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CHARACTERIZATIONS OF J-PRIME IDEALS AND MJ-IDEALS IN
POSETS

J. CATHERINE GRACE JOHN AND B. ELAVARASAN∗

Abstract. In this paper, we introduce the concepts of J-prime ideals and MJ -ideals in

posets, and obtain some of their interesting characterizations in posets. Furthermore, we

discuss the properties of J-ideals that are analogous to J-prime ideals and MJ -ideals in

posets. Finally, we establish a set of equivalent conditions for an ideal in a poset P containing

an ideal J is an J-ideal, and for a semi-prime ideal J to be an MJ -ideal of P.

1. Introduction

A relation is a mathematical concept that specifies how items are related to one another.
Database and scheduling applications typically use relationships. Science and technology are
intended to help people make better decisions. Human expectancies, multiple choice results,
and confidence levels must all be identified before making decisions. This information will be
used to create partial orders. Many fields of mathematics use ordered structures. At its most
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fundamental level, ordering is a key aspect of natural numbers, and the greater than/less than
relationship is often used in everyday reasoning.

The notion of the partially ordered set (poset) is derived from this relationship, and struc-
tures based on posets have a variety of applications in computer science. Today, partial order
and lattice theory are widely used in electrical and computer engineering. They are used
in cloud computing (vector clocks, global predicate detection), concurrency theory (pomsets,
occurrence nets), and data mining (concept analysis). Combinatorics, number theory, and
group theory all benefit from them. Partially ordered sets occur naturally when working with
multidimensional systems of qualitative ordinal variables in social science. Instead of standard
techniques, partial order theory and partially ordered sets can be used to generate composite
indicators for evaluating well-being, quality of life, and multidimensional poverty. They can
be used to make decisions or analyse data in the same way that multi-criteria analysis and
social choice theory are. They are also useful in social network analysis, where math is used
to investigate network topologies and dynamics.

For nearly four decades, many authors have been captivated by the partially ordered set of
prime ideals. The basis of representation theory is prime elements, irreducible elements, and
coatoms, which play an important role in order structure.

In 1973, Cornish [1] investigated the properties of α-ideals in distributive lattices. The most
interesting result obtained by him was that the distributive lattice L is a generalized Stone
lattice if and only if each prime ideal contains a unique prime α-ideal.

In 1986, Jayaram [3] generalized the concept of α-ideal in 0-distributive lattices. In fact, he
established the separation theorem for prime α-ideals on 0-distributive lattices. In 2010, Y. S.
Pawar and S. S. Khopade [11] proved that the image and inverse image of α-ideal are α-ideals
under annihilator preserving homomorphism of a 0-distributive lattice.

In 2015, Khalid A. Mokbel [10] introduced the concept of α-ideal in posets and obtained
its characterization. He also proved that the minimality of the prime ideal is sufficient for
its being an α-ideal in a 0-distributive poset. An ideal K of P is said to be an α-ideal if
⟨⟨x, {0}⟩ , {0}⟩ ⊆ K for all x ∈ K [10].

In 2016, Vinayak Joshi and Nilesh Mundlik [8] extended these concepts to posets. In fact,
they defined Baer ideals in posets and obtained many characterizations of Baer ideals in 0-
distributive posets. Furthermore, they extended the concept of quasi-complementedness to
posets and obtained characterizations of quasi-complemented poset. Moreover, they proved
that in distributive poset, every ideal is Baer if and only if every prime ideal is Baer.

In this work, we define J-prime and MJ -ideals in posets and examine their many features
We obtain an equivalent condition for MJ -ideals to be J-ideals. We also define the J∗-property
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and provide an equivalent condition for an ideal of P to be a J-ideal. We also establish some
features and characterizations of the set S̃(J) in posets.

2. Preliminaries

Throughout the paper, (P, ≤) denotes a poset with the smallest element 0. For basic
terminology and notations for posets, we refer to [2] and [9].

For A ⊆ P , let L(A) = {x ∈ P : x ≤ a for all a ∈ A} denotes the lower cone of A in P and
U(A) = {x ∈ P : a ≤ x for all a ∈ A} denote the upper cone of A in P. For X,Y ⊆ P , we
write L(X,Y ) instead of L(X ∪ Y ). If A = {a1, a2, ..., an} is a finite subset of P, then we use
the notation L(a1, a2, ..., an) instead of L({a1, a2, ..., an}).

It is clear that for any subset X of P, we have X ⊆ L(U(X)) and X ⊆ U(L(X)). If X ⊆ Y ,
then L(Y ) ⊆ L(X) and U(Y ) ⊆ U(X). Furthermore, LUL(X) = L(X) and ULU(X) = U(X).

Following [12], a non-empty subset K of P is called semi-ideal if s ∈ K and r ≤ s imply
r ∈ K. A subset K of P is called an ideal of P if r, s ∈ K implies L(U(r, s)) ⊆ K. For any
subset X of P, [X] denotes the smallest ideal of P containing X.

An ideal K of P is called semi-prime if L(r, s) ⊆ K and L(r, t) ⊆ K together imply
L(r, U(s, t)) ⊆ K for r, s, t ∈ P [9]. A proper semi-ideal (ideal) K of P is called prime if
L(r, s) ⊆ K implies that either r ∈ K or s ∈ K [2]. The set of all prime ideals of P is denoted
by Spec(P).

