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THE NOETHERIAN DIMENSION OF MODULES VERSUS THEIR
α-SMALL SHORTNESS

NASRIN SHIRALI

Abstract. In this article, we first consider concept of small Noetherian dimension of a
module, which is dual to the small krull dimension, denoted by sn-dimA, and defined to be
the codeviation of the poset of the small submodules of A. We prove that if an R-module
A with finite hollow dimension, has small Noetherian dimension, then A has Noetherian
dimension and sn-dimA ≤ n-dimA ≤ sn-dimA+1. Last we introduce the concept of α-small
short modules, i.e., for each small submodule S of A, either n-dimS ⩽ α or sn-dim A

S
⩽ α and

α is the least ordinal number with this property and by using this concept, we extend some
of the basic results of short modules to α-small short modules. In particular, we prove that
if A is an α-small short module, then it has small Noetherian dimension and sn-dimA = α

or sn-dimA = α+ 1. Consequently, we show that if A is an α-small short module with finite
hollow dimension, then α ≤ n-dimA ≤ α+ 2.

1. Introduction

In [19], Lemonnier introduced the concept of the deviation of an arbitrary poset (E, ≤),
similar to the concept of Krull dimension of modules, see also [21]. The Krull dimension
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of module A, denoted by k-dimA and measures its deviation from being Artinian, was first
introduced by Gabriel and Rentschler (for finite ordinals) in 1967. Later this definition was
extended to infinite ordinals by Krause in 1970, see [16, 12, 11]. Lemonnier also defined the
concept of the dual Krull dimension of E which he named the codeviation of E, as being the
Krull dimension (i.e., the deviation) of E0, the opposite poset of E, see [12]. We remind the
reader that the dual Krull dimension of modules measures the deviation of a module from
being Noetherian. We should emphasize, for the sake of record and the reader, that the dual
Krull dimension of a module was first named Noetherian dimension by Karamzadeh in his 1974,
Ph.D. thesis at Exeter university, England and later it is studied in [2, 6, 7, 8, 9, 11, 14, 15, 17].
Let us denote the dual Krull dimension of a module M by n-dimA. These dimensions have
been investigated by many authors, see for example [4, 12, 18, 19, 21]. The module A satisfies
the ascending chain condition(ACC, for short) on small submodules if and only if Rad(A)

is Noetherian, see [4, Theorem 5]. Motivated by this fact, one is tempted to extend it
to ascending chain of small submodules of A. To this end, we first introduce and study the
concept of small Noetherian dimension of a module A, which is the dual small krull dimension,
see [3]. This dimension, denoted by sn-dim, A, is defined to be the codeviation of the poset of
the small submodules of A. In some sense, it measure of how far small Noethrian dimension
is from Noethrian dimension. We briefly study this dimension and observe that if A has
Noethrian dimension, then sn-dimA ≤ n-dimA. In this article, we introduce and study the
concept of α-small short modules. We shall call an R-module A is called α-small short, if for
each small submodule S of A, either n-dimS ⩽ α or sn-dim A

S ⩽ α and α is the least ordinal
number with this property. Using this concept we extend some of basic result of α-short
modules (i.e., for each submodule B of A, either n-dimB ⩽ α or n-dim A

B ⩽ α and α is the
least ordinal number with this property , see also [7] and [9]) to α-small short modules. Let
us give a brief sketch of this article. In Section 3, we introduce and study the concept of small
Noetherian dimension of an R-module A, and briefly study the small atomic modules. In
Section 4, we first introduce and study the concept of α-small short modules and a brief study
of α-almost small Noetherian modules. We shall call an R-module A to be α-small short, if for
each small submodule S of A, either n-dimS ⩽ α or sn-dim A

S ⩽ α and α is the least ordinal
number with this property. Using this concept, we show that if A is an α-small short module,
then either sn-dimA = α or sn-dimA = α + 1. We also observe that if A is an α-small short
module with finite hollow dimension, then n-dimA ≥ α. Consequently, every submodule of
an α-small short module A with finite hollow dimension, where α is countable, is countably
generated, see [15, Corollary 1.2]. Finally, in the last section we first study the relationship
between Noetherian dimension and small Noetherian dimension. By Theorem 3.19, if A is a
module with finite hollow dimension and sn-dimA = α, then A has Noetherian dimension and



