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Research Paper

ON ∼n NOTION OF CONJUGACY IN SEMIGROUPS

AFTAB HUSSAIN SHAH AND MOHD RAFIQ PARRAY∗

Abstract. In this paper, we study the ∼n notion of conjugacy in semigroups. After proving

some basic results, we characterize this notion in subsemigroups of P(T ) (partial transforma-

tion semigroup) and T (T ) (transformation semigroup) through digraphs and their restrictive

partial homomorphisms.

1. introduction and preliminaries

The concept of conjugacy is essential as far as group theory is concerned. More importantly,
most of the famous results on finite groups involve the use of conjugacy in their proofs. Semi-
groups are a generalization of groups, and the theory of semigroups has evolved as a result of
generalizing results of groups to semigroups. Like other notions of groups, it becomes natural
to try to generalize the notion of conjugacy from groups to semigroups. Since the definition
of conjugacy in a group involves the existence of inverses, the obvious choice for elements
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a, b ∈ S, where S is a semigroup, to be conjugate of each other is the existence of an element
g ∈ S1 (semigroup obtained by adjoining identity 1) such that ag = gb. However, unlike
groups, this relation is not necessarily transitive in an arbitrary semigroup. This prompted
semigroup theorists to search for the notions of conjugacy that are best suitable, and as a result
various notions of conjugacy have been studied so far. In this paper, we consider ∼n notion
of conjugacy in partial transformation semigroups and in full transformation semigroups.

Let G be a group and s, t ∈ G, we say s is conjugate to t if t = x−1sx for some x ∈ G

alternatively sx = xt for some x ∈ G. As a result of this, we can extend the notion of conjugacy
to a semigroup S. A notion ∼l of conjugacy on a semigroup S is defined as

s ∼l t ⇔ ∃ x ∈ S1 such that sx = xt

where S1 is S ∪ {1}. The relation ∼l is an equivalence relation on a free semigroup. However
the relation ∼l is not symmetric in general and it is a universal relation in a semigroup with
zero. Lallement in [8] considered ∼l on a free semigroup S and named it a ∼p notion of
conjugacy. It is defined as

s ∼p t ⇔ ∃ p, q ∈ S1 such that s = pq and t = qp

The relation ∼p is an equivalence relation on a free semigroup. However the relation ∼p is not
transitive in general. In order to overcome this problem, Otto in [9] introduced the ∼o notion
of conjugacy in a semigroup S as

s ∼o t ⇔ ∃ x, y ∈ S1 such that sx = xt and ty = ys

However, the relation ∼o is also a universal relation (S × S) on a semigroup with zero. This
problem gets resolved with the introduction of ∼c notion of conjugacy in a semigroup S in [2]
by Araujo et al. which is as follows

s ∼c t ⇔ ∃ x ∈ P1(s), y ∈ P1(t) such that sx = xt and ty = ys

where for s ̸= 0, P(s) = {x ∈ S1 : (ms)x ̸= 0 for all ms ∈ S1s \ {0}} and P(0) = {0}. This
relation is an equivalence relation on any semigroup S and does not reduce to a universal
relation even if S is a semigroup with zero.

Furthermore, J. Konieczny in [5] introduced the ∼n notion of conjugacy in semigroups. For
any s, t in a semigroup S

s ∼n t ⇔ ∃ x, y ∈ S1 such that sx = xt, ty = ys, s = xty and t = ysx

This relation is always an equivalence relation in any semigroup and does not reduce to a
universal relation in a semigroup with zero.

Araujo et al. in [6] characterized ∼c conjugacy in constant rich subsemigroups of P(T )

(semigroup of all partial maps on a non-empty set T ) and T (T ) (semigroup of all maps on
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a non-empty set T ) with the help of rp-homomorphisms of their digraphs. In this paper we
prove similar results for ∼n notion of conjugacy for any subsemigroup of P(T ) without the
assumption of constant rich on S. We show that ∼n is an identity relation on a band S if
and only if S is commutative. We also prove some results on comparison of ∼n notion with
notions ∼l,∼p,∼c and ∼o.

2. Some results on ∼n notion of conjugacy in a general semigroup

Definition 2.1. A band is a semigroup S whose all elements are idempotents, i.e., a2 = a for
all a ∈ S.

Definition 2.2. A semigroup S satisfying st = ts for any s, t ∈ S is said to be commutative.

For a set T , we denote by ∆T the identity relation on T .

In the following theorem, we show that ∼n is an identity relation on a band S if and only
if S is commutative.

Theorem 2.3. The necessary and sufficient condition for ∼n= ∆S on a band S is that S is
commutative.

Proof. Suppose ∼n= ∆S . Let s, t ∈ S then we can write

(st)s = s(ts), (ts)t = t(st), st = s(ts)t and ts = t(st)s

which implies st ∼n ts which further implies st = ts. So S is commutative.
Conversely, let S is commutative and let s ∼n t then there exist x, y ∈ S1 such that

sx = xt, ty = ys, s = xty and t = ysx.

