V,E) denoted by diam(G) is defined as diam(G) = sup{d(a, b)|a, b ∈ V }. Let
G = (V,E) be a connected graph. Let a ∈ V . Recall that G is a split graph if V (G) is the
disjoint union of two nonempty subsets K and S such that the subgraph of G induced on K

is complete and S is an independent set of G.
Let G = (V,E) be a graph such that G contains a cycle. Recall from [7] that the girth of G

denoted by girth(G) is defined as the length of a shortest cycle in G. If a graph G does not
contain any cycle, then we define girth(G) = ∞. Let n ∈ N. A complete graph on n vertices
is denoted by Kn. Let G = (V,E) be a graph. Then G is said to be bipartite if the vertex
set V of G can be partitioned into two nonempty subsets V1 and V2 such that each edge of G
has one end in V1 and the other in V2. A bipartite graph with vertex partition V1 and V2 is
said to be complete, if each element of V1 is adjacent to every element of V2. Let m,n ∈ N.
Let G = (V,E) be a complete bipartite graph with V = V1 ∪ V2. If |V1| = m and |V2| = n,
then G is denoted by Km,n [7]. Let G = (V,E) be a graph. Recall from [4] that two distinct
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vertices u, v of G are said to be orthogonal, written u ⊥ v if u and v are adjacent in G and
there is no vertex of G which is adjacent to both u and v in G; that is, the edge u− v is not
an edge of any triangle in G. Let u ∈ V . A vertex v of G is said to be a complement of u if
u ⊥ v [4]. Moreover, we recall from [4] that G is complemented if each vertex of G admits a
complement in G. Furthermore, G is said to be uniquely complemented if G is complemented
and whenever the vertices u, v, w of G are such that u ⊥ v and u ⊥ w, then a vertex x of G is
adjacent to v in G if and only if x is adjacent to w in G.

Let G = (V,E) be a graph. Recall from [7, Definition 8.1.1] that G is said to be planar if
G can be drawn in a plane in such a way that no two edges of G intersect in a point other
than a vertex of G. Recall that two adjacent edges are said to be in series if their common end
vertex is of degree two [11, pg.9]. Two graphs are said to be homeomorphic if one graph can
be obtained from the other by intersection of vertices of degree two or by the merger of edges
in series [11, pg. 100]. It is useful to note from [11, pg. 93] that the graph K5 is referred to as
Kuratowski’s first graph and K3,3 is referred to as Kuratowski’s second graph. The celebrated
theorem of Kuratowski states that a graph G is planar if and only if G does not contain either
of Kuratowski’s two graphs or any graph homeomorphic to either of them [11, Theorem 5.9].

A ring R is said to be local if it has a unique maximal ideal. Recall that a principal ideal
ring R is said to be a special principal ring (SPIR) if R admits only one prime ideal. If m is
the only prime ideal of R, then m is necessarily nilpotent. If R is a special principal ideal ring
with m as its only prime ideal, then we describe it using the notation that (R,m) is a SPIR.
Let m be a nonzero maximal ideal of a ring R such that m is principal and is nilpotent. Let
n ≥ 2 be least with the property that mn = (0). Then it follows from the proof of (iii) ⇒ (i)

of [6] that {mi|i ∈ {1, . . . , n− 1}} is the set of all nonzero proper ideals of R. As each ideal of
R is principal with m as its only prime ideal, it follows that (R,m) is a SPIR.

3. Diam((INC(R))c)

Theorem 3.1. Let R be a ring with |Max(R)| = 2. Then (INC(R))c is a disconnected graph
with two components.

Proof. Let Max(R) = {M1,M2}. Suppose that (INC(R))c is connected. Consider Vi = {I ∈
I(R) : I ⊆ Mi but I ⊈ Mj} for i, j ∈ {1, 2}; where j ̸= i. Observe that V1 ∩ V2 = ∅. Let
Gi be the subgraph of (INC(R))c induced on Vi; for i ∈ {1, 2}. Let I, J ∈ V (G1). Note that
I−M1−J is a path between I and J . So, G1 is a connected subgraph of (INC(R))c. Similarly,
G2 is a connected subgraph of (INC(R))c. Note that there is no edge in (INC(R))c with one
end vertex in V (G1) and another end vertex in V (G2). So, (INC(R))c is a disconnected graph
with two components, G1 and G2.
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Theorem 3.2. Let R be a ring with |Max(R)| = n; n ∈ N and n ≥ 3. Then (INC(R))c is
connected and diam(INC(R))c = 3.

Proof. Let Max(R) = {M1,M2, ...,Mn}; n ∈ N and n ≥ 3. Let I, J ∈ V ((INC(R))c) be
distinct non-adjacent vertices. Since I, J ⊈ J(R), there exists Mi,Mj ∈ Max(R) such that
I ⊈ Mi and J ⊈ Mj ; for some i, j ∈ {1, 2, ..., n}.
Case (i) Mi = Mj

Suppose that IJ ⊆ J(R). Then IJ ⊆ Mi. So, either I ⊆ Mi or J ⊆ Mi. This is not
possible. So, IJ ⊈ J(R). If IJ = I then I ⊆ J . So, I and J are adjacent in (INC(R))c which
is a contradiction. Hence, IJ ̸= I. Similarly, IJ ̸= J . So, I − IJ − J is a path of length two
between I and J in (INC(R))c.
Case (ii) Mi ̸= Mj

If J ⊈ Mi, then by Case (i) we have a path of length two between I and J . So, J ⊆ Mi.
If I ⊈ Mj then by Case (i), we have a path of length two between I and J . So, I ⊆ Mj . Let
IMi ⊈ J(R). If J = Mi, then I − IMi − Mi = J is a path of length two between I and J

in (INC(R))c. If J ⊊ Mi, then I − IMi −Mi − J is a path of length three between I and J

in (INC(R))c. Let JMj ⊈ J(R). If I = Mj , then I = Mj − JMj − J is a path of length two
between I and J . If I ⊊ Mj , then I −Mj − JMj − J is a path of length three between I and
J in (INC(R))c. So, let IMi ⊆ J(R) and JMj ⊆ J(R). So, I ⊆ M1M2...Mi−1Mi+1...Mn and
J ⊆ M1M2...Mj−1Mj+1...Mn. Then I −Mk − J is a path of length two between I and J in
(INC(R))c; where Mk ∈ Max(R) and k ∈ {1, 2, ..., n}∖ {i, j}. Hence, diam((INC(R))c) ≤ 3.