For r ∈ P , (r] = L(r) = {x ∈ P : x ≤ r} is the principal ideal of P generated by r. A
non-empty subset A of P is called an up-directed set if A ∩ U(r, s) ̸= for all r, s ∈ A. If an
ideal K of P is an up-directed set of P, then it is called a u-ideal of P. A subset F ( ̸= ) of P
is referred to as an m-system if for w1, w2 ∈ F, ∃w ∈ L(w1, w2) such that w ∈ F.

Following [5], for any semi-ideal J of P and a subset X of P, we define

⟨X, J⟩ = {z ∈ P : L(r, z) ⊆ J for all r ∈ X} =
∩
r∈X

⟨r, J⟩ .

If X = {s}, then we shall write ⟨s, J⟩ instead of ⟨{s}, J⟩. It is clear that for any subset B of
P, J ⊆ ⟨B, J⟩ ;B ⊆ ⟨⟨B, J⟩ , J⟩ and x ∈ ⟨⟨x, J⟩ , J⟩ for any semi-ideal J of P. Moreover, if X ⊆
Y , then ⟨Y, J⟩ ⊆ ⟨X, J⟩. For any semi-ideal J of P, it is clear that ⟨⟨⟨X, J⟩ , J⟩ , J⟩ = ⟨X, J⟩
for any subset X of P. Note that for an ideal J and a subset B of P, ⟨B, J⟩ is not necessarily
to be an ideal of P. For any ideal I of P, a prime ideal K of P is said to be a minimal prime
ideal of I if I ⊆ K and there exists no prime ideal R of P such that I ⊂ R ⊂ K[5].

Theorem 2.1. ([9], Theorem 20) Let I be a proper ideal of P. Then I is prime if and only
if ⟨x, I⟩ = I for all x ∈ P\I.

An ideal J of P is said to have the ∗-property if for any r, s ∈ P\J , we have either r = s or
L(r, s) = {0} [4]. Following [10], we have defined the notion of J-ideal in poset P as follows:
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for an ideal J of P, an ideal K of P is said to be J-ideal if ⟨⟨r, J⟩ , J⟩ ⊆ K for all r ∈ K [7].
For an ideal I of P, we have I is an α-ideal if and only if I is a (0]-ideal.

The following example shows that the notions of J-ideals and α-ideals are different in posets.

Example 2.2. Consider P = {0, a, b, c, d}. Define a relation ≤ on P as follows. Then (P,≤)

b

b

b

b

bb

0

a b

cd

Figure 1. Hasse diagram of (P,≤).

is a poset and J = {0, a} is an ideal of P. Here I1 = {0, b} is an α-ideal of P, but it is not
a J-ideal as ⟨⟨b, J⟩ , J⟩ = {0, a, b, c} * I1. Also I2 = {0, a, b, c} is a J-ideal of P, but it is not
an α-ideal as ⟨⟨a, {0}⟩ , {0}⟩ = {0, a, d} * I2. Moreover I3 = {0, a, d} is a both J-ideal and
α-ideal of P. □

3. J-prime ideals of posets

Lemma 3.1. Let J be a semi-prime ideal of P. Then ⟨B, J⟩ is a J-ideal for any non-empty
subset B of P.

Proof. Let J be a semi-prime ideal of P and s, t ∈ ⟨B, J⟩ for any non-empty subset B of P.
Then s, t ∈ ⟨b, J⟩ for all b ∈ B and L(s, b) ⊆ J and L(t, b) ⊆ J , which imply L(b, U(s, t)) ⊆ J ,
so L(U(s, t)) ⊆ ⟨b, J⟩ for all b ∈ B. Thus L(U(s, t)) ⊆ ⟨B, J⟩ and hence ⟨B, J⟩ is an ideal of
P for any subset B of P. For r ∈ ⟨B, J⟩, we have ⟨⟨r, J⟩ , J⟩ ⊆ ⟨⟨⟨B, J⟩ , J⟩ , J⟩ = ⟨B, J⟩. So
⟨B, J⟩ is J-ideal. □

Remark 3.2. Let K and J be ideals of P. Then the following assertions hold.
(i) If ⟨⟨K,J⟩ , J⟩ = K, then K is a J-ideal of P.
(ii) If K is a proper J-ideal of P with ⟨K,J⟩ = {0}, then P = ⟨⟨K,J⟩ , J⟩ ̸= K. This shows

that the converse of (i) is not true in general, but we have the following.
(iii) If ⟨⟨K,J⟩ , J⟩ =

∩
x∈K

⟨⟨x, J⟩ , J⟩ and ⟨K,J⟩ ̸= {0}, then ⟨⟨K,J⟩ , J⟩ = K. Note that the

condition ⟨⟨K,J⟩ , J⟩ =
∩
x∈K

⟨⟨x, J⟩ , J⟩ is not true in general. In Example 2.2, J = {0, a} and

K = {0, b} are the ideals of P, but ⟨⟨K,J⟩ , J⟩ ̸=
∩
x∈K

⟨⟨x, J⟩ , J⟩ .
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Definition 3.3. Let J be an ideal of P. An ideal K of P is said to be J-prime if ⟨K,J⟩ = J .
An element r ∈ P is called prime to J if ⟨r, J⟩ = J . The set S(I) = {x ∈ P : x is not prime
to I} is called adjoint set of I and S̃(J) = {r ∈ P : r is prime to J}.