Further s = xty = xys = ysx = t. Thus ∼n= ∆S .

Definition 2.4. A semigroup S is said to be a left zero semigroup if for all a, b ∈ S, ab = a.

Definition 2.5. A semigroup S is said to be a right zero semigroup if for all a, b ∈ S, ab = b.

Definition 2.6. Let S be a semigroup and a, b ∈ S then aJ b if and only if there exist
x, y, u, v ∈ S1 such that

a = xby and b = ubv.

In the next theorem we show the relations ∼n, ∼p,∼o,∼l and J coincides on right[left] zero
semigroup.

Theorem 2.7. Let S be any right[left] zero semigroup. Then ∼n=∼p=∼o=∼l= J on S.
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Proof. We prove the result by showing that all these notions reduce to a universal relation on
S. We take the case of right zero semigroups. The proof in the other case follows dually.

(1) ∼n reduces to a universal relation: For any a, b ∈ S, there exist b, a ∈ S1 such that

ab = bb, ba = aa, a = bba and b = aab.

(2) ∼p reduces to a universal relation: For any a, b ∈ S, there exist b, a ∈ S1 such that

a = ba and b = ab.

(3) ∼o reduces to a universal relation: For any a, b ∈ S, there exist b, a ∈ S1 such that

ab = bb, ba = aa.

(4) ∼l reduces to a universal relation: For any a, b ∈ S, there exist b ∈ S1 such that

ab = bb.

(5) J reduces to a universal relation: For any a, b ∈ S, there exist b, a ∈ S1 such that

a = bba and b = aab.

The next proposition follows by [5, Proposition 2.3] and definition of ∼n.

Proposition 2.8. Let S be a semigroup, then ∼n⊆∼c⊆∼o and [0]n = {0}.

3. ∼n notion of conjugacy through digraphs in P(T )

Definition 3.1. Let T be any set and let R be a binary relation on T . Then Γ = (T,R) is
called a directed graph (or a digraph). We call any p ∈ T a vertex and any (p, q) ∈ R, an arc
of Γ.

For example, Let T = {1, 2, 3, 4} and R = {(1, 2), (2, 3)}, then the digraph Γ is as under,
1• −→ 2• −→ 3• 4• .

Definition 3.2. A vertex p ∈ T for which there exists no q in T such that (p, q) ∈ R is called
a terminal vertex of Γ. A vertex p ∈ T is said to be initial vertex if there is no q ∈ T for
which (q, p) ∈ R while a vertex p ∈ T is said to be non-initial vertex if (q, p) ∈ R for some
q ∈ T .

For any σ ∈ P(T ), Γ(σ) = (T,Rσ) represents a digraph, where for all p, q ∈ T, (p, q) ∈ Rσ

if and only if p ∈ dom(σ) and pσ = q. For example, If T = {1, 2, 3} and Rσ = {(1, 2), (2, 1)},
then the digraph Γ(σ) is represented as
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1• −→ 2• −→ 1• .

For a non-empty set T , we fix an element ⋄ /∈ T . For σ ∈ P(T ) and t ∈ T , we will write
tσ = ⋄, if and only if t /∈ dom(σ). we also assume that ⋄σ = ⋄. With this notation, it makes
sense to write sσ = tτ or sσ ̸= tτ (σ, τ ∈ P(T ), s, t ∈ T ) even when s /∈ dom(σ) or t /∈ dom(τ).
For any σ ∈ P(T ), span(σ) represents dom(σ) ∪ im(σ). For any α ∈ P(T ), by α ̸= 0 we mean
dom(α) ̸= ∅. Thus α = 0 if and only if dom(α) = ∅. For semigroups U and S, we write U ≤ S

to mean that U is a subsemigroup of S.

Definition 3.3. Let Γ1 = (T1, R1) and Γ2 = (T2, R2) be digraphs. A mapping α from T1 to T2

is called a homomorphism from Γ1 to Γ2 if for all p, q ∈ T1, (p, q) ∈ R1 implies (pα, qα) ∈ R2.
A partial mapping α from Γ1 to Γ2 is called a partial homomorphism if for all p, q ∈ dom(α),
(p, q) ∈ R1 implies (pα, qα) ∈ R2.

Definition 3.4. A partial homomorphism α from T1 to T2 is said to be restricive partial
homomorphism(or an rp-homomorphism) from Γ1 to Γ2 if the following hold:

(a) If (p, q) ∈ R1, then p, q ∈ dom(α) and (pα, qα) ∈ R2.
(b) If p is a terminal vertex in Γ1 and p ∈ dom(α), then pα is a terminal vertex in Γ2.