Alg. Struc. Appl. Vol. 10 No. 1 (2023) 1-15. 3

n-dimA ≤ α + 1. It is convenient that, when we are dealing with the latter dimensions, to
begin our list of ordinals with −1. If an R-module A has Noetherian dimension and α is an
ordinal number, then A is called α-conotable if n-dimA = α and n-dimB < α for all proper
submodules B of A. An R-module A is called conotable if A is α-conotable for some ordinal
α (note, conotable modules are also called atomic, dual critical and N -critical in some other
articles, see for example [14, 17, 1, 6]). For all concepts and basic properties of rings and
modules which are not defined in this paper, we refer the reader to [5, 12, 15].
Throughout this paper, all rings are associative with 1 ≠ 0, and all modules are unital right
modules. B ⊆ A (resp., B ⊂ A) will mean B is a submodule (resp., a proper submodule) of
A.

2. Preliminaries

Let us briefly recall some basic definitions and results from the literature.

Definition 2.1. Let A be an R-module. A proper submodule S of A is small in A if S+B ̸= A

for every proper submodule B of A. We will indicate that S is a small submodule of A by
notation S ≪ A.

Lemma 2.2. [3, Lemma 2.2] Let A be a module and suppose C ⊆ B ⊆ A and D ⊆ A. Then

(1) B ≪ A if and only if C ≪ A and B
C ≪ A

C .
(2) D + C ≪ A if and only if D ≪ A and C ≪ A.
(3) If φ : A → M is a homomorphism and B ≪ A , φ(B) ≪ M .
(4) If C ≪ B, then C ≪ A.
(5) If B is a direct summand of A, C ≪ A if and only if C ≪ B.
(6) If A = A1 ⊕ A2 and S1 ⊆ A1, S2 ⊆ A2, S1 ⊕ S2 ≪ A1 ⊕ A2 if and only if S1 ≪ A1

and S2 ≪ A2.
(7) Rad(A) is the sum of all the small submodules of A.
(8) If S ≪ A, A is finitely generated if and only if A

S is finitely generated.
(9) Soc(Rad(A)) is small submodule of A. More generally, if B is small in A and

Soc(Rad(A)
B ) = C

B , then C is small in A.

Definition 2.3. An R-module A is called hollow if A ̸= 0 and every proper submodule B

of A is small in A. Thus a non-zero module A is hollow if and only if sum of its two proper
submodules is also a proper submodule.

Example 2.4. Atomic modules and uniserial modules are hollow.

Proposition 2.5. [25, 41.4] The following statements are equivalent:

(1) A is hollow.
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(2) For some proper submodule B of A, A
B is hollow and B ≪ A.

(3) Every proper factor module of A is indecomposable.

Definition 2.6. A non-empty family {Ei}i∈ I of proper submodules of an R-module A is
called coindependent if, for any k ∈ I and any finite subset F ⊆ I \ {k}, Ek +

∩
j∈F Ej = A

Definition 2.7. Let A be an R-module and C ⊆ B ⊆ A. We say B lies above C if B
C ≪ A

C .

Proposition 2.8. [22, Corollary 13] For any non-zero module A the following are equivalent:

(1) A does not contain an infinite coindependent family of submodules.
(2) For some n ∈ N, A contains a coindependent family of submodules {E1, E2, ..., En}

such that
∩n

i=1Ei is small in A and A
Ei

is a hollow module for every 1 ≤ i ≤ n.
(3) sup{k : where k is the cardinality of a coindependent family of

submodules in A } = n, for some n ∈ N.
(4) For any descending chain B1 ⊇ B2 ⊇ ... of submodules of A there exists j, such that

Bj lies above Bk in A for all k ≥ j.
(5) There exists a small epimorphism from A to a finite direct sum of n hollow factor

modules.

Next, we give the definition of dual Goldie dimension (i.e., Hollow dimension), see [24, 10].