It is clear that for any ideal J of P, P is a J-prime ideal of P. Also, for any ideals A, B
and J of P with A ⊆ B, if A is J-prime ideal of P, then B is also a J-prime ideal of P. The
following example shows that the converse of the later statement is not true in general.

Example 3.4. In Example 2.2, J = {0, a, d} and K = (c] = {0, a, b, c} are ideals of P. Here
K is a J-prime ideal of P and the ideal K1 = {0, a} is a subset of K, but it is not a J-prime
ideal of P.

The following example distinguishes prime ideals from J-prime ideals for an ideal J of P.

Example 3.5. Consider P = {0, a, b, c, d, e} and define a relation ≤ on P as follows.

b

b

b

b

b

b

0

a b

cd

e

Figure 2. Hasse diagram of (P,≤).

Then (P,≤) is a poset with ideals J = {0, a} and K = {0, b} of P. Here K is a prime ideal
of P, but it is not a J-prime ideal of P as ⟨K,J⟩ = {0, a, d} ̸= J. Moreover, for J = {0, b} and
K = {0, a}, we have K is a J-prime ideal of P as ⟨K,J⟩ = J. □

Theorem 3.6. Let K and J be semi-prime ideals of P with J ⊆ K. If K is a prime but not
a J-prime ideal of P, then K is a J-ideal of P.

Proof. Assume that K is a prime, but not a J-prime ideal of P. Then there exists x ∈ ⟨K,J⟩ \J
such that ⟨⟨K,J⟩ , J⟩ ⊆ ⟨x, J⟩, which gives K ⊆ ⟨x, J⟩.

Let t ∈ ⟨x, J⟩. Then L(x, t) ⊆ J ⊆ K. Since K is prime ideal, we have either x ∈ K or
t ∈ K. If x ∈ K ⊆ ⟨x, J⟩, then x ∈ J , a contradiction. Thus t ∈ K and hence K = ⟨x, J⟩. By
Lemma 3.1, K is a J-ideal of P. □

For an ideal K and a semi-ideal J of P, we define a subset KJ = {x ∈ P : ⟨a, J⟩ ⊆ ⟨x, J⟩
for some a ∈ K}. The condition for an ideal to be a J-ideal of a poset is given by the following
theorem.
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Theorem 3.7. Let K be a u-ideal of P. If J is a semi-prime ideal of P, then KJ is the
smallest J-ideal of P containing K.

Proof. Let x, y ∈ KJ and z ∈ L(U(x, y)). Then there exist a, b ∈ K such that ⟨a, J⟩ ⊆
⟨x, J⟩ and ⟨b, J⟩ ⊆ ⟨y, J⟩. Since J is semi-prime, we have ⟨a, J⟩ ∩ ⟨b, J⟩ ⊆ ⟨x, J⟩ ∩ ⟨y, J⟩ =

⟨L(U(x, y)), J⟩. As K is a u-ideal of P , we can find c ∈ U(a, b) such that c ∈ K and ⟨c, J⟩ ⊆
⟨a, J⟩ ∩ ⟨b, J⟩ = ⟨L(U(x, y)), J⟩ ⊆ ⟨z, J⟩. Thus z ∈ KJ and hence KJ is an ideal of P.

Let x ∈ KJ . Then ⟨a, J⟩ ⊆ ⟨x, J⟩ for some a ∈ K. If ⟨⟨x, J⟩ , J⟩ * KJ , then there exists
y ∈ ⟨⟨x, J⟩ , J⟩ such that ⟨a, J⟩ * ⟨y, J⟩. Now for b ∈ ⟨a, J⟩ \ ⟨y, J⟩ , we have b ∈ ⟨x, J⟩ as
⟨a, J⟩ ⊆ ⟨x, J⟩, and also y ∈ ⟨⟨x, J⟩ , J⟩ gives y ∈ ⟨b, J⟩, a contradiction. So ⟨⟨x, J⟩ , J⟩ ⊆ KJ .
Hence KJ is a J-ideal of P.

Suppose that R is a J-ideal of P with K ⊆ R and let x ∈ KJ . Then ⟨a, J⟩ ⊆ ⟨x, J⟩ for
some a ∈ K ⊆ R. Since R is J-ideal, x ∈ ⟨⟨x, J⟩ , J⟩ ⊆ ⟨⟨a, J⟩ , J⟩ ⊆ R. So KJ is the smallest
J-ideal of P containing K. □

Theorem 3.8. Let P be a poset with the greatest element 1, K be a u-ideal of P and J be a
semi-prime ideal of P. Then K∩ S̃(J) = if and only if KJ is a proper ideal of P.

Proof. Assume that K∩ S̃(J) = . If KJ is not a proper ideal of P, then 1 ∈ KJ = P gives
⟨a, J⟩ ⊆ ⟨1, J⟩ = J for some a ∈ K. So a ∈ S̃(J), a contradiction.