Note that M1 and M2 are not adjacent in (INC(R))c. So, (INC(R))c is not complete. Thus
diam((INC(R))c) ≠ 1. Suppose that diam((INC(R))c) = 2 for some ring R. Note that M1

and M2M3...Mn are non-adjacent vertices in (INC(R))c. Suppose that there exists a path of
length two between M1 and M2M3...Mn say, M1−I−M2M3...Mn; for some I ∈ V ((INC(R))c).
Then I ⊆ M1. Suppose M2M3...Mn ⊆ I. Then M2M3...Mn ⊆ M1. Hence, Mi ⊆ M1; for some
i ∈ {1, 2, ..., n} which is not possible. So, I ⊆ M2M3...Mn. So, I ⊆ M1M2...Mn = J(R) which
is not possible as I ⊈ J(R). Hence, diam((INC(R))c) ̸= 2. Therefore, diam((INC(R))c) = 3.

4. Bipartiteness of (INC(R))c

Theorem 4.1. Let R be a ring with |Max(R)| ≥ 4. Then (INC(R))c is not a bipartite graph.

Proof. Let M1,M2,M3,M4 ∈ Max(R). Suppose that (INC(R))c is a bipartite graph with V1

and V2 as its bipartite sets. Suppose that Mi ∈ V1; for Mi ∈ Max(R) and i ∈ {1, 2, 3, 4}.
Without loss of generality, we may assume that M1 ∈ V1. Note that M1M2 is adjacent to
M1. So, M1M2 /∈ V1. Also, M1M2 is adjacent to M2. So, M1M2 /∈ V2. This is not possible.
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Thus, Max(R) ⊆ Vi; for some i ∈ {1, 2}. Without loss of generality, we may assume that
Max(R) ⊆ V1. Now, M1M2 is adjacent to M1. So, M1M2 /∈ V1. So, M1M2 ∈ V2. Also,
M1M2M3 is adjacent to M1. So, M1M2M3 /∈ V1. But M1M2M3 is also adjacent to M1M2.
So, M1M2M3 /∈ V2. Thus (INC(R))c is not a bipartite graph.

Theorem 4.2. Let R be a ring with |Max(R)| = 3. Then (INC(R))c is bipartite if and only
if R ∼= F1 × F2 × F3; where F1, F2 and F3 are fields.

Proof. Let Max(R) = {M1,M2,M3}. Suppose that (INC(R))c is bipartite. Let V1 and V2

be its bipartite sets. Suppose that Mi ∈ V1 and Mj , Mk ∈ V2; for distinct i, j, k ∈ {1, 2, 3}.
Note that MiMj is adjacent to Mi. So, MiMj /∈ V1. Also, MiMj is adjacent to Mj . So,
MiMj /∈ V2. This is not possible. So, Max(R) ⊆ Vi; for some i ∈ {1, 2}. Without loss of gen-
erality, we may assume that Max(R) ⊆ V1. Now, MiMj is adjacent to Mi; for i, j ∈ {1, 2, 3}
and j ̸= i. So, MiMj /∈ V1. Thus MiMj ∈ V2; for all i, j ∈ {1, 2, 3} and i ̸= j. Sup-
pose that M2

i ̸= Mi; for some i ∈ {1, 2, 3}. Without loss of generality, we may assume that
M2

1 ̸= M1. Also, M2
1Mj is adjacent to Mj in (INC(R))c for j ∈ {1, 2, 3}. So, M2

1Mj /∈ V1; for
any j ∈ {1, 2, 3}. Observe that M2

1Mj is adjacent to M1Mj in (INC(R))c. So, M2
1Mj /∈ V2.

This is not possible. Thus M2
i = Mi; for each i ∈ {1, 2, 3}. Let xi ∈ Mi ∖ (0); for some

i ∈ {1, 2, 3}. Let if possible, Mi ̸= Rxi. Note that (Rxi)Mj is adjacent to Mi; for j ∈ {1, 2, 3}
and j ̸= i. So, (Rxi)Mj /∈ V1. Also, (Rxi)Mj is adjacent to MiMj in (INC(R))c. So,
(Rxi)Mj /∈ V2. This is not possible. Thus Mi = Rxi; for some xi ∈ Mi ∖ (0), i ∈ {1, 2, 3}.
So, J(R) = M1M2M3 = Rx1x2x3 is principal and (J(R))2 = J(R). By Nakayama’s lemma
[6, Proposition 2.6], J(R) = (0). Hence, by Chinese Remainder Theorem [6, Proposition 1.10
(ii), (iii)], R ∼= R

J(R)
∼= R

M1
× R

M2
× R

M3

∼= F1 × F2 × F3; where F1, F2 and F3 are fields.
Conversely, assume that R ∼= F1 × F2 × F3; where F1, F2 and F3 are fields. Let V1 =

{M1,M2,M3} and V2 = {M1M2,M1M3,M2M3}. Then V1 ∪ V2 = V ((INC(R))c) and
V1 ∩ V2 = ∅. Note that V1 and V2 form bipartite sets of (INC(R))c and hence (INC(R))c

is a bipartite graph.