Definition 2.9. An R-module A is said to have finite hollow dimension if it satisfies one of
the conditions in Proposition 2.8. In particular, if A satisfies condition (2) or (3), then A is
said to have hollow dimension n, written as hdimA = n.
If A = 0, we define hdimA = 0 and if M does not finite hollow dimension we write hdimA = ∞

Lemma 2.10. [20, Lemma 1.4.3] (The Chinese Remainder Theorem):
Let A be an R-module. For any coindependent family of subset of submodules {E1, E2, ..., En},

A∩n
i=1 Ei

≃
⊕n

i=1
A
Ei

holds.

We also cite the following fact from part (2′) of the comment which follows [22, Corollary
13].

Proposition 2.11. If A is an R-module and hdimA = n, then there exists coindependent
family of submodules {E1, E2, ..., En}, such that

∩n
i=1Ei ≪ A and A∩n

i=1 Ei
≃

⊕n
i=1

A
Ei

such
that A

Ei
is hollow for all i = 1, 2, ..., n.

Definition 2.12. An R-module A is said to have property AB5∗(or is said to be an AB5∗

module) if for every submodule B and inverse system {Ai}i∈I (i.e., for any finite number
i1, i2, ..., ik of I, there exists i0 ∈ I such that Ai0 ⊆ Ai1 ∩ ... ∩ Aik) of submodules of A the
following holds:

B +
∩

i∈I Ai =
∩

i∈I(B +Ai).
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Examples of modules with AB5∗ are Artinian modules or linearly compact modules, see
[25, 29.8].

3. Dual the small Krull dimension and its properties

In this section, we consider the concept of dual small Krull dimension of an R-module A,
which is a Noetherian-like dimension extension of the concept of ACC over small submodules.
In other word, it is the codeviation of the poset of small submodules of A.

Next, we give our definition of small Noetherian dimension .

Definition 3.1. Let A be an R-module. The small Noetherian dimension of A denoted by
sn-dimA is defined by transfinite recursion as follows: If A = 0, sn-dimA = −1. If α is an
ordinal number and sn-dimA ≮ α, then sn-dimA = α provided there is no infinite ascending
chain of small submodules of A such as S0 ⊆ S1 ⊆ S2 ⊆ ... such that for each i = 1, 2, ...,
sn-dim Si+1

Si
≮ α. In otherwise sn-dimA = α, if sn-dimA ≮ α and for each chain of small

submodules of A such as S0 ⊆ S1 ⊆ S2 ⊆ ... there exists an integer n, such that for each
i ≥ n, sn-dim Si+1

Si
< α. A ring R has small Noetherian dimension, if as an R-module has

small Noetherian dimension. It is possible that there is no ordinal α such that sn-dimA = α,
in this case we say A has no small Noetherian dimension.

If sn-dimA > α, there exists an infinite ascending chain S0 ⊆ S1 ⊆ S2 ⊆ ... of small
submodules of A such that sk-dim Si+1

Si
≥ α for all i.

Clearly, sn-dimA = 0 if and only if A satisfies ACC over its small submodules. Thus, we
have the following.

Remark 3.2. Recall that, by [4, Theorem 5], [23, Theorem 2] and above definition, Rad(A)

is Noetherian if and only if A satisfies ACC on small submodules if and only if every small
submodule of A is Noetherian if and only if sn-dimA = 0.

The proofs of the following results are just a minor variant of the familiar argument for the
small Krull dimension, see [3].

Lemma 3.3. Let A be an R-module with small Noetherian dimension. Then for each small
submodule S of A, A

S has small Noetherian dimension and sn-dim A
S ≤ sn-dimA.

Lemma 3.4. Let A be an R-module with small Noetherian dimension. Then for each sub-
module B of A, B has small Noetherian dimension and sn-dimB ≤ sn-dimA.

Lemma 3.5. Let A be an R-module with Noetherian dimension. Then A has small Noetherian
dimension and sn-dimA ≤ n-dimA.
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It is well-known that the existence Krull dimension is equivalent to that of Noetherian
dimension. Thus it is easy to see that a module A has small Krull dimension if and only if it
has small Noetherian dimension. The following example shows that Lemma 3.5 in not true in
general, see also [3].

Example 3.6. If we consider A = (
⊕

i∈N Z)
⊕

Zp∞ as a Z-module where p is a prime number,
then Rad(A) = Zp∞ is an Artinian module. So by Remark 3.2, we have sk-dimA = 0 and so A

has small Noetherian dimension. But A does not have Krull dimension(note, Goldie dimension
of A is infinite).