Conversely, let KJ be a proper ideal of P. Then by Theorem 3.7, KJ is a J-ideal of P
containing K. If K∩ S̃(J) ̸= , then there exists t ∈ K ⊆ KJ and ⟨t, J⟩ = J. Since KJ is a
J-ideal of P, we have ⟨⟨x, J⟩ , J⟩ ⊆ KJ for all x ∈ KJ . In particular, ⟨⟨t, J⟩ , J⟩ ⊆ KJ , which
implies P = ⟨J, J⟩ ⊆ KJ , a contradiction. □

Definition 3.9. Let J be an ideal of P. Then P has the J∗-property if the following condition
holds: If a, b ∈ P\J are such that b � a, then there exists c ∈ P\J such that c ≤ b and
L(a, c) ⊆ J .

Example 3.10. Consider P = {0, 1, 2, 3, 4}. Define a relation ≤ on P as follows.

Figure 3. Hasse diagram of (P,≤).
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Then (P,≤) is a poset. For an ideal J = {0, 2} of P, the poset P has not J∗-property, and
for an ideal I = {0, 1, 2} of P, the poset P has I∗-property. □

The below theorem gives equivalent conditions for a poset P to have J∗-property.

Theorem 3.11. Let J be a ideal of P. Then the following conditions are equivalent:
(i) P has J∗-property,
(ii) Every ideal of P is a J-ideal of P,
(iii) For any r, s ∈ P\J , ⟨r, J⟩ = ⟨s, J⟩ implies r = s.

Proof. (i) ⇒ (ii) Let K of P be an ideal of P. If K is not a J-ideal of P, then there exists
s ∈ ⟨⟨r, J⟩ , J⟩ and s /∈ K for some r ∈ K, which imply s � r. Since P has J∗-property, there
exists c ∈ P\J with c ≤ s and L(r, c) ⊆ J , which imply c /∈ ⟨s, J⟩ . Indeed, if c ∈ ⟨s, J⟩, then
c ∈ L(c) = L(c, s) ⊆ J , a contradiction.

Also, we have ⟨r, J⟩ = ⟨⟨⟨r, J⟩ , J⟩ , J⟩ ⊆ ⟨s, J⟩ with c ∈ ⟨r, J⟩ and c /∈ ⟨s, J⟩, a contradiction.
Thus K is a J-ideal of P.

(ii) ⇒ (iii) Let r, s ∈ P\J and ⟨r, J⟩ = ⟨s, J⟩ with r ̸= s. Then L(r) ̸= L(s).
Without loss of generality, let t ∈ L(r) and t /∈ L(s). As t ≤ r, we have ⟨s, J⟩ = ⟨r, J⟩ ⊆

⟨t, J⟩, which gives t ∈ ⟨⟨t, J⟩ , J⟩ ⊆ ⟨⟨s, J⟩ , J⟩ ⊆ L(s) as L(s) is J-ideal, a contradiction.
(iii) ⇒ (i) Let r, s ∈ P\J with s � r. Then ⟨s, J⟩ ⊂ ⟨r, J⟩ and there exists x ∈ ⟨r, J⟩ with

x /∈ ⟨s, J⟩, which implies L(x, r) ⊆ J and there exists y /∈ J such that y ∈ L(x, s). Thus y ≤ s

and L(r, y) ⊆ J . So P has J∗-property. □

Theorem 3.12. Let J be an ideal of P. Then the following conditions are equivalent:
(i) For any ideals K1 and K2 of P containing J . If K2 * K1, then ∃ an ideal K3 of P with

K3 * J such that K3 ⊆ K2 and K3 ∩K1 ⊆ J ,
(ii) Every ideal of P containing J is a J-ideal of P,
(iii) For any subsets K1 and K2 of P containing J , ⟨K1, J⟩ = ⟨K2, J⟩ implies [K1] = [K2].

Proof. (i) ⇒ (ii) Let K1 be an ideal of P containing J. If K1 is not a J-ideal, then there exists
an element a ∈ P with a ∈ ⟨⟨K1, J⟩ , J⟩ \K1 and ⟨K1, J⟩ = ⟨⟨⟨K1, J⟩, J⟩, J⟩ ⊆ ⟨a, J⟩.

Take K2 := ⟨⟨K1, J⟩ , J⟩. Then by hypothesis, there exists an ideal K3 = L(a) of P with
K3 * J .

By hypothesis, we have K3 ⊆ K2 and K3 ∩ K1 ⊆ J , which imply K3 ⊆ ⟨K1, J⟩ and
K3 * ⟨a, J⟩ , so ⟨K1, J⟩ * ⟨a, J⟩, a contradiction. So K1 is a J-ideal of P.

(ii) ⇒ (iii) Assume that K1 and K2 are subsets of P containing J such that ⟨K1, J⟩ =

⟨K2, J⟩. Let a ∈ K1. Then ⟨K2, J⟩ = ⟨K1, J⟩ ⊆ ⟨a, J⟩, which implies a ∈ ⟨⟨a, J⟩ , J⟩ ⊆
⟨⟨K2, J⟩ , J⟩ ⊆ ⟨⟨[K2], J⟩ , J⟩ ⊆ [K2] as [K2] is a J-ideal of P. So K1 ⊆ [K2] implies [K1] ⊆ [K2].