Theorem 4.3. Let R be a ring with |Max(R)| = 2. Then (INC(R))c is a bipartite graph if
and only if R is isomorphic to one of the following rings:

(i) F1 × F2; where Fi is a field for each i ∈ {1, 2}.
(ii) R1 × F2; where (R1,m1) is SPIR with m1 ̸= (0) but m2

1 = (0) and F2 is a field.
(iii) F1 ×R2; where F1 is a field and (R2,m2) is SPIR with m2 ̸= (0) but m2

2 = (0).
(iv) R1 ×R2; where (Ri,mi) is SPIR with mi ̸= (0) but m2

i = (0) for each i ∈ {1, 2}.
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Proof. Let Max(R) = {M1,M2}. Note that there exists a ∈ M1 and b ∈ M2 such that
Ra+Rb = R. It is clear that a /∈ M2 and b /∈ M1. Hence, an /∈ M2 and bn /∈ M1; for all n ≥ 1.
Suppose that (INC(R))c is a bipartite with vertex partition V1 and V2. We can assume without
loss of generality that Ra ∈ V1. Now, either Ra = Ra2 or Ra ̸= Ra2. If Ra = Ra2, then
a = ra2; for some r ∈ R and so, ra = r2a2. This implies that ra is a non-trivial idempotent
element of R. If Ra ̸= Ra2, then Ra2 must be in V2. Observe that Ra ̸= Ra3. If Ra2 ̸= Ra3,
then Ra3 can neither be in V1 nor in V2. This is impossible and so, we get that Ra2 = Ra3.
This implies that Ra2 = Ra4. Hence, a2 = sa4; for some s ∈ R and so we get that sa2 = s2a4

and so sa2 is a non-trivial idempotent element. Hence, there exists a non-zero local ring R1

and R2 such that R is a ring isomorphic to R1 × R2. Let us denote the ring R1 × R2 by
T . Let mi denote the unique maximal ideal of Ri; for each i ∈ {1, 2}. Now, (INC(T ))c is
bipartite by assumption. Let it be bipartite with vertex partition W1 and W2. If R1 is not
a field, then (0) × R2, m1 × R2 cannot be in same Wi; for each i ∈ {1, 2}. We can assume
that (0) × R2 ∈ W1 and m1 × R2 ∈ W2. Let x ∈ m1 \ (0). If m1 ̸= R1x, then R1x × R2 can
neither be in W1 nor be in W2. This is impossible and so, m1 = R1x. As x ̸= 0, it follows
that R1x ̸= R1x

2. If R1x
2 ̸= (0), then R1x

2 × R2 can neither be in W1 nor be in W2. This
is impossible. So, x2 = 0. Thus, either R1 is a field or (R1,m1) is SPIR with m1 ̸= (0) but
m2

1 = (0). Similarly, it follows that either R2 is a field or (R2,m2) is SPIR with m2 ≠ (0) but
m2

2 = (0). Thus, if (INC(R))c is a bipartite then R is ring isomorphic to one of the following
rings:- (i) F1 ×F2; where Fi is a field for each i ∈ {1, 2}. (ii) R1 ×F2; where (R1,m1) is SPIR
with m1 ̸= (0) but m2

1 = (0) and F2 is a field. (iii) F1 × R2; where F1 is a field and (R2,m2)

is SPIR with m2 ̸= (0) but m2
2 = (0). (iv) R1 ×R2; where (Ri,mi) is SPIR with mi ̸= (0) but

m2
i = (0) for each i ∈ {1, 2}.
Conversely, suppose that R is ring isomorphic to one of the following rings:- (i) F1 × F2;

where Fi is a field for each i ∈ {1, 2}. (ii) R1 ×F2; where (R1,m1) is SPIR with m1 ̸= (0) but
m2

1 = (0) and F2 is a field. (iii) F1×R2; where F1 is a field and (R2,m2) is SPIR with m2 ̸= (0)

but m2
2 = (0). (iv) R1 × R2; where (Ri,mi) is SPIR with mi ̸= (0) but m2

i = (0) for each
i ∈ {1, 2}. If R ∼= F1×F2; where Fi is a field for each i ∈ {1, 2} then take V1 = {(0)×F2} and
V2 = {F1 × (0)}. If R ∼= R1 × F2 where (R1,m1) is SPIR with m1 ̸= (0) but m2

1 = (0) and F2

is a field then take V1 = {(0)×F2, R1× (0)} and V2 = {m1×F2}. If R ∼= F1×R2; where F1 is
a field and (R2,m2) is SPIR with m2 ̸= (0) but m2

2 = (0) then take V1 = {F1 × (0), (0)×R2}
and V2 = {F1 × m2}. If R ∼= R1 × R2; where (Ri,mi) is SPIR with mi ̸= (0) but m2

i = (0)

for each i ∈ {1, 2} then take V1 = {R1 × (0), m1 ×R2} and V2 = {(0)×R2, R1 ×m2}. Note
that in all the above cases, V1 ∪ V2 = V ((INC(R))c) and V1 ∩ V2 = ∅. So, in each of the above
cases V1 and V2 form bipartite sets of (INC(R))c and hence (INC(R))c is a bipartite graph.
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Theorem 4.4. Let R be a ring with |Max(R)| ≥ 2. Then (INC(R))c is bipartite if and only
if one of the following conditions hold:

(i) R ∼= F1 × F2 × F3; where F1, F2 and F3 are fields.

(ii) R ∼= F1 × F2; where Fi is a field for each i ∈ {1, 2}.