We say that Γ1 is rp-homomorphic to Γ2 if there is an rp-homomorphism from Γ1 to Γ2.

Throughout this paper by an rp-hom we shall mean an rp-homomorphism between any two
digraphs and by a hom we shall mean a homomorphism.

The next theorem provides necessary and sufficient conditions for two elements of P(T ) to
be ∼n related.

Theorem 3.5. Let S ≤ P(T ) and σ, τ ∈ S. Then σ ∼n τ if and only if there are α, β ∈ S1 for
which α is an rp-hom from Γ(σ) to Γ(τ) and β is an rp-hom from Γ(τ) to Γ(σ) with qαβ = q

for every non-initial vertex q of Γ(σ) and kβα = k for every non-initial vertex k of Γ(τ).

Proof. Suppose σ ∼n τ in S. If σ = 0, then τ = 0 and so α = idT ∈ S1 is an rp-hom from
Γ(σ) to Γ(τ) and β = idT ∈ S1 is an rp-hom from Γ(τ) to Γ(σ) and the given conditions are
trivially satisfied. Next suppose σ ̸= 0 and so τ ̸= 0 and let σ ∼n τ in S then there exist
α, β ∈ S1 such that

(1.1) σα = ατ, τβ = βσ, σ = ατβ and τ = βσα.

Let (p, q) ∈ σ, i.e., pσ = q. Then by (1.1), pατβ = q which implies (pα)τβ = q, which implies
p ∈ domα. Again

(1.2) qαβ = (pσ)αβ = pσαβ
1.1
= pατβ

1.1
= pσ = q
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which implies q ∈ domα. Next (pα)τ = pατ = pσα = qα. Thus (pα, qα) ∈ Γ(τ). Again
let p be a terminal vertex of Γ(σ) and let p ∈ domα then as σα = ατ , we have (pα)τ =

pατ = pσα = ⋄α = ⋄. Thus pα is a terminal vertex in Γ(τ). So α is an rp-hom from Γ(σ) to
Γ(τ). Since q is a non-initial vertex in Γ(σ), thus by (1.2) we conclude that qαβ = q for any
non-initial vertex q ∈ Γ(σ). Symmetrically by using τβ = βσ and τ = βσα we can prove that
β is an rp-hom from Γ(τ) to Γ(σ) with kβα = k for every non-initial vertex k of Γ(τ).

Conversely, let α and β be rp-hom such that qαβ = q for every non-initial vertex q of Γ(σ)
and kβα = k for every non-initial vertex k of Γ(τ). We show that σ ∼n τ .

The following cases arise.
Case 1: Suppose p /∈ domσ, then pσ = ⋄. Thus

p(σα) = (pσ)α = ⋄α = ⋄.

Here two subcases arise;

(i) If p /∈ domα, then

p(ατ) = (pα)τ = ⋄ = pσα.

Moreover pατβ = ⋄ = pσ.
(ii) If p ∈ domα, then as p is a terminal vertex of Γ(σ) and also since α is an rp-hom from

Γ(σ) to Γ(τ) so pα is a terminal vertex in Γ(τ). Therefore we have p(ατ) = (pα)τ =

⋄ = p(σα). Also pατβ = ⋄ = pσ.

Case 2: Suppose p ∈ domσ and let q = pσ. Then by definition of an rp-hom p, q ∈ domα and
p(ατ) = (pα)τ = qα = (pσ)α = p(σα). Also since q is a non-initial vertex of Γ(σ) we have
pατβ = pσαβ = qαβ = q = pσ. Thus in all the cases we have

(1.3) σα = ατ and σ = ατβ.

By symmetry since β is an rp-hom from Γ(τ) to Γ(σ) with kβα = k for every non-initial vertex
k of Γ((τ) we have

(1.4) τβ = βσ and τ = βσα.

From (1.3) and (1.4) we have σ ∼n τ .

If σ, τ ∈ T (T ). Then every rp-hom from Γ(σ) to Γ(τ) is a hom. So we have the following
corollary.

Corollary 3.6. Let S ≤ T (T ) and σ, τ ∈ S. Then σ ∼n τ if and only if there are α, β ∈ S1

such that α is a hom from Γ(σ) to Γ(τ) and β is a hom from Γ(τ) to Γ(σ) with qαβ = q for
every non-initial vertex q of Γ(σ) and kβα = k for every non-initial vertex k of Γ(τ).
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4. ∼n notion of conjugacy through connected partial maps

Let . . . , t−2, t−1, t0, t1, t2, . . . be pairwise distinct elements of T . The following transforma-
tions (cycle, right ray, double ray, left ray and chain) called as basic partial transformations
on T are very important for our study.

Definition 4.1. An α ∈ P(T ) is called a cycle of length k (k ≥ 1) if α = (t0t1t2 · · · tk−1), i.e.,
tj = tj−1α, j = 1, 2, . . . , k and t0 = tk−1α. We write it as

t0 → t1 → t2 → · · · → tk−1 →t0.