. Similarly, we can prove that [K2] ⊆ [K1].
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(iii) ⇒ (i) Let K1 and K2 be the ideals of P containing J with K1 * K2. If ⟨K1, J⟩ =

⟨K2, J⟩ , then by hypothesis, we get K1 = K2, a contradiction. Also if ⟨K2, J⟩ ⊂ ⟨K1, J⟩, then
⟨K1 ∪K2, J⟩ = ⟨K1, J⟩ ∩ ⟨K2, J⟩ = ⟨K2, J⟩.

By hypothesis, we get K1 ∪K2 = K2, which gives K1 ⊂ K2. So ⟨K1, J⟩ ⊂ ⟨K2, J⟩ . Then
there exists t ∈ ⟨K2, J⟩ \ ⟨K1, J⟩ with L(t, s) * J for some s ∈ K1. Set K3 = L(t, s). Then
K3 * J with K3 = L(t, s) ⊆ (t] ⊆ ⟨K2, J⟩. Therefore K3 ∩K2 ⊆ J . □

Lemma 3.13. Let J be a semi-prime ideal of P. Then the following conditions hold.
(i) ⟨r, J⟩ ∩ ⟨⟨r, J⟩ , J⟩ = J.

(ii) ⟨⟨r, J⟩ , J⟩ ∩ ⟨⟨s, J⟩ , J⟩ = ⟨⟨L(r, s), J⟩ , J⟩.
(iii) ⟨r, J⟩ ∩ ⟨s, J⟩ ⊆ J if and only if ⟨r, J⟩ ⊆ ⟨⟨s, J⟩ , J⟩.

Proof. (i) Obviously J ⊆ ⟨r, J⟩ ∩ ⟨⟨r, J⟩ , J⟩. Let a ∈ ⟨r, J⟩ ∩ ⟨⟨r, J⟩ , J⟩ . Then L(a, r) ⊆ J and
L(a, t) ⊆ J for all t ∈ ⟨r, J⟩. Since a ∈ ⟨r, J⟩, we have a ∈ J . So J ⊆ ⟨r, J⟩ ∩ ⟨⟨r, J⟩ , J⟩ .

(ii) As L(r, s) ⊆ L(s), we have ⟨⟨L(r, s), J⟩ , J⟩ ⊆ ⟨⟨L(s), J⟩ , J⟩ ⊆ ⟨⟨s, J⟩ , J⟩. Similarly,
⟨⟨L(r, s), J⟩ , J⟩ ⊆ ⟨⟨r, J⟩ , J⟩. So ⟨⟨L(r, s), J⟩ , J⟩ ⊆ ⟨⟨r, J⟩ , J⟩ ∩ ⟨⟨s, J⟩ , J⟩.

Conversely, let t ∈ ⟨⟨r, J⟩ , J⟩ ∩ ⟨⟨s, J⟩ , J⟩ and t1 ∈ ⟨L(r, s), J⟩ . Then ⟨r, J⟩ ⊆ ⟨t, J⟩ and
L(r, s) ⊆ ⟨t1, J⟩, which imply L(s, t1) ⊆ ⟨t, J⟩, so L(t, t1) ⊆ ⟨s, J⟩. Since t ∈ ⟨⟨s, J⟩ , J⟩ , we
have L(t, t1) ⊆ ⟨⟨s, J⟩ , J⟩. Hence L(t, t1) ⊆ ⟨s, J⟩ ∩ ⟨⟨s, J⟩ , J⟩. By (i), we have L(t, t1) ⊆ J

and t ∈ ⟨⟨L(r, s), J⟩ , J⟩.
(iii) Let ⟨r, J⟩ ∩ ⟨s, J⟩ ⊆ J . If ⟨r, J⟩ * ⟨⟨s, J⟩ , J⟩, then there exists t ∈ ⟨r, J⟩ with t /∈

⟨⟨s, J⟩ , J⟩, which implies L(t, c) * J for some c ∈ ⟨s, J⟩. As t ∈ ⟨r, J⟩ and c ∈ ⟨s, J⟩, we have
L(t, c) ⊆ J , a contradiction.

Conversely, let ⟨r, J⟩ ⊆ ⟨⟨s, J⟩ , J⟩ for r, s ∈ P . Then by (i), ⟨r, J⟩ ∩ ⟨s, J⟩ ⊆ ⟨⟨s, J⟩ , J⟩ ∩
⟨s, J⟩ = J . □

Theorem 3.14. Let J be a semi-prime ideal of P. Then the set S̃(J) is a semi-prime filter
of P.

Proof. We first show that S̃(J) is a filter of P. Let x, y ∈ S̃(J) and z ∈ U(L(x, y)). To prove
z ∈ S̃(J), it is enough to prove that ⟨z, J⟩ ⊆ J. Let r ∈ ⟨z, J⟩. Then L(z, r) ⊆ J . Since
L(x, y) ⊆ L(z), we have L(x, y, r) ⊆ L(z, r) ⊆ J . As ⟨x, J⟩ = J = ⟨y, J⟩, we get r ∈ J.