(iii) R ∼= R1 × F2; where (R1,m1) is SPIR with m1 ̸= (0) but m2
1 = (0) and F2 is a field.

(iv) R ∼= F1 ×R2; where F1 is a field and (R2,m2) is SPIR with m2 ̸= (0) but m2
2 = (0).

(v) R ∼= R1 ×R2; where (Ri,mi) is SPIR with mi ̸= (0) but m2
i = (0) for each i ∈ {1, 2}.

Proof. Proof follows from Theorems 4.1, 4.2 and 4.3.

Theorem 4.5. Let R be a ring with |Max(R)| ≥ 2. Then (INC(R))c is not a complete
bipartite graph.

Proof. Suppose that (INC(R))c is a complete bipartite graph. Let V1 and V2 be the cor-
responding bipartite sets. Let M1,M2 ∈ Max(R). Then M1 and M2 are not adjacent in
(INC(R))c. So, Max(R) ⊆ V1 or Max(R) ⊆ V2. Without loss of generality, we may assume
that Max(R) ⊆ V1. Since V2 ̸= ∅, there exists I ∈ V ((INC(R))c) such that I ∈ V2. Since we
have assumed that (INC(R))c is complete bipartite, I is adjacent to M ; for each M ∈ Max(R).
So, I ⊆ J(R) which is not possible. So, (INC(R))c is not complete bipartite graph.

5. Splitness of (INC(R))c

Theorem 5.1. Let |Max(R)| = n;n ∈ N, n ≥ 3. Then (INC(R))c is not a split graph.

Proof. Let Max(R) = {M1,M2, ...,Mn}; n ∈ N and n ≥ 3. Suppose that (INC(R))c is a split
graph with V ((INC(R))c) = K∪S; where the subgraph of (INC(R))c induced on K is complete
and S is an independent set. Since Mi is not adjacent to Mj ; for i ̸= j and i, j ∈ {1, 2, ..., n},
atmost one Mi can be placed in K. Let M1 ∈ K and M2,M3, ...,Mn ∈ S. Note that M2M3 is
adjacent to M2 in (INC(R))c. So, M2M3 /∈ S. Now, M1 +M2M3 = R. So, M2M3 /∈ K. This
is not possible. Hence, Max(R) ⊆ S. Note that MiMj and Mi are adjacent in (INC(R))c

and since Mi ∈ S, MiMj ∈ K; for every i, j ∈ {1, 2, ..., n} where i ̸= j. Note that M1M2 and
M2M3 are not adjacent in (INC(R))c. This is not possible. Hence, (INC(R))c is not a split
graph.
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6. Girth((INC(R))c)

Theorem 6.1. Let R be a ring with |Max(R)| = n; n ∈ N, n ≥ 4. Then girth((INC(R))c) = 3.

Proof. Let M1,M2,M3 ∈ Max(R). Suppose that M1M2 ⊆ J(R). Then M1M2 ⊆ M3. So,
M1 ⊆ M3 or M2 ⊆ M3 which is not possible. Thus M1M2 ⊈ J(R). Also, if M1M2 = M1 (or
M1M2 = M2) then M1 ⊆ M2 (or M2 ⊆ M1) which is also not possible. So, M1M2 ̸= Mi; for
i ∈ {1, 2}. Similarly, M1M2M3 ̸= M1M2 and M1M2M3 ̸= M1. Also M1M2M3 ⊈ J(R). So, we
have a cycle M1−M1M2−M1M2M3−M1 of length three in (INC(R))c. So, girth((INC(R))c) =

3.

Theorem 6.2. Let R be a ring with |Max(R)| = 3. Then girth((INC(R))c) ≤ 6.

Proof. Let Max(R) = {M1,M2,M3}. Note that M1−M1M2−M2−M2M3−M3−M1M3−M1

is a cycle of length six. Hence, girth((INC(R))c) ≤ 6.

Illustration 1: Following is an example of a ring R for which girth((INC(R))c) is exactly
the upper bound of above inequality. i.e. girth((INC(R))c) = 6.

Let R ∼= F1 × F2 × F3; where F1, F2 and F3 are fields. Let M1 = (0) × F2 × F3, M2 =

F1 × (0)× F3 and M3 = F1 × F2 × (0). Then (INC(R))c is itself a cycle M1 −M1M2 −M2 −
M2M3 −M3 −M1M3 −M1 of length 6. Hence, girth((INC(R))c) = 6.

Theorem 6.3. Let R ∼= R1 × R2 × R3 be a ring; where (Ri,mi) is a local ring for each
i ∈ {1, 2, 3}. Then girth((INC(R))c) = 6 if and only if R ∼= F1 × F2 × F3; where F1, F2 and
F3 are fields.

Proof. Assume that R ∼= F1×F2×F3; where F1, F2 and F3 are fields. Then by above Illustration
1, it is clear that girth((INC(R))c) = 6.

Conversely, assume that girth((INC(R))c) = 6. Let R ∼= R1 ×R2 ×R3; where (Ri,mi) is a
local ring for all i ∈ {1, 2, 3}.
Case(i) (Ri,mi) is a local ring which is not a field; for all i ∈ {1, 2, 3}.

Note that Max(R) = {M1 = m1 ×R2 ×R3,M2 = R1 ×m2 ×R3,M3 = R1 ×R2 ×m3}. Let
I = m1 × (0)×R3. Here, M1M2 = m1 ×m2 ×R3. So, I −M1M2 −M1 − I is a cycle of length
three. So, girth((INC(R))c) = 3.
Case(ii) R ∼= R1 × R2 × F ; where (Ri,mi) is a local ring which is not a field for all
i ∈ {1, 2} and F is a field.