Let T = {1, 2, . . . , 10} and let α ∈ P(T ) be defined as, α = (1 2 3). Then α is a cycle of
length 3.

Definition 4.2. An α ∈ P(T ) is called a right ray if α = [t0 t1 t2 · · · >, i.e., tj = tj−1α, j ≥ 1.
We write it as

t0 → t1 → t2 → · · · .

Let T = N and let α ∈ P(T ) be defined as, α = [1 2 3 · · · >. Then α is a right ray in P(T ).

Definition 4.3. An α ∈ P(T ) is called a left ray, if α =< · · · t2 t1 t0], i.e., tjα = tj−1, j ≥ 1.
We write it as

· · · → t2 → t1 → t0.

Let T = Z and let α ∈ P(T ) be defined as, α =< · · · 0 1 2]. Then α is a left ray in P(T ).

Definition 4.4. An α ∈ P(T ) is called a double ray if α =< · · · t−1 t0 t1 · · · >, i.e., tj = tj−1α,
j ∈ Z. We write it as

· · · → t−1 → t0 → t1 → t2 → · · · .

Let T = Z and let α ∈ P(T ) be defined as, α =< · · · − 2 − 1 0 1 2 · · · > . Then α is a
double ray in P(T ).

Definition 4.5. An α ∈ P(T ) is called a chain of length k if α = [t0t1t2 · · · tk], i.e., tj = tj−1α,
j = 1, 2, . . . , k. We write it as

t0 → t1 → t2 → · · · → tk.

Let T = {1, 2, . . . , 10} and let α ∈ P(T ) be defined as, α = [1 2 3]. Then α ∈ P(T ) is a
chain of length 2.

Definition 4.6. Any element κ ̸= 0 in P(T ) is said to be connected if for some non-negative
integers m,n, pκm = qκn ̸= ⋄ for all p, q ∈ span(κ).
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For example, let T = {1, 2, 3, 4, 5}. Define κ ∈ P(T ) by κ = {(1, 2), (2, 3), (3, 4)}. Then the
diagraph of κ is represented as

1• −→ 2• −→ 3• −→ 4•.

Then κ is connected.

Definition 4.7. For σ, τ ∈ P(T ), if dom(τ) ⊆ dom(σ) and pτ = pσ for every p ∈ dom(τ), then
τ is said to be contained in σ written as τ ⊆ σ. They are disjoint if dom(σ)∩ dom(τ) = ∅
and completely disjoint if span(σ)∩ span(τ) = ∅.

For example, [p q r s · · · > and [a b c p] in P(Z) are disjoint while [a b · · · > and [u v] are
completely disjoint.

Definition 4.8. Let C be a set of pairwise disjoint elements of P(T ). Then, for t ∈ T

t(
∪
κ∈C

κ) =

tκ if t ∈ dom(κ) for some κ ∈ C

⋄ otherwise.

is called the join of the elements of C denoted by
∪

κ∈C
κ.

Definition 4.9. Let σ ∈ P(T ) and let ν be a basic partial map with ν ⊂ σ then ν is maximal
in σ if t /∈ dom(ν) implies t /∈ dom(σ) and t /∈ im(ν) implies t /∈ im(σ) for every t ∈ span(ν).

For example, Let σ = [p q r s · ·· > ∪ [a b c p] ∈ P(Z). Then σ contains infinitely many
right rays. For example, [c p q r · · · > but only two of them, namely [p q r s · · · > and
[a b c p q r s · · · > are maximal in σ.

Proposition 4.10. [1] Let σ ∈ P(T ) with σ ̸= 0. Then there exists a unique set C of pairwise
completely disjoint, connected maps contained in σ such that σ =

∪
κ∈C

κ.

Example 4.11. Let T = {1, 2, 3, 4, 5} and let σ ∈ P(T ) be defined as

σ = {(1, 2), (2, 3), (4, 5)}.

Clearly σ has a unique representation in terms of of pairwise completely disjoint, connected
maps contained in σ. i.e., σ = ∪σi∈C σi where C = {σ1, σ2} and σ1 = {(1, 2), (2, 3)} and
σ2 = {(4, 5)}.

The connected maps of C in Proposition 4.10 are called connected components of σ. By
c-components of σ, we shall always mean connected components of σ.

The next lemma gives a relationship between span of two partial maps which are n-related
and the domain of their conjugators .
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Lemma 4.12. Let S ≤ P(T ) and σ, τ ∈ S with σ ∼n τ then there exist α, β ∈ S1 such that
dom(α) = span(σ) and dom(β) = span(τ).