Let U(a, b) ⊆ S̃(J) and U(a, c) ⊆ S̃(J) for a, b, c ∈ P . Then ⟨U(a, b), J⟩ = J and
⟨U(a, c), J⟩ = J , which imply ⟨a, J⟩ ∩ ⟨b, J⟩ = J and ⟨a, J⟩ ∩ ⟨c, J⟩ = J . By Lemma 3.13(iii),
we have ⟨a, J⟩ ⊆ ⟨⟨b, J⟩ , J⟩ and ⟨a, J⟩ ⊆ ⟨⟨c, J⟩ , J⟩.

Again by Lemma 3.13(ii), ⟨a, J⟩ ⊆ ⟨⟨b, J⟩ , J⟩ ∩ ⟨⟨c, J⟩ , J⟩ = ⟨⟨L(b, c), J⟩ , J⟩, so ⟨a, J⟩ ∩
⟨L(b, c), J⟩ ⊆ ⟨⟨L(b, c), J⟩ , J⟩ ∩ ⟨L(b, c), J⟩=J , by Lemma 3.13(i).
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Let t ∈ ⟨U(a, L(b, c)), J⟩. Then L(t, s) ⊆ J for all s ∈ U(a, L(b, c)), which gives t ∈ ⟨s, J⟩ ⊆
⟨a, J⟩ ∩ ⟨L(b, c), J⟩ ⊆ J . Thus J ⊆ ⟨U(a, L(b, c)), J⟩ ⊆ J and hence U(a, L(b, c)) ⊆ S̃(J). So
S̃(J) is semi-prime. □

The following example shows that the converse of the above theorem is not true in general.

Example 3.15. Consider P = {0, a, b, c, d, e, f} and define a relation ≤ on P as follows.

b

b

b

b

b

b

0

cba

d

e

f

bb

b

b

b

b

b

Figure 4. Hasse diagram of (P,≤).

Then (P,≤) is a poset. For the ideal J = {0, b}, we have S̃(J) = {d, e, f}. Here S̃(J) is
semi-prime filter of P, but J is not a semi-prime ideal of P as L(a, b) ⊆ J and L(a, c) ⊆ J,

but L(a, U(b, c)) * J. □

Theorem 3.16. Let J be a semi-prime ideal of P and every semi-ideal of P is a u-ideal of
P. If no proper J-ideal of P is J-prime, then for each r ∈ P, there exists s ∈ P such that
⟨r, J⟩ = ⟨⟨s, J⟩ , J⟩ .

Proof. Let r ∈ P and K = [⟨r, J⟩∪ ⟨⟨r, J⟩ , J⟩] . By hypothesis and Theorem 3.7, we have K is
a u-ideal of P and KJ = {r ∈ P : ⟨a, J⟩ ⊆ ⟨r, J⟩ for some a ∈ K} is a J-ideal of P containing
K. As ⟨r, J⟩ ⊆ KJ and ⟨⟨r, J⟩ , J⟩ ⊆ KJ , we get ⟨KJ , J⟩ ⊆ ⟨⟨⟨r, J⟩ , J⟩ , J⟩ ∩ ⟨⟨r, J⟩ , J⟩. Then
by Lemma 3.13(i), ⟨KJ , J⟩ ⊆ J , which gives KJ is a J-prime ideal of P. By hypothesis and
Theorem 3.8, we get KJ = P and K ∩ S̃(J) ̸= .
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Let u ∈ KJ ∩ S̃(J). Then ⟨a, J⟩ ⊆ ⟨u, J⟩ for some a ∈ K and ⟨u, J⟩ = J imply ⟨a, J⟩ ⊆ J .
Since a ∈ K = [⟨r, J⟩ ∪ ⟨⟨r, J⟩ , J⟩], we have

⟨(⟨r, J⟩ ∪ ⟨⟨r, J⟩ , J⟩), J⟩ ⊆ ⟨a, J⟩ ⊆ J

⇒⟨L(U(⟨r, J⟩ ∪ ⟨⟨r, J⟩ , J⟩)), J⟩ ⊆ J

⇒⟨⟨r, J⟩ , J⟩ ∩ ⟨⟨⟨r, J⟩ , J⟩ , J⟩ ⊆ J

⇒⟨s, J⟩ ⊆ ⟨⟨c, J⟩ , J⟩ (for some s ∈ ⟨r, J⟩ and c ∈ ⟨⟨r, J⟩ , J⟩)

⇒⟨s, J⟩ ⊆ ⟨⟨c, J⟩ , J⟩ ⊆ ⟨⟨r, J⟩ , J⟩ ⊆ ⟨s, J⟩ (by Lemma 3.13(iii)).

So ⟨r, J⟩ = ⟨⟨s, J⟩ , J⟩ . □

4. MJ -ideal of posets

For a non-empty subset B of P, we define the set 0(B) = {r ∈ P : L(b, r) = {0} for some
b ∈ B}[6]. A proper ideal K of P is said to be M -ideal if there exists a m-system M , where
M is a proper subset and 0 /∈ M , such that K = 0(M). Every M -ideal of P is a α-ideal of P
and the converse need not be true in general. For any minimal prime ideal I of P, we have
0(P\I) = I.