Here, Max(R) = {M1 = m1×R2×F,M2 = R1×m2×F,M3 = R1×R2×(0)}. Observe that
M1M2 = m1×m2×F,M1M3 = m1×R2×(0),M2M3 = R1×m2×(0). Let I = m1×(0)×F ⊊
M1M2 ∖M3. Then I −M1 −M1M2 − I is a cycle of length three. So, girth((INC(R))c) = 3.
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Proof is similar if R ∼= F × R1 × R2 or R1 × F × R2; where (Ri,mi) is a local ring which is
not a field for all i ∈ {1, 2} and F is a field.
Case(iii) R ∼= R1 × F1 × F2; where (R1,m1) is a local ring which is not a field and
F1, F2 are fields.

Here, Max(R) = {M1 = m1 × F1 × F2,M2 = R1 × (0) × F2,M3 = R1 × F1 × (0)}. Also,
M1M2 = m1×(0)×F2,M2M3 = R1×(0)×(0),M1M3 = m1×F1×(0). Let I = (0)×(0)×F2 ⊊
M1M2 ∖M3. So, I −M1M2 −M1 − I is a cycle of length three. So, girth((INC(R))c) = 3.
Proof runs similar for R ∼= F1 ×R1 × F2 or F1 × F2 ×R1; where Fi is a field for all i ∈ {1, 2}
and (R1,m1) is a local ring which is not a field. Hence, R ∼= F1 × F2 × F3; where F1, F2 and
F3 are fields.

7. Planarity of (INC(R))c

Theorem 7.1. Let R be a ring with |Max(R)| ≥ 5. Then (INC(R))c is not planar.

Proof. Let M1, M2, M3, M4, M5 ∈ Max(R). Observe that M1M2M3,M1M2M3M4,

M1M2M3M5 are distinct vertices in (INC(R))c. Note that a subgraph of (INC(R))c induced
on V1 ∪ V2 contains K3,3; where V1 = {M1,M2,M3} and V2 = {M1M2M3,M1M2M3M4,

M1M2M3M5}. Hence, (INC(R))c is not planar.

Theorem 7.2. Let R be a ring with |Max(R)| = 3. Then (INC(R))c is planar if and only if
R is isomorphic to one of the following rings:

(i) R1 × F2 × F3; where (R1,m1) is SPIR with m1 ≠ (0) but m2
1 = (0) and F2, F3 are

fields.
(ii) F1 × F2 × F3; where F1, F2, F3 are fields.

Proof. Let Max(R) = {M1,M2,M3}. Suppose that (INC(R))c is planar. Let if possible, M2
i ̸=

Mi and M2
j ̸= Mj ; for some distinct i, j ∈ {1, 2, 3}. Then a subgraph of (INC(R))c induced

on V1 ∪ V2 contains K3,3; where V1 = {Mi,Mj ,MiMj} and V2 = {M2
i Mj ,MiM

2
j ,M

2
i M

2
j }.

So, (INC(R))c is not planar which is not possible. So, we have following two possibilities:-
(i)M2

i ̸= Mi and M2
j = Mj ; for i ∈ {1, 2, 3} and for all j ∈ {1, 2, 3} ∖ {i}. (ii) M2

i = Mi;
for each i ∈ {1, 2, 3}. Suppose that M2

i ̸= Mi and M2
j = Mj ; for i ∈ {1, 2, 3} and for all

j ∈ {1, 2, 3} ∖ {i}. Without loss of generality, we may assume that M2
1 ̸= M1,M

2
2 = M2 and

M2
3 = M3. Suppose that M3

1 = M2
1 . Let x1 ∈ M1 ∖ (M2 ∪ M3 ∪ M2

1 ). If Rx1 ̸= M1 then
(INC(R))c contains a subgraph homeomorphic to K3,3 as shown in following Figure 1. This is
not possible. So, M1 = Rx1.

Let x2 ∈ M2 ∖ (M1 ∪ M3). If M2 ̸= Rx2 then a subgraph of (INC(R))c induced on
V1 ∪ V2 contains K3,3; where V1 = {M1,M2,M1M2} and V2 = {M2

1M2,M1Rx2,M
2
1 (Rx2)}.
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Figure 1. K3,3.

So, M2 = Rx2. By a similar argument, M3 = Rx3; for some x3 ∈ M3 ∖ (M1 ∪ M2). So,
J(R) = M1M2M3 = Rx1x2x3 is principal. Now, M3

1M
2
2M

2
3 = M2

1M2M3. By Nakayama’s
lemma [6, Proposition 2.6], M2

1M2M3 = (0). Thus by Chinese Remainder Theorem [6, Propo-
sition 1.10(ii), (iii)], R ∼= R

M2
1
× R

M2
× R

M3

∼= R1 × F2 × F3; where (R1,m1) is a local ring and
F2, F3 are fields. Note that m2

1 = (0). Let P be any prime ideal of R1. Then P ⊆ m1. Now,
m2

1 = (0) ⊆ P . So, P = m1. Thus (R1,m1) is SPIR with m2
1 = (0). Hence, R ∼= R1 ×F2 ×F3;

where (R1,m1) is SPIR with m2
1 = (0) and F2, F3 are fields.

Suppose that M3
1 ̸= M2

1 . Let x1 ∈ M1 ∖ (M2 ∪ M3 ∪ M2
1 ). If Rx1 ̸= M1 then a sub-

graph of (INC(R))c induced on V1 ∪ V2 contains K3,3; whereV1 = {M1,M2,M1M2} and V2 =

{M2
1M2,M

3
1M2, (Rx1)M2}. So, (INC(R))c is non-planar. So, Rx1 = M1. Also, if M4

1 ̸= M3
1 ,

then a subgraph of (INC(R))c induced on V1 ∪V2 contains K3,3; where V1 = {M1,M2,M1M2}
and V2 = {M2

1M2,M
3
1M2,M

4
1M2}. So it is non-planar which is not possible. Hence, M4

1 = M3
1 .