Proof. Let σ ∼n τ then there exist α, β ∈ S1 such that σα = ατ, τβ = βσ, σ = ατβ and
τ = βσα. By Theorem 3.5, α is an rp-hom from Γ(σ) to Γ(τ) and β is an rp-hom from
Γ(τ) to Γ(σ). We have to show that dom(α) = span(σ). Let t ∈ span(σ), which means
t ∈ dom(σ)∪im(σ). If t ∈ dom(σ), then there exists u ∈ T such that (t, u) ∈ σ. Since α is an rp-
hom from Γ(σ) to Γ(τ). Therefore t, u ∈ dom(α). So in this case span(σ) ⊆ dom(α). Similarly
if t ∈ im(σ), then span(σ) ⊆ dom(α). Next we have to show dom(α) ⊆ span(σ). Since
σ = ατβ, dom(α) = dom(σ) ⊆ span(σ) implies dom(α) ⊆ span(σ). By similar arguments, we
can show that dom(β) = span(τ).

Notation 1. Let σ ∈ P(T ) and κ be a c-component of σ. Then by σκ we mean the restriction
of σ on Span(κ).

The next proposition is the interconnection of c-components and ∼n notion of conjugacy.

Proposition 4.13. Let S ≤ P(T ) and σ, τ ∈ S. Then, σ ∼n τ if and only if

(1) (i) For every c-component κ of σ there exist a c-component λ of τ and an rp-hom
ακ ∈ P(T ) from Γ(κ) to Γ(λ) with dom(ακ) = span(κ).
(ii) For every c-component κ′ of τ there exist a c-component λ′ of σ and an rp-hom
α′
κ′ ∈ P(T ) from Γ(κ′) to Γ(λ′) with dom(α′

κ′) = span(κ′).
(2) (i)

∪
κ∈C

ακ ∈ S1, where C is the collection of c-components of σ.

(ii)
∪

κ′∈C′
α′
κ′ ∈ S1, where C ′ is the collection of c-components of τ .

(3) There are α, β ∈ S1 such that qαβ = q for any non-initial vertex q of Γ(σ) and kβα = k

for every non-initial vertex k of Γ(τ).

Proof. If σ = 0, then τ = 0, and the result follows trivially. Suppose σ ̸= 0 then τ ̸= 0 and
let σ ∼n τ , then there are α, β ∈ S1 such that σα = ατ, τβ = βσ, σ = ατβ and τ = βσα and
so by Theorem 3.5, α is an rp-hom from Γ(σ) to Γ(τ) and β is an rp-hom from Γ(τ) to Γ(σ)

with qαβ = q for any non-initial vertex q of Γ(σ) and kβα = k for every non-initial vertex k

of Γ(τ) which is (3). Now we have to prove only (1) and (2).

(1) (i) Let κ be a c-component of σ and let p ∈ span(κ), since α is an rp-hom this
means pα ∈ λ for some c-component λ of τ . We claim that (span(κ))α ⊆ span(λ).
Let z ∈ span(κ) then by definition of connectedness there exist r, s ≥ 0 such that
pσr = pκr = zκs = zσs ̸= ⋄. Since σα = ατ , we have (zα)τ s = (zσs)α = (pσr)α =

(pα)τ r ̸= ⋄ which implies pα and zα are in the span of same c-component of τ . So
zα ∈ span(λ). Therefore (span(κ))α ⊆ span(λ). Thus we have proved the claim. Let
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ακ = α|span(κ). Then ακ = α|span(κ) is an rp-hom from Γ(κ) to Γ(λ) (by the claim and
the fact that α is an rp-homomorphism from Γ(σ) to Γ(τ)), dom(ακ) = span(κ) (by
definition of ακ).
(ii) The proof follows dually by part (i).

(2) (i)
∪

κ∈C
ακ = α ∈ S1 (by definition of ακ) and Lemma 4.12.

(ii) This follows similarly as part (i).

Conversely, suppose that (1), (2) and (3) are satisfied. Let α =
∪

κ∈C
ακ. Note that α is well

defined since ακ1 and ακ2 are disjoint if κ1 ̸= κ2. Suppose (q, z) ∈ σ. Then q, z ∈ span(κ)
for some c-component κ of σ. Thus q, z ∈ dom(ακ) and qα = qακ

λ−→ zακ = zα, implying
qα

τ−→ zα. Suppose q is a terminal vertex in Γ(σ) and q ∈ dom(α). Then there is a unique
c-component κ of σ such that q is a terminal vertex in Γ(κ). Then qα = qακ is a terminal
vertex in Γ(λ) and so a terminal vertex in Γ(τ). Hence α is an rp-hom from Γ(σ) to Γ(τ). By
condition (2) α ∈ S1. By symmetry, we can similarly prove β ∈ S1 is an rp-hom from Γ(τ) to
Γ(σ). Then by condition (3) and Theorem 3.5 we have σ ∼n τ .