Lemma 3.7. Let A be an R-module. If for every S ≪ A, A
S has small Noetherian dimension,

then so does A and sn-dimA = sup{sn-dim A
S |S ≪ A}.

Lemma 3.8. Let A be an R-module. If for every small submodule S of A, either S has
Noetherian dimension or A

S has small Noetherian dimension, then A has small Noetherian
dimension.

Lemma 3.9. If A is an R-module, then for any small submodule S of A, sn-dimA =

sup{n-dimS, sn-dim A
S } if either side exists.

The following result is a dual of [3, Proposition, 3.7].

Proposition 3.10. An R-module A has small Noetherian dimension if and only if for all
S ≪ A, n-dimS exists. In this case n-dimS = sn-dimS and sn-dimA ≤ sup{n-dimS : S ≪
A}+ 1.

Proof. If n-dimS exists, sn-dimS exists and sn-dimS ≤ n-dimS, by Lemma 3.5. Now in order
to prove the equality, it suffices to prove the converse and show that n-dimS ≤ sn-dimS. For
this purpose, we proceed by transfinite induction on sn-dimA = α. If α = 0, by Remark
3.2, S is Noetherian, so n-dimS = 0 = sn-dimS. Assume that α ≥ 1 and the result is
true for all ordinals β < α and S0 ⊆ S1 ⊆ S2 ⊆ ... is a chain of submodules of S. Hence
this is a chain of small submodules of A by Lemma 2.2(1), so there is integer k such that
for every i ≥ k, sn-dim Si+1

Si
= γ < α. Hence, by induction hypothesis, n-dim Si+1

Si
exists

and n-dim Si+1

Si
= sn-dim Si+1

Si
= γ < α, thus S has Noetherian dimension and n-dimS ≤ α.

Conversely, we note that the small submodules of A form a set and hence sup{n-dimS :

S ≪ A} exists. Call it α. Given any chain S0 ⊆ S1 ⊆ S2 ⊆ ... of small submodules of A,
sn-dim Si+1

Si
≤ n-dim Si+1

Si
≤ n-dimSi+1 = sn-dimSi+1 ≤ α < α + 1, for all i. Therefore A has

s.Noetherian dimension the least than or equal to α+ 1.

Next, we give our definition of small atomic modules, which is similar to the concept of
atomic modules.



Alg. Struc. Appl. Vol. 10 No. 1 (2023) 1-15. 7

Definition 3.11. An R-module A is called α-small atomic if sn-dimA = α and for every
S ≪ A, sn-dimS < α. A is called small atomic if it is an α-small atomic for some α.

In view of the Propositions 3.10, 3.9, if A is an α-small atomic, then for every S ≪ A,
sn-dim A

S = α.
We note that an R-module A is 0-small atomic if and only if A has no non-zero small

submodule.
We have the following definition.

Definition 3.12. If S is a small submodule of A, then A
S is called a small quotient module of

M .

Lemma 3.13. Let A be an α-small atomic. If B
C is a non-zero small quotient module of a

small quotient module A
C , then A/C

B/C is α-small atomic.

Proof. Suppose that A be an α-s.atomic module. For every small quotient module A
C ,

sn-dim A
C = sn-dimA = α. Now for every small submodule B

C of A
C , since B ≪ A, by

Lemma 2.2(1), we have sn-dimB < α = sn-dimA (for A is α-s.atomic). But sn-dim A/C
B/C =

sn-dim A
B = α = sn-dim A

C . Moreover, sn-dim B
C ≤ sn-dimB < sn-dimA = α = sn-dim A

C .
Thus A

C is α-s.atomic.

Proposition 3.14. Let A be an R-module with small Noetherian dimension. Then A has a
nonzero small quotient module which is small atomic.