Let x2 ∈ M2 ∖ (M3 ∪ M1). If Rx2 ̸= M2 then a subgraph of (INC(R))c induced on V1 ∪ V2

contains K3,3; where V1 = {M1,M2,M1M2} and V2 = {M2
1M2,M

3
1M2,M1(Rx2)}. Hence,

it is non-planar. This is not possible. So, Rx2 = M2. Similarly, Rx3 = M3; for some
x3 ∈ M3 ∖ (M1 ∪ M2). Thus Mi = Rxi; ∀i ∈ {1, 2, 3}. Observe that J(R) = M1M2M3.
Let I = M1M2M3 and M = M3

1M2M3. Now, IM = M4
1M

2
2M

2
3 = M3

1M2M3 = M . By
Nakayama’s lemma [6, Proposition 2.6], M = M3

1M2M3 = (0). Thus by Chinese Remainder
Theorem [6, Proposition 1.10 (ii), (iii)], R ∼= R1 ×F2 ×F3; where (R1,m1) is a local ring and
F1, F2 are fields. If m2

1 ̸= (0) then (INC(R))c contains a subgraph homeomorphic to K3,3 as
shown in the following Figure 2 and so it is non-planar which is not possible.

Thus m2
1 = (0). Let P be any prime ideal of R1. Then P ⊆ m1. Now, m2

1 = (0) ⊆ P .
So, P = m1. Thus (R1,m1) is SPIR with m1 ̸= (0) but m2

1 = (0). Suppose, M2
i = Mi;
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Figure 2.

∀i ∈ {1, 2, 3}. Note that (J(R))2 = J(R). So by Nakayama’s lemma [6, Proposition 2.6],
J(R) = (0). Thus by Chinese Remainder Theorem [6, Proposition 1.10 (ii), (iii)], R ∼=
R
M1

× R
M2

× R
M3

∼= F1 × F2 × F3 where F1, F2 and F3 are fields.
Conversely, assume that R ∼= R1 × F2 × F3; where (R1,m1) is SPIR with m1 ̸= (0) but

m2
1 = (0) and F2, F3 are fields. Then clearly by Figure 3, (INC(R))c is planar.

Figure 3. (INC(R1 × F2 × F3))
c.

If R ∼= F1 × F2 × F3;where F1, F2 and F3 are fields. Then V ((INC(F1 × F2 × F3))
c) =

{M1,M2,M3,M1M2,M1M3,M2M3}. Clearly (INC(R))c is a cycle M1−M1M2−M2−M2M3−
M3 −M1M3 −M1. Hence, (INC(R))c is planar.
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Theorem 7.3. Let R be a ring with |Max(R)| = 4. Then (INC(R))c is planar if and only if
R ∼= F1 × F2 × F3 × F4; where F1, F2, F3 and F4 are fields.

Proof. Let Max(R) = {M1,M2,M3,M4}. Suppose that M2
i ̸= Mi; for some i ∈ {1, 2, 3, 4}.

Without loss of generality, we may assume that M2
1 ̸= M1. Let V1 = {M1,M2,M1M2}

and V2 = {M1M2M3,M1M2M4,M
2
1M2M3}. Then the subgraph of (INC(R))c induced by

V1 ∪ V2 contains K3,3. So, (INC(R))c is not planar which is a contradiction. Thus M2
i = Mi;

for all i ∈ {1, 2, 3, 4}. Let x1 ∈ M1 ∖ (M2 ∪ M3 ∪ M4). Suppose that M1 ̸= Rx1. Let
V1 = {M1,M2,M1M2} and V2 = {(Rx1)M2M3, (Rx1)M2M4, (Rx1)M2}. Then the subgraph
of (INC(R))c induced on V1 ∪ V2 contains K3,3. So, M1 = Rx1. Similarly, we can say that
Mi = Rxi; for all xi ∈

(
Mi ∖

∪ j=1
j ̸=i

4
Mj

)
, i ∈ {1, 2, 3, 4}. Thus J(R) = M1M2M3M4 =

Rx1x2x3x4. Note that J(R) is principal and (J(R))2 = J(R). So, by Nakayama’s lemma [7,
Proposition 2.6], J(R) = (0). Thus by Chinese Remainder Theorem [6, Proposition 1.10 (ii),
(iii)], R ∼= R

J(R)
∼= R

M1
× R

M2
× R

M3

∼= F1 ×F2 ×F3 ×F4; where Fi is a field for all i ∈ {1, 2, 3, 4}.
Conversely, assume that R ∼= F1×F2×F3×F4; where Fi is a field for all i ∈ {1, 2, 3, 4}. Then

Figure 4. (INC(F1 × F2 × F3 × F4))
c.

clearly from the following Figure 4, (INC(R))c is planar.
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8. Complementedness of (INC(R))c

Theorem 8.1. Let R be a ring with |Max(R)| = 4. Then (INC(R))c is not complemented.

Proof. Let Max(R) = {M1,M2,M3,M4}. Suppose that (INC(R))c is complemented. So,
every vertex in (INC(R))c has a complement in (INC(R))c. Let I = M1M2. Then there exists
J ∈ V ((INC(R))c) such that I ⊥ J . So, I and J are adjacent in (INC(R))c. So, either I ⊆ J or
J ⊆ I. If I ⊆ J , then I −J −M1M2M3− I is a triangle in (INC(R))c which is not possible. If
J ⊆ I, then I −J −M1− I is a triangle in (INC(R))c which is not possible. Hence, (INC(R))c

is not complemented.