The next definition is from [2] and is useful for further results of this section.

Definition 4.14. Let T be a non-empty subset of the set Z+ of positive integers. Then T is
partially ordered by the relation |(divides). Order the elements of T according to usual less
than relation as t1 < t2 < t3 · ··, we define a subset sac(T ) of T as follows : for every integer
n, 1 ≤ n < |T |+ 1,

sac(T ) = {tn ∈ T : for all i < n, tn is not a multiple of ti}.

The set sac(T ) is a maximal anti-chain of the poset (T , |). We will call sac(T ), the standard
anti-chain of T .
For example, if T = {2, 4, 7} then sac(T ) = {2, 7}.

Definition 4.15. Let σ be in P(T ) such that σ contains a cycle. Let T denote the set of
lengths of cycles in σ. The standard anti-chain of (T, |) is called the cycle set of σ and it is
denoted by cs(σ).

Definition 4.16. A c-component κ ∈ P(T ) is of rro type (right rays only) if it has a maximal
right ray but no cycles, double rays, left rays or maximal chains, and is of cho type (chains
only) if it has a maximal chain but no cycles or rays.

Lemma 4.17. [2, Lemma 4.11] Let κ ∈ P(T ) such that κ contains a maximal left ray or it is
of cho type. Then κ contains a unique terminal vertex.
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Definition 4.18. Let κ ∈ P(T ) be connected such that κ has a maximal left ray or is of cho
type. The unique terminal vertex of κ established by Lemma 4.17 will be called the root of κ.

Definition 4.19. A relation R on a non-empty set E is called well-founded if every non-empty
subset D ⊆ E contains an R-minimal element that is, q ∈ D exists such that there is no q ∈ D

with (q, p) ∈ R.

Definition 4.20. If R be a well-founded relation on a set E, then a unique function π defined
on E with ordinals as values as,

π(p) = sup{π(q) + 1 : (q, p) ∈ R}.

for every p ∈ E is called the rank of p in < E,R >.

Example 4.21. Let T = {a, b, c, . . . , a1, b1, c1 . . .} and let κ = [a, b, c, . . . >∈ P(T ). Then
π(a) = 0, π(b) = 1, π(c) = 2 and so on.

Notation 2. Let κ ∈ P(T ) be connected of rro type or cho then πκ(p) denotes the rank of p
under the relation κ.

Definition 4.22. Let < uq >q≥0 and < vq >q≥0 be sequences of ordinals. Then we say that
< vq > dominates < uq > if

vq+r ≥ uq for every q ≥ 0 and for some r ≥ 0.

Notation 3. Let κ ∈ P(T ) be connected of rro type, and µ = [p0p1p2 . . . > be a maximal right
ray in κ. We denote by < µκ

q >q≥0 the sequence of ordinals with

µκ
q = πκ(pq) for every q ≥ 0.

Example 4.23. Let T = {p0, p1, p2, . . . , q0, q1, q2, . . .} and let

κ = [p0p1p2p3 · · · > ∪[q0p2] ∪ [q1q2p2] ∪ [q3q4q5p2] ∪ [q6q7q8q9p2] ∪ · · · ∈ P(T )

and the right ray µ = [p0p1p2 · · · > in κ, then the sequence < µκ
q > is

< 0, 1, ω, ω + 1, ω + 2, ω + 3, . . . > .

Definition 4.24. For σ ∈ P(T ), we define

s(σ) = sup{πκ(a0) : κ is a c-component of σ of type cho with root a0},

where we agree that s(σ) = 0 if σ has no c-component of cho type.

The next results (Proposition 4.25 to Theorem 4.31) are from Araujo et al. [2] and are
required to prove Theorem 4.32.
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Proposition 4.25. Let κ, λ ∈ P(T ) be connected such that κ has a cycle (p0p1 · · · pk−1). Then
Γ(κ) is rp-hom to Γ(λ) if and only if λ has a cycle (q0q1 · · · qm−1) such that m|k.

Lemma 4.26. Let κ, λ ∈ P(T ) be connected such that λ has a cycle (q0 q1 · · · qm−1). Suppose
κ has a double ray or is of rro type. Then Γ(κ) is rp-hom to Γ(λ).

Lemma 4.27. Let κ, λ ∈ P(T ) be connected. Suppose that λ has a double ray and κ either
has a double ray or has rro type. Then Γ(κ) is rp-hom to Γ(λ).

Lemma 4.28. Let κ, λ ∈ P(T ) be connected. Suppose that λ has a maximal left ray and κ

either has a maximal left ray or is of cho type. Then Γ(κ) is rp-hom Γ(λ).

Proposition 4.29. Let κ, λ ∈ P(T ) be connected of cho type with roots p0 and q0, respectively.
Then Γ(κ) is rp-hom to Γ(λ) if and only if π(x0) ≤ π(y0).