Proof. We assume that every nonzero small quotient module is non-small atomic and seek a
contradiction. Let A

S be a nonzero small quotient module of A with the least small Noetherian
dimension. Clearly, if A

S has a small quotient module, then so does A, by Lemma 2.2(1). Thus
without loss of generality we may assume that A has the least small Noetherian dimension
amongst its nonzero small quotient modules. Now let sn-dimA = α, then by our assumption
there exists a small submodule, S1 say of A with sn-dimS1 = α. But A

S1
is not small atomic

and sn-dim A
S1

= α. Now similarly there is a small submodule S2
S1

of A
S1

with sn-dim S2
S1

= α. If
we repeat this process, we obtain an infinite ascending chain of small submodules S1 ⊆ S2 ⊂
S3 ⊂ ... in A with sn-dim Si+1

Si
= α for each i, which is a contradiction to sn-dimA = α.

The following lemma shows that a hollow module A with small Noetherian dimension has
Noetherian dimension with n-dimA ≤ sn-dimA+ 1.

Lemma 3.15. Let A be a hollow module and sn-dimA = α. Then A has Noetherian dimension
and n-dimA ≤ α+ 1.
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Proof. The Proposition 4.8 implies that, A has Noetherian dimension. For every proper
submodule B of A, since B ≪ A, n-dimB = sn-dimB ≤ α, by Proposition 3.10 and so
n-dimA ≤ sup{n-dimB : B ⊆ A}+ 1 ≤ α+ 1.

We recall that A is called local if it has exactly one maximal submodule that contains
all proper submodules. It is clear that every local module and atomic modules are hollow.
Therefore by Remark 3.2 and Lemma 3.15, we have the following corollaries.

Corollary 3.16. Let A be a hollow module with small Noetherian dimension, whose Rad(A)

be Noetherian. Then n-dimA ≤ 1 and if n-dimA = 1, A is a 1-atomic module.

Corollary 3.17. Let A be an α-atomic module and Rad(A) be Noetherian. Then α = 1, i.e.,
A is 1-atomic.

It is well-known that every module with Noetherian dimension has a factor module which
is atomic. Thus, we have the following fact.

Corollary 3.18. Let A be an R-module with Noetherian dimension and Rad(A) be Noetherian.
Then A has a factor module which is 1-atomic.

We may now present the following theorem.

Theorem 3.19. Let A be an R-module with finite hollow dimension such that sn-dimA = α.
Then A has Noetherian dimension and n-dimA ≤ α+ 1.

Proof. First by Proposition 4.8, A has Noetherian dimension. Let hdimA = n. If n = 1

is evident, by Lemma 3.15. We suppose that n > 1, so there exists coindependent set
{E1, E2, ..., En} such that Ei ⊆ A and E =

∩n
i=1Ei is small in A and A

Ei
is hollow for

every i = 1, 2, ..., n, by Propositions 2.8, 2.11, we get A
E ≃

⊕n
i=1

A
Ei

. Since A
Ei

is hollow
for all i with s.Noetherian dimension(note, since A

E has small Noetherian dimension, thus
A
Ei

has small Noetherian dimension) and by Lemma 3.15, n-dim A
Ei

≤ sn-dim A
Ei

+ 1 ≤
sn-dimA + 1 = α + 1 and n-dimE = sn-dimE. But n-dimA = sup{n-dimE,n-dim A

E } =

sup{n-dimE,n-dim A
E1

, ..., n-dim A
En

} ≤ sup{α, α+ 1} = α+ 1. That is n-dimA ≤ α+ 1.

By Lemma 3.5, the following result is evident.

Corollary 3.20. Let A be an R-module with finite hollow dimension such that sn-dimA = α.
Then α ≤ n-dimA ≤ α+ 1.

Corollary 3.21. Let A be an R-module whose Noetherian dimension is a limit ordinal. Then
n-dimA = sn-dimA.
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Motivated by Corollary 3.21, it would be interesting to characterize modules A with
n-dimA = sn-dimA (resp., n-dimA = sn-dimA+ 1).

In view of Theorem 3.19 and Proposition 2.8, the following is evident.

Corollary 3.22. Let A be an Artinian R-module and sn-dimA = α. Then α ≤ n-dimA ≤
α+ 1.

4. α-small short modules

In this section, we introduce and study the concept of small short modules. Using this
concept we extend some of basic result of α-short modules, see [7], to α-small short modules.
We begin with the following definition.

Definition 4.1. An R-module A is called α-small short if for each small submodule S of A,
either n-dimS ⩽ α or sn-dim A

S ⩽ α and α is the least ordinal number with this property.