Theorem 8.2. Let R be a ring with |Max(R)| = 3. Then (INC(R))c is complemented if and
only if R ∼= F1 × F2 × F3; where F1, F2 and F3 are fields.

Proof. Let Max(R) = {M1,M2,M3}. Suppose that (INC(R))c is complemented. Let I ∈
(INC(R))c. Since (INC(R))c is complemented, there exists J ∈ V ((INC(R))c) such that I ⊥ J .
So, I and J are adjacent in (INC(R))c and there is no K ∈ V ((INC(R))c) which is adjacent
to both, I and J . As I and J are adjacent in (INC(R))c, I ⊆ J or J ⊆ I. Without loss of
generality, we may assume that I ⊆ J . Let M1 ∈ Max(R) be such that I ⊆ J ⊆ M1. If
J ̸= M1 then I − J −M1 − I is a triangle in (INC(R))c which is not possible. So, J = M1.
Suppose that M2

i ̸= Mi; for some i ∈ {1, 2, 3}. Let I = MiMj ; j ∈ {1, 2, 3} and j ̸= i. Now,
J = Mi or J = Mj . Note that I = MiMj − J − M2

i Mj is a triangle in (INC(R))c which is
not possible. So, M2

i = Mi; for each i ∈ {1, 2, 3}. Let xi ∈ Mi ∖ (0); for i ∈ {1, 2, 3}. If
Rxi ̸= Mi then I = MiMj − J − (Rxi)Mj − I is a triangle in (INC(R))c which is not possible.
So, Rxi = Mi; for each i ∈ {1, 2, 3} and for xi ∈ Mi ∖ (0). So, Mi is principal; for each
i ∈ {1, 2, 3}. Thus J(R) = M1M2M3 = Rx1x2x3 is also principal. Moreover, (J(R))2 = J(R).
So, by Nakayama’s lemma [6, Proposition 2.6] J(R) = (0). Hence, by Chinese Remainder
Theorem [6, Proposition 1.10(ii),(iii)], R ∼= R

J(R)
∼= R

M1
× R

M2
× R

M3

∼= F1 × F2 × F3; as a rings
where F1, F2 and F3 are fields.

Conversely, assume that R ∼= F1 × F2 × F3; where F1, F2 and F3 are fields. From Figure.4 ,
it is clear that (INC(R))c is complemented.

Theorem 8.3. Let R be a ring with |Max(R)| = 2. Then (INC(R))c is complemented if and
only if R ∼= R1 ×R2; where (Ri,mi) is SPIR with mi ̸= (0) but m2

i = (0) for each i ∈ {1, 2}.

Proof. Let Max(R) = {M1,M2}. Suppose that (INC(R))c is complemented. Suppose that
M3

i ̸= M2
i ; for some i ∈ {1, 2}. Without loss of generailty, let M3

1 ̸= M2
1 . Let I = M3

1 . Let
J be a complement of I in (INC(R))c. If J ̸= M1 then I = M3

1 − J − M1 − I is a triangle
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in (INC(R))c which is not possible. So, J = M1. Now, I = M3
1 − J = M1 −M2

1 − I is also
a triangle in (INC(R))c which is not possible. Thus M3

1 = M2
1 . Similarly we can show that

M3
2 = M2

2 .
Case(i) M2

i ̸= Mi; for each i ∈ {1, 2}.
Let I = M2

i and let J be complement of I. Let J ⊆ Mi, for some i ∈ {1, 2}. If J ̸= Mi,
then I = M2

i − J − Mi − I is a triangle in (INC(R))c which is not possible. So, J = Mi.
Let xi ∈ Mi ∖ Mj ; where i, j ∈ {1, 2} and i ̸= j. Suppose that Mi ̸= Rxi. If Rx2i ̸= M2

i

then I = M2
i − J = Mi − Rx2i − I is a triangle in (INC(R))c which is not possible. So,

M2
i = Rx2i . Let yi ∈ Mi ∖ (M2

i ∪ Mj); for distinct i, j ∈ {1, 2}. Suppose that Ryi ̸= Mi;
for i ∈ {1, 2}. Note that Ryi ⊈ M2

i . Then either M2
i ⊊ Ryi or M2

i ⊈ Ryi. Suppose that
M2

i ⊊ Ryi. Then M2
i = I − J = Mi − Ryi − I is a triangle in (INC(R))c which is not

possible. Suppose that M2
i ⊈ Ryi. Then I = M2

i − M2
i Ryi − J = Mi − I is a triangle in

(INC(R))c which is not possible. Thus Mi = Ryi; for each i ∈ {1, 2}. Thus, Mi = Rxi; for
each i ∈ {1, 2}. Note that J(R) = M1M2 = Rx1x2 is principal and (J(R))3 = (J(R))2. So
by Nakayama’s lemma [6, Proposition 2.6], (J(R))2 = (0). Hence, by Chinese Remainder
Theorem [6, Proposition 1.10(ii),(iii)], R ∼= R

J(R)
∼= R

M2
1
× R

M2
2

∼= R1 × R2; where (R1,m1) and
(R2,m2) are local rings which are not fields. Observe that m2

i = (0); for each i ∈ {1, 2}. Let
Pi be any prime ideal of Ri. Then m2

i = (0) ⊆ Pi. So Pi = mi. Thus, (Ri,mi) is a SPIR with
mi ̸= (0) but m2

i = (0); for each i ∈ {1, 2}.
Case(ii) M2

1 = M1 and M2
2 ̸= M2.