Definition 4.1. A proper ideal K of P is said to be a MJ -ideal if there exists an ideal J and
a proper m-system M in P such that K = J(M), where J(M) = {r ∈ P : L(a, r) ⊆ J for
some a ∈ M}.

Example 4.2. Consider P = {0, a, b, c, d, e}. Define a relation ≤ on P as follows.

b

b

b

b

b

b

0

a b

cd

e

Figure 5. Hasse diagram of (P,≤).

Then (P,≤) is a poset. Let J = {0, b}, K = {0, b, c} and M = {a, d}. Then K is a MJ -ideal
of P. □
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Example 4.3. In Example 3.10, J = {0, 1, 2} and K = {0, 2} are ideals of P and M = {1, 4}
is a m-system of P. Here K is a M -ideal of P, but not a MJ -ideal of P.

The above examples shows that the concept of MJ -ideals are different from M -ideals in
poset.

Theorem 4.4. Let K and J be ideals of P. If K is a MJ -ideal of P for some m-system M

of P, then K is a J-ideal of P.

Proof. Let K be a MJ -ideals of P and x ∈ K = J(M). Then L(x, y) ⊆ J for some y ∈ M . Let
t ∈ ⟨⟨x, J⟩ , J⟩. Then ⟨x, J⟩ ⊆ ⟨⟨⟨x, J⟩ , J⟩ , J⟩ ⊆ ⟨t, J⟩. Since y ∈ ⟨x, J⟩, we have L(t, y) ⊆ J

and y ∈ M , which imply t ∈ J(M) = K, so K is a J-ideal of P. □

Remark 4.5. The converse of the above theorem is not true in general. In Example 4.2, for
the ideals J = {0} and K = {0, b, c}, we have K is a J-ideal of P and K is not a MJ -ideal of
P for all m-system M of P.

Theorem 4.6. Let J ⊆ I be ideals of P, where I is prime. If J has the ∗-property and union
of any two ideals is an ideal of P, then the following conditions are equivalent:

(i) I is a minimal prime ideal of J ,
(ii) For each x ∈ I, there exists y ∈ P\I and t ∈ U(x) such that L(t, y) ⊆ J .

Proof. This theorem proof is similarly to that of Theorem 2.7 of [4]. □

Lemma 4.7. Let K be a prime ideal of P and J be an ideal of P with the ∗-property. If K
is minimal prime ideal of J and union of any two ideals is an ideal of P, then K contains
precisely one of r or ⟨r, J⟩ for any r ∈ P .

Proof. Assume the contrary that ⟨r, J⟩ ⊆ K for every r ∈ K. Since K is minimal prime
ideal and by Theorem 4.6, for each r /∈ P\K, there exists t ∈ U(r) and s ∈ P\K such that
L(t, s) ⊆ J , it follows that s ∈ K, a contradiction.

Let r /∈ K and t ∈ ⟨r, J⟩. Then L(r, t) ⊆ J ⊆ K. Since K is prime ideal and r /∈ K, we have
t ∈ K. □

Theorem 4.8. Let J be a semi-prime ideal of P with the ∗-property. If union of any two
ideals is an ideal of P, then the following conditions are equivalent:

(i) For each a ∈ P, there exists b ∈ P such that L(a, b) ⊆ J and U(a, b) ⊆ S̃(J),
(ii) If K is a prime ideal of P with J ⊆ K and K∩ S̃(J) = , then K is minimal prime

ideal of J ,
(iii) If R is an ideal of P with J ⊆ R and R∩ S̃(J) = , then R is contained in some minimal
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prime ideal of J ,
(iv) For each a ∈ P, there exists b ∈ P such that ⟨a, J⟩ = ⟨⟨b, J⟩ , J⟩.

Proof. (i) ⇒ (ii) Let K be a prime ideal of P with J ⊆ K, K∩ S̃(J) = . By (i) for a ∈ K, there
exists b ∈ P such that L(a, b) ⊆ J and U(a, b) ⊆ S̃(J). Then b /∈ K. Indeed, if b ∈ K, then
L(U(a, b)) ⊆ K. For some t ∈ U(a, b) ⊆ S̃(J), we have L(t) ∈ K, which implies t ∈ K ∩ S̃(J),
a contradiction. So for a ∈ P , there exists b ∈ P\K such that L(a, b) ⊆ J and U(a, b) ⊆ S̃(J).

Suppose K1 is a prime ideal of P with J ⊆ K1 ⊂ K. Let a ∈ K. Then there exists b ∈ P\K
such that L(a, b) ⊆ J ⊆ K1. As K1 is prime and b /∈ K1, we have a ∈ K1. Hence K is the
minimal prime ideal of J .

(ii) ⇒ (iii) Let R be an ideal of P and J ⊆ R with R ∩ S̃(J) = . We first prove that
S̃(J) is an m-system of P. Let a, b ∈ S̃(J). Then ⟨a, J⟩ = J and ⟨b, J⟩ = J. Suppose that
L(a, b) ∩ S̃(J) = . For t ∈ L(a, b), there exists r ∈ P\J such that L(t, r) ⊆ J , which implies
that L(a, b) ⊆ ⟨r, J⟩. So r ∈ J, a contradiction. Thus L(a, b) ∩ S̃(J) ̸= and hence S̃(J) is an
m-system of P. By Theorem 2.6 of [4], R contained in a prime ideal K of P with K ∩ S̃(J) = .