Proposition 4.30. Let κ, λ ∈ P(T ) be connected of rro type. Then Γ(κ) is rp-hom to Γ(λ) if
and only if there are maximal right ray µ in κ and η in λ such that < ηλn > dominates < µκ

n >.

Theorem 4.31. Let σ, τ ∈ P(T ). Then σ ∼c τ in P(T ) if and only if the following conditions
hold:

(1) cs(σ) = cs(τ).
(2) σ contains a double ray but no cycle if and only if τ contains a double ray but no cycle.
(3) If σ contains a c-component κ of rro type but no cycles or double rays then τ contains

a c-component λ of rro type but no cycles or double rays and <ηλp> dominates <µκ
p>

for some maximal right rays µ in κ and η in λ.
(4) If τ contains a c-component λ of rro type but no cycles or double rays then σ contains

a c-component κ of rro type but no cycles or double rays and <µκ
p> dominates <ηλp>

for some maximal right rays η in λ and µ in κ.
(5) σ contains a maximal left ray if and only if τ contains a maximal left ray.
(6) If σ contains a c-component κ of cho type with root p0 but no maximal left rays then

τ contains a c-component λ of cho type with root q0 but no maximal left rays, and
πκ(p0) ≤ πλ(q0).

(7) If τ contains a c-component λ of cho type with root q0 but no maximal left ray then σ

contains a c-component κ of cho type with root p0 but no maximal left rays, and πλ(q0)

≤ πκ(p0).

Now we are ready to prove our main result of the section on ∼n notion of conjugacy in
partial transformation semigroup.

Theorem 4.32. Let σ, τ ∈ P(T ). Then σ ∼n τ in P(T ) if and only the following conditions
hold:
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(1) There are α, β ∈ P(T ) such that qαβ = q for any non-initial vertex q of Γ(σ) and
kβα = k for every non-initial vertex k of Γ(τ).

(2) cs(σ) = cs(τ).
(3) σ contains a double ray but no cycle if and only if τ contains a double ray but no cycle.
(4) If σ contains a c-component κ of rro type but no cycles or double rays then τ contains

a c-component λ of rro type but no cycles or double rays and <ηλp> dominates <µκ
p>

for some maximal right rays µ in κ and η in λ.
(5) If τ contains a c-component λ of rro type but no cycles or double rays then σ contains

a c-component κ of rro type but no cycles or double rays and <µκ
p> dominates <ηλp>

for some maximal right rays η in λ and µ in κ.
(6) σ contains a maximal left ray if and only if τ contains a maximal left ray.
(7) If σ contains a c-component κ of cho type with root p0 but no maximal left rays then

τ contains a c-component λ of cho type with root q0 but no maximal left rays, and
πκ(p0) ≤ πλ(q0).

(8) If τ contains a c-component λ of cho type with root q0 but no maximal left ray then σ

contains a c-component κ of cho type with root p0 but no maximal left rays, and πλ(q0)

≤ πκ(p0).

Proof. Let σ ∼n τ . Then by Theorem 3.5 there exist α, β ∈ P(T ) such that α is an rp-hom
from Γ(σ) to Γ(τ) and β is an rp-hom from Γ(τ) to Γ(σ) with qαβ = q for any non-initial
vertex q of Γ(σ) and kβα = k for every non-initial vertex k of Γ(τ). Since ∼n⊆∼c, then by
Theorem 4.31, (2) to (8) hold.

Conversely, if σ = τ = 0, then trivially σ ∼n τ . Suppose σ, τ ̸= 0 and all the conditions
from (1) to (8) hold. Let κ be a c-component of σ. We will prove that Γ(κ) is an rp-hom to
Γ(λ) for some c-component λ of τ . The result then follows by Proposition 4.13.

Suppose κ has a cycle of length r, since by (2), cs(σ) = cs(τ), τ has a cycle υ of length s

such that s|r. Let λ be the c-component of τ containing υ. Then Γ(κ) is an rp-hom to Γ(λ)

by Proposition 4.25.
Suppose κ has a double ray. If some c-component λ of τ has a cycle, then Γ(κ) is rp-hom

to Γ(λ) by Lemma 4.26. Suppose τ does not have a cycle. Then, by (2) and (3), both σ and
τ have a double ray but not a cycle. Let λ be a c-component of τ containing a double ray.
Then Γ(κ) is an rp-hom to Γ(λ) by Lemma 4.27.

Suppose κ is of rro type. If τ has some c-component λ with a cycle or a double ray, then
Γ(κ) is an rp-hom to Γ(λ) by Lemma 4.26 and Lemma 4.27. Suppose τ does not have a cycle
or a double ray. Then by (4), there is a c-component λ in τ of rro type such that < ηλp >

dominates < µκ
p > for some maximal right rays µ in κ and η in λ. Hence Γ(κ) is an rp-hom

to Γ(λ) by Proposition 4.30.
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Suppose κ has a maximal left ray. Then by (5) there is some c-component λ of τ having a
maximal left ray. Then Γ(κ) is an rp-hom to Γ(λ) by Lemma 4.28.