Clearly, if A is a −1-small short module, then A has not nonzero small submodule.
In view of Lemmas 3.3, 3.4, we have the following results.

Remark 4.2. If A is an R-module with sn-dimA = α, then A is a β-small short module for
some β ⩽ α.

Remark 4.3. If A is an α-small short module, then each submodule and each small quotient
module of A is β-small short for some β ⩽ α.

In view of the Remark 4.2 and Lemma 4.18, we have the next result.

Lemma 4.4. Let A be an α-small short module. Then A has small Noetherian dimension
and sn-dimA ≥ α.

The following is now immediate.

Lemma 4.5. An R-module A has small Noetherian dimension if and only if A is α-small
short for some ordinal number α.

Proposition 4.6. If A is an α-small short module, then either sn-dimA = α or sn-dimA =

α+ 1.

Proof. In view of Lemma 4.4, we have sn-dimA ⩾ α. If n-dimA ̸= α, then sn-dimA ⩾ α+ 1.
Let A1 ⊆ A2 ⊆ ... be any ascending chain of small submodules of A. If there exists some
n such that sn-dim A

An
⩽ α, then by Lemmas 3.3, 3.4, 2.2(1), sn-dim Ai+1

Ai
⩽ sn-dim A

Ai
=

sn-dim A/An

Ai/An
⩽ sn-dim A

An
⩽ α for each i ⩾ n. Otherwise sn-dimAi ⩽ α for each i, hence

sn-dim Ai+1

Ai
⩽ n-dim Ai+1

Ai
⩽ n-dimAi+1 = sn-dimAi+1 ≤ α for each i, by Proposition 3.10.
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Thus in any case there exists an integer k such that for each i ≥ k, sn-dim Ai+1

Ai
⩽ α. This

shows that sn-dimA ⩽ α+ 1, i.e., sn-dimA = α+ 1.

By Proposition 4.6 and Remark 3.2, we have the following result.

Corollary 4.7. If A is a 0-small short module, then either sn-dimA = 1 or Rad(A) is
Noetherian. Also, if A is −1-small short, then either A = 0 or Rad(A) is Noetherian.

The proof of the following proposition is similar to the proof of its dual in [3, Theorem 4.10].

Proposition 4.8. Let A be an R-module with finite hollow dimension. Then A has Noetherin
dimension if and only if it has small Noetherin dimension.

In view of Lemma 4.4 and Proposition 4.8, the following result is evident.

Corollary 4.9. If A is an α-small short module with finite hollow dimension, then n-dimA ≥
α.

We also cite the following fact from [15, Corollary 1.2].

Corollary 4.10. Every submodule of an α-small short module A with finite hollow dimension,
where α is countable, is countably generated.

It is well-known that every module with Noetherian dimension has finite Goldie dimension,
see [21, Lemma 6.2.6]. Thus we have the following result.

Corollary 4.11. Every α-small short module with finite hollow dimension has finite Goldie
dimension.

Proposition 4.12. Let A be an R-module, with sn-dimA = α, where α is a limit ordinal.
Then A is α-small short.

Proof. We know that A is β-small short for some β ⩽ α. If β < α, then by Proposition 4.6,
sn-dimA ⩽ β + 1 < α, which is impossible. Thus A is α-small short.

Proposition 4.13. Let A be an R-module and sn-dimA = α, where α = β + 1. Then A is
either α-small short or β-small short.

Proof. By Remark 4.2, A is γ-small short for some γ ⩽ α. If γ < β, then Proposition 4.6
implies that sn-dimA ⩽ γ + 1 < β + 1, which is a contradiction. Hence we are done.

For the small atomic modules, we have the following proposition.
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Proposition 4.14. Let A be an α-small atomic R-module, where α = β + 1, then A is a
β-small short module.

Proof. If S ≪ A, by definition sn-dimS < α. Therefore sn-dimS ⩽ β. It follows that A is
δ-s.short for some δ ⩽ β. If δ < β, then δ + 1 ⩽ β < α. But sn-dimA ⩽ δ + 1 ⩽ β < α, by
Proposition 4.6, which is a contradiction. Thus δ = β and we are through.