By (ii) K is a minimal prime ideal of J .
(iii) ⇒ (iv) Let a ∈ P and R = (a] ∪ ⟨a, J⟩. Then R∩ S̃(J) ̸= . Indeed, if R∩ S̃(J) = ,

then by the hypothesis, there exists a minimal prime ideal K of J such that (a] ∪ ⟨a, J⟩ ⊆ K.
By Lemma 4.7, for a ∈ P , we have K contains precisely one of a or ⟨a, J⟩, a contradiction. So
there exists d ∈ S̃(J) and d ∈ (a] ∪ ⟨a, J⟩.

Case 1: Let d ∈ ⟨a, J⟩. Then ⟨⟨a, J⟩ , J⟩ ⊆ ⟨d, J⟩ = J . So, ⟨⟨a, J⟩ , J⟩ = ⟨d, J⟩ for some
d ∈ P

Case 2: Let d ∈ (a] and b ∈ ⟨a, J⟩. Then ⟨⟨a, J⟩ , J⟩ ⊆ ⟨b, J⟩.
Now, consider ⟨a, J⟩ ∩ ⟨b, J⟩ = J ∩ ⟨b, J⟩ = J . By Lemma 3.13(iii), we have ⟨b, J⟩ ⊆

⟨⟨a, J⟩ , J⟩ .
(iv) ⇒ (i) Let a ∈ P . By the hypothesis, there exists b ∈ P such that ⟨⟨a, J⟩ , J⟩. Then

L(a, b) ⊆ J. Now, ∀t ∈ U(a, b), we have ⟨U(a, b), J⟩ ⊆ ⟨t, J⟩, which implies ⟨U(a, b), J⟩ ⊆
⟨a, J⟩ ∩ ⟨b, J⟩ = ⟨a, J⟩ ∩ ⟨⟨a, J⟩ , J⟩ = J by Lemma 3.13 (i). So, t ∈ S̃(J) and U(a, b) ⊆ S̃(J).

□

Theorem 4.9. Let J be a semi-prime ideal of P and every J-ideal of P is a MJ -ideal of P.
Then for each a ∈ P, there exists b ∈ P such that ⟨a, J⟩ = ⟨⟨b, J⟩ , J⟩.

Proof. Assume that every J-ideal of P is a MJ -ideal of P. Then for a ∈ P , ⟨⟨a, J⟩ , J⟩ is a
J-ideal of P, so a ∈ ⟨⟨a, J⟩ , J⟩ = J(M) for some m-system M of P, which implies L(a, b) ⊆ J

for some b ∈ M . Since b ∈ ⟨a, J⟩, we have ⟨⟨a, J⟩ , J⟩ ⊆ ⟨b, J⟩ ⊆ J(M) = ⟨⟨a, J⟩ , J⟩ gives
⟨b, J⟩ = ⟨⟨a, J⟩ , J⟩ . □
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Theorem 4.10. Let J be a semi-prime ideal of P and for each a ∈ P, there exists b ∈ P such
that ⟨a, J⟩ = ⟨⟨b, J⟩ , J⟩. Then for any J-ideal K of P, we have K ⊆ J(M) for some m-system
M of P.

Proof. Let K be an J-ideal of P and M = {a ∈ P : ⟨⟨x, J⟩ , J⟩ ⊆ ⟨a, J⟩ for some x ∈ K}.
By hypothesis M ̸= . We now prove M is a m-system of P. Let a, b ∈ M . If M ∩ L(a, b) = ,

then for any t ∈ L(a, b)\{0}, we have ⟨⟨x1, J⟩ , J⟩ ⊆ ⟨a, J⟩ for some x1 ∈ K\{0}, which implies
t ∈ M , a contradiction. So M is an m-system of P.

Let K be a J-ideal of P and a ∈ K. Then from the hypothesis, there exists b ∈ P such that
⟨⟨a, J⟩ , J⟩ = ⟨b, J⟩, which gives L(a, b) ⊆ J and b ∈ M . Therefore K ⊆ J(M). □

The below example gives an illustration of the above theorem.

Example 4.11. In Example 4.2, for the ideals J = {0, b}, K = {0, b, c} and an m-system
M = {a, d}, we have ⟨0, J⟩ = ⟨b, J⟩ = ⟨⟨e, J⟩ , J⟩ and ⟨a, J⟩ = ⟨d, J⟩ = ⟨⟨c, J⟩ , J⟩. Then for
J-ideal K of P, we have K ⊆ J(M) for the m-system M of P.

5. Conclusion

The notion and development of the prime ideal have a specific position in algebraic geometry
and commutative algebra. These are ways for discovering algebraic structural characteristics
that are realistic. The features of J-prime ideals in posets were examined in this work, as well
as a wider generalization of prime ideals in posets. Examples of J-prime ideals, J-ideals and
MJ -ideals were given. We also obtained the condition for every ideal of P to be a J-ideal. We
also provided the conditions for a MJ -ideal to be a J-ideal. These results can be applied to
0-distributive posets, lattices, near lattices, semi-lattices, and 0-distributive near lattices using
the notion described in this paper.
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