Suppose κ is of cho type with root p0. If τ has some c-component λ having a maximal left
ray then Γ(κ) is an rp-hom to Γ(λ) by Lemma 4.28. Suppose τ does not have a maximal left
ray. Then by (6), σ does not have a maximal left ray, and so by (7), there is a c-component λ

in τ of cho type with root q0 such that πκ(p0) ≤ πκ(q0). Hence Γ(κ) is an rp-hom to Γ(λ), by
Proposition 4.30.

We have proved that for every c-component κ of σ there exists a c-component λ of τ and
an rp-hom ακ ∈ P(T ) from Γ(κ) to Γ(λ). We may assume that for every c-component κ of
σ, dom(ακ) = span(κ). Then by Proposition 4.13, Γ(σ) is an rp-hom to Γ(τ). By symmetry,
Γ(τ) is an rp-hom to Γ(σ). Then by condition (1) and Theorem 3.5 we get σ ∼n τ .

Corollary 4.33. [2, Corollary 5.6] Let σ, τ ∈ P(T ) where T is finite. Then σ ∼c τ if and only
if cs(σ) = cs(τ) and s(σ) = s(τ).

If T is finite then any σ ∈ P(T ) has no left[right] or a double ray. Hence by Theorem 4.32
and Corollary 4.33, we have the following corollary.

Corollary 4.34. Let σ, τ ∈ P(T ) where T is finite. Then σ ∼n τ if and only if cs(σ) =

cs(τ), s(σ) = s(τ) and there are α, β ∈ P(T ) such that qαβ = q for every non-initial vertex q

of Γ(σ) and kβα = k for every non-initial vertex k of Γ(τ).

Proof. Let σ ∼n τ then by Theorem 3.5 there are α, β ∈ P(T ) such that qαβ = q for every
non-initial vertex q of Γ(σ) and kβα = k for every non-initial vertex k of Γ(τ). Since ∼n⊆∼c,
so the other conditions follow by the Corollary 4.33.

The converse follows on the similar lines as of Theorem 4.32.

Theorem 4.35. [2, Theorem 6.1] Let σ, τ ∈ T (T ). Then σ ∼c τ in T (T ) if and only if the
following conditions hold:
(1) cs(σ) = cs(τ).
(2) σ and τ have double ray but no cycles.
(3) All connected components of σ and τ have rro type.

(a) For every c-component κ of σ there is a c-component δ of τ so that < ηδp > dominates
< µκ

p > for some maximal right ray µ in κ and some maximal right ray η in δ.
(b) For every c-component δ of τ there is a c-component κ of σ such that < µκ

p > dominates
< ηδp > for some maximal right ray η in δ and some maximal right ray µ in κ.
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A c-component of σ ∈ T (T ) cannot have a maximal left ray or a maximal chain. Due to
that fact we have the following theorem in T (T ).

Theorem 4.36. Let σ, τ ∈ T (T ). Then σ ∼n τ in T (T ) if and only if the following conditions
hold:
(1) cs(σ) = cs(τ).
(2) σ and τ have double ray but no cycles.
(3) All connected components of σ and τ have rro type and

(a) for every c-component κ of σ there is a c-component δ of τ so that < ηδp > dominates
< µκ

p > for some maximal right ray µ in κ and some maximal right ray η in δ, and
(b) for every c-component δ of τ there is a c-component κ of σ such that < µκ

p > dominates
< ηδp > for some maximal right ray η in δ and some maximal right ray µ in κ.

(4) There are α, β ∈ T (T ) such that qαβ = q for any non-initial vertex q of Γ(σ) and kβα = k

for every non-initial vertex k of Γ(τ).

Proof. Let σ, τ ∈ T (T ) and let σ ∼n τ then by Corollary 3.6 there are α, β ∈ T (T ) such that
qαβ = q for any non-initial vertex q of κ(α) and kβα = k for every non-initial vertex q of
Γ(σ) and kβα = k for every non-initial vertex k of Γ(τ). Since ∼n⊆∼c, so by Theorem 4.35,
conditions (1), (2) and (3) holds.

The converse follows on the similar lines as of Theorem 4.32.

In case the set T is finite, then σ ∈ T (T ) have no rays, so we have the following corollary.

Corollary 4.37. Let σ, τ ∈ T (T ), where T is finite. Then σ ∼n τ if and only if cs(σ) = cs(τ)

and there are α, β ∈ T (T ) such that qαβ = q for any non-initial vertex q of κ(α) and kβα = k

for every non-initial vertex k of κ(β).
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