As M2
2 ̸= M2, by previous Case(i) there exists x ∈ M2∖M1 such that M2 = Rx. Let I = M1

and J be a complement of I in (INC(R))c. Let x1 ∈ M1∖ (J ∪M2). Suppose that M1 ̸= Rx1.
Note that JRx1 ⊈ J(R). If JRx1 ̸= J and JRx1 ̸= Rx1 then I −J −JRx1− I is a triangle in
(INC(R))c which is not possible. So, JRx1 = J or JRx1 = Rx1. Suppose that JRx1 = Rx1.
Then Rx1 ⊆ J which is not possible. So, JRx1 = J . Now, I = M1−J−Rx1−I is a triangle in
(INC(R))c which is not possible. So, M1 = Rx1. Note that J(R) = M1M2 = Rx1x is principal
and (J(R))3 = (J(R))2. By Nakayama’s lemma [6, Proposition 2.6], (J(R))2 = (0). Thus by
Chinese Remainder Theorem [6, Proposition 1.10(ii),(iii)], R ∼= R

M2
1=M1

× R
M2

2

∼= F1×R2; where
F1 is a field and (R2,m2) is a local ring which is not a field. Note that m2

2 = (0) as J(R)2 = (0).
Let P2 be any prime ideal of R2. Then m2

2 = (0) ⊆ P2. So, P2 = m2. Thus (R2,m2) is SPIR
with m2 ̸= (0) but m2

2 = (0).
Case(iii) M2

i = Mi; for each i ∈ {1, 2}.
By Case(ii), there exists xi ∈ Mi ∖ Mj such that Mi = Rxi; for each i ∈ {1, 2}. Note

that (J(R))2 = J(R). So by Nakayama’s lemma [6, Proposition 2.6], J(R) = (0). Hence, by
Chinese Remainder Theorem [6, Proposition 1.10(ii),(iii)], R ∼= R

J(R)
∼= R

M1
× R

M2

∼= F1 × F2;
where F1 and F2 are fields. So, if (INC(R))c is complemented then R is isomorphic to one
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of the following rings:- (i)R1 × R2; where (Ri,mi) is SPIR with mi ̸= (0) but m2
i = (0) for

each i ∈ {1, 2}. (ii)F1 × R2; where F1 is a field and (R2,m2) is SPIR with m2 ̸= (0) but
m2

2 = (0). (iii)F1 × F2; where F1 and F2 are fields. Now, suppose that R ∼= R1 × F2; where
(R1,m1) is SPIR with m1 ̸= (0) but m2

1 = (0) and F2 is a field. Note that V ((INC(R))c) =

{m1 × F2, (0) × F2, R1 × (0)}. Observe that R1 × (0) is an isolated vertex in (INC(R))c. So,
(INC(R))c is not complemented. Suppose that R ∼= F1 ×F2; where F1 and F2 are fields. Note
that V ((INC(R))c) = {F1 × (0), (0) × F2} and both these vertices are isolated in (INC(R))c.
So, (INC(R))c is not complemented. Thus, R1 × R2; where (Ri,mi) is SPIR with mi ̸= (0)

but m2
i = (0) for each i ∈ {1, 2}.

Conversely, assume that R ∼= R1 ×R2; where (Ri,mi) is SPIR with mi ̸= (0) but m2
i = (0)

for each i ∈ {1, 2}. Here, V ((INC(R))c) = {m1×R2, R1×m2, R1×(0), (0)×R2}. Here, m1×R2

and (0)× R2 are complement of each other. Also, R1 × (0) and R1 ×m2 are complements of
each other. Thus, (INC(R))c is complemented.

Corollary 8.4. Let R be a ring. Then (INC(R))c is complemented if and only if R is
isomorphic to one of the following rings:

(i) R ∼= F1 × F2 × F3; where F1, F2 and F3 are fields.

(ii) R ∼= R1 ×R2; where (Ri,mi) is SPIR with mi ̸= (0) but m2
i = (0) for each i ∈ {1, 2}.

Proof. Proof follows from Theorems 8.1, 8.2 and 8.3.

Corollary 8.5. Let R be a ring. Then (INC(R))c is uniquely complemented if and only if
R ∼= R1 ×R2; where (Ri,mi) is SPIR with mi ̸= (0) but m2

i = (0) for each i ∈ {1, 2}.

Proof. Note that if (INC(R))c is uniquely complemented then it is complemented. So, by
Corollary 7.4, R ∼= F1×F2×F3; where F1, F2 and F3 are fields or R ∼= R1×R2; where (Ri,mi)

is SPIR with mi ̸= (0) but m2
i = (0) for each i ∈ {1, 2}. Suppose that R ∼= F1×F2×F3; where

F1, F2 and F3 are fields. Note that F1×(0)×F3 and F1×F2×(0) are complements of F1×(0)×(0)

in (INC(R))c. Observe that (0)×(0)×F3 ∈ N(F1×(0)×F3) but (0)×(0)×F3 /∈ N(F1×F2×(0)).
So, N(F1 × (0) × F3) ̸= N(F1 × F2 × (0)). Thus (INC(R))c is not uniquely complemented.
Suppose that R ∼= R1 × R2; where (Ri,mi) is SPIR with mi ̸= (0) but m2

i = (0) for each
i ∈ {1, 2}. Here, V ((INC(R))c) = {m1 ×R2, R1 ×m2, R1 × (0), (0)×R2}. Note that m1 ×R2

and (0)×R2 are the only complements of each other. Also, R1× (0) and R1×m2 are the only
complements of each other. Thus, (INC(R))c is uniquely complemented.
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9. Open Problems

Let R be a ring with |Max(R)| = 2. Then one can attempt the problems to classify the
rings R for which

(i) (INC(R))c is split.
(ii) (INC(R))c is planar.
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