The following remark, which is a trivial consequence of the previous fact, shows that the
converse of Proposition 4.12, is not true in general.

Remark 4.15. Let A be an α + 1-small atomic R-module, where α is a limit ordinal. Then
A is an α-small short module but sn-dimA ̸= α.

Proposition 4.16. Let A be an R-module such that sn-dimA = α+1. Then A is either an α-
small short module or there exists a small submodule S of A such that sn-dimS = sn-dim A

S =

α+ 1.

Proof. We know that A is α-small short or an α+1-small short R-module, by Proposition 4.13.
Let us assume that A is not an α-small short module, hence there exists a small submodule
S of A such that sn-dimS ⩾ α+ 1 and sn-dim A

S ⩾ α+ 1. This shows that sn-dimS = α+ 1

and sn-dim A
S = α+ 1 and we are through.

Definition 4.17. An R-module A is called α-almost small Noetherian, if for each small sub-
module S of A, n-dimS < α and α is the least ordinal number with this property.

In view of Lemma 3.10, we have the next results.

Lemma 4.18. If A is an α-almost small Noetherian module, then A has small Noetherian
dimension and sn-dimA ⩽ α. In particular, sn-dimA = α if and only if A is α-small atomic.

It is easy to see that if A is an α-almost small Noetherian, then each submodule of A is
β-almost small Noetherian for some β ≤ α, by Lemmas 3.7, 3.9.

Lemma 4.19. If A is a module with sn-dimA = α, then either A is α-small atomic, in which
case it is α-almost small Noetherian, or it is α+ 1-almost small Noetherian.

Lemma 4.20. If A is an α-almost small Noetherian module, then either A is α-atomic or
α = sn-dimA + 1. In particular, if A is an α-almost small Noetherian module, where α is a
limit ordinal, then A is α-atomic.

The following is now immediate.

Proposition 4.21. An R-module A has small Noetherian dimension if and only if A is
α-almost small Noetherian for some ordinal α.
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5. Properties of α-small short modules

In this section some properties of α- small short modules, α-almost small Noetherian mod-
ules over an arbitrary ring R are investigated.

The following result is a connection between α-short modules and α-small short modules.

Proposition 5.1. Let A be an α-short module. Then A is a γ-small short module such that
α ∈ {γ, γ + 1, γ + 2}.

Proof. Since every α-short module has Noetherian dimension, hence A has small Noetherian
dimension. Let B be a small submodule of A, hence either sn-dimB = n-dimB ≤ α or
sn-dim A

B ≤ n-dim A
B ≤ α, by Lemmas 3.4, 3.5. It follows that A is γ-small short for some

γ ≤ α. But if A is γ-small short, then either sn-dimA = γ or sn-dimA = γ + 1. By Corollary
3.20, γ ≤ n-dimA ≤ γ + 2. From [7, Proposition 1.12], we obtain α ≤ n-dimA ≤ α+ 1. Thus
α ∈ {γ, γ + 1, γ + 2}.

Proposition 5.2. Let A be an γ-small short module with hollow dimension. Then A is a
α-short module such that α ∈ {γ, γ + 1, γ + 2}.

Proof. By Proposition 4.6, either sn-dimA = γ or sn-dimA = γ + 1. Corollary 3.20, gives
that γ ≤ n-dimA ≤ γ + 2. Hence A is α-short for some ordinal number α, [7, Remark 1.2].
Therefore α ∈ {γ, γ + 1, γ + 2} and we are done.

From Proposition 5.2 and Proposition 4.8, we get the following result.

Corollary 5.3. Let A be an R-module with finite hollow dimension. If A is α-small short,
then A has Noetherian dimension and α ≤ n-dimA ≤ α+ 2.

By Propositions 5.1 , 5.2, the following is evident.

Corollary 5.4. Let A be an R-module, which is with finite hollow dimension and α be a limit
ordinal. Then A is α-short if and only if is α-small short.

Proposition 5.5. Let S be a submodule of an R-module A such that S is α-small short and
A
S is β-small short. Let µ = sup{α, β}, then A is γ-small short such that µ ⩽ γ ⩽ µ+ 1.

Proof. Since B is α-small short, thus by Proposition 4.6, sn-dimS = α or sn-dimS = α + 1.
Similarly since A

S is β-small short, sn-dim A
S = β or sn-dim A

S = β + 1. We infer that A

has small Noetherian dimension and sn-dimA = sup{sn-dimS, sn-dim A
S }, by Lemma 3.9.

Therefore µ ⩽ sn-dimA ⩽ µ + 1. But by Remark 4.2, A is γ-small short for some ordinal
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number γ and by Proposition 4.6, γ ⩽ sn-dimA ⩽ γ + 1. It follows that γ = µ, or γ = µ+ 1

(note, we always have µ ⩽ γ) and we are done.

By Lemma 4.18, we have the following result which is the counterpart of Proposition 5.5,
for α-almost small Noetherian modules.

Proposition 5.6. Let S be a small submodule of an R-module A such that S is α-almost
small Noetherian and A

S is β-almost small Noetherian. Let µ = sup{α, β}, then A is γ-almost
small Noetherian such that µ ⩽ γ ⩽ µ+ 1.

Corollary 5.7. Let A1 is an α1-small short(resp., α1-almost small Noetherian) module and
A2 is an α2-small short(resp., α2-almost small Noetherian) module and α = sup{α1, α2}.
Then A1 ⊕A2 is γ-small short(resp., γ-almost small Noetherian), for some ordinal number γ

such that α ≤ γ ≤ α+ 1.

Proposition 5.8. Let A be a nonzero α-small short module, which is not a small atomic
module. Then A contains a small submodule S such that sn-dim A

S ≤ α

Proof. Since A is not small atomic, we conclude that there exists a small submodule S ⊂ A,
such that sn-dimS = sn-dimA. The Proposition 4.6, implies that either sn-dimA = α or
sn-dimA = α + 1. If sn-dimA = α, then sn-dim A

S ≤ α. Therefore we may assume that
sn-dimA = α+ 1. If sn-dim A

S = α+ 1, then A is β-small short for some β ≥ α+ 1, which is
a contradiction. Thus sn-dim A

S ≤ α.

Proposition 5.9. If for each small submodule S of A, A
S is γ-small short for some ordinal

number γ ≤ α. Then sn-dimA ≤ α + 1, in particular, if A has finite hollow dimension, then
A is µ-short for some ordinal µ ≤ α+ 1.

Proof. Let S be any small submodule of A. Thus A
S is γ-small short for some ordinal number

γ ≤ α. By proposition 4.6, we infer that sn-dim A
S ≤ γ + 1 ≤ α + 1. Hence sn-dimA =

sup{sn-dim A
S |S ≪ A} ≤ α+1, by Lemma 3.7 and we are done. The final part is now evident.

The following result is the counterpart of Propositions 5.8, for α-almost small Noetherian
modules.

Proposition 5.10. If for each small submodule S of A, S (resp., A
S ) is γ-almost small

Noetherian for some ordinal number γ ≤ α. Then sn-dimA ≤ α + 1. In particular, A is
µ-almost small Noetherian for some ordinal µ ≤ α + 1 (resp., sn-dimA ≤ α + 1 and A is a
µ-almost small Noetherian for some ordinal µ ≤ α+ 1).
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Before concluding this section with our last observation, let us cite the next result which is
in [14, Theorem 2.9], see also [13, Theorem 3.2].

Theorem 5.11. For a commutative ring R the following statements are equivalent.

(1) Every R-module with finite Noetherian dimension is Noetherian.
(2) Every Artinian R-module is Noetherian.
(3) Every R-module with Noetherian dimension is both Artinian and Noetherian.

In view of Proposition 4.6 and Corollary 5.3, we have the following result.

Proposition 5.12. Let R be a commutative ring. The following statements are equivalent.

(1) Every Artinian R-module is Noetherian.
(2) Every m-small short module with finite hollow dimension, is both Artinian and Noe-

therian for all integers m ≥ −1.
(3) Every α-small short module with finite hollow dimension, is both Artinian and Noe-

therian for all ordinals α.
(4) Every m-almost small short module with finite hollow dimension, is both Artinian and

Noetherian for all integers m ≥ −1.
(5) Every α-almost small short module with finite hollow dimension, is both Artinian and

Noetherian for all ordinals α.
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