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R-NOTION OF CONJUGACY IN PARTIAL AND FULL INJECTIVE
TRANSFORMATIONS

AFTAB HUSSAIN SHAH AND MOHD RAFIQ PARRAY∗

Abstract. In this paper, we define a new notion of conjugacy in semigroups that reduces

to the n-notion of conjugacy in an inverse semigroup. We compare our new notion with

the existing notions. We characterize the notion in partial injective and in full injective

transformations, and determine the conjugacy classes in these semigroups.

1. introduction

The concept of conjugacy is essential as far as group theory is concerned. More importantly
most of the famous results on finite groups involve the use of conjugacy in their proofs. Semi-
groups are a generalizations of groups, and the theory of semigroups has evolved as a result
of generalizing the results of groups to semigroups. Like other notions of groups, it becomes
natural to try to generalize the notion of conjugacy from groups to semigroups. Since the
definition of conjugacy in a group involves the existence of inverses, the apparent choice for
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elements a, b ∈ S, where S is a semigroup, to be conjugate of each other is the existence of
an element g ∈ S1 (a semigroup obtained by adjoining identity 1) such that ag = gb. How-
ever, unlike groups, this relation is not necessarily transitive in an arbitrary semigroup. This
prompted semigroup theorists to search for the best suitable notions of conjugacy, and as a
result, various notions of conjugacy have been studied so far.

Before introducing the various notions of conjugacy, we recall some of the semigroup the-
oritical notions that will require in subsequent sections. We refer the reader to Howie [4] for
any unexplained terminology in semigroups.

A semigroup S is called an inverse semigroup if for every a ∈ S, there is a unique a−1 ∈ S

(called the inverse of a) such that aa−1a = a and a−1aa−1 = a−1.
For a non-empty set X, P(X) denotes the set of all partial tranformations on X and T (X)

denotes the set of all full tranformations on X. We denote by I(X) the symmetric inverse
semigroup on X, which is the subsemigroup of P(X) consisting of all partial injective trans-
formations on X. We denote by F(X) the subsemigroup of I(X) consisting of all full injective
transformations on X and by sym(X) the subsemigroup of F(X) consisting of all bijections
on X. Next, we will introduce various notions of conjugacy.

Let G be a group. For x, y ∈ G, we say x is conjugate to y if there exists p ∈ G such that
y = p−1xp, which is equivalent to xp = py. Due to this fact ∼l notion was introduced in a
semigroup S defined as

x ∼l y ⇔ ∃ p ∈ S1 such that xp = py

where S1 is S with an identity adjoined. If x ∼l y, we say x is left conjugate to y [10, 12, 13].
The relation ∼l is always reflexive and transitive in any semigroup but not symmetric in
general. Lallement [9] has defined the conjugate elements of a free semigroup S as those
related by ∼l and showed that ∼l is equal to the following equivalence on the free semigroup
S:

x ∼p y ⇔ ∃ u, v ∈ S1 such that x = uv and y = vu

The relation ∼p is always reflexive and symmetric but not transitive in general.
The relation ∼l has been restricted to ∼o [10], and ∼p has been extended to ∼∗

p [7, 8], in
such a way that the modified relations are equivalences on an arbitrary semigroup S:

x ∼o y ⇔ ∃ p, q ∈ S1 such that xp = py and yq = qx.

∼∗
p is the transitive closure of ∼p. The relation ∼o is not useful for semigroups S with zero

since for every such S, we have ∼o= S × S. This deficiency has been remedied in [3], where
the following relation has been defined on an arbitrary semigroup S,

x ∼c y ⇔ ∃p ∈ P1(x), q ∈ P1(y) such that xp = py and yq = qx,



Alg. Struc. Appl. Vol. 9 No. 2 (2022) 135-148. 137

where for x ̸= 0, P(x) = {p ∈ S : (mx)p ̸= 0 for all mx ∈ S1x \ {0}}, S1x \ {0} denotes the
left principal ideal generated by x and P(0) = {1}. The relation ∼c is an equivalence relation
and it does not reduce to S×S if S has a zero, and it is equal to ∼o if S does not have a zero.

Furthermore, J. Konieczny in [6] introduced the ∼n notion of conjugacy in semigroups. If
S is a semigroup and let x, y ∈ S. Then,

x ∼n y ⇔ ∃ p, q ∈ S1 such that xp = py, yq = qx, x = pyq and y = qxp.

This relation is an equivalence relation in any semigroup and does not get reduced to a universal
relation in a semigroup with zero.

The aim of this paper is to introduce a new definition of conjugacy in an arbitrary semigroup.
The new notion ∼r is an equivalence relation in any semigroup and does not get reduced to
a universal relation in a semigroup with zero. The beauty of r-notion is due to the following
properties.

(1) It contains ∼n notion of conjugacy. i.e, ∼n⊆∼r.
(2) It coincides with ∼n and ∼i notion of conjugacy in an inverse semigroup.
(3) Unlike the n-notion of conjugacy, where there are only two conjugators, we have more

freedom in r-notion; the number of conjugators is four, here.

2. The notion ∼r of conjugacy

Let S be a semigroup and let a, b ∈ S. Then,

x ∼r y ⇔ ∃ p, q, u, v ∈ S1 such that xp = py, yq = qx, x = pyu and y = qxv.

In the following result we show that r-notion is an equivalence relation in any semigroup and
it does not get reduced to a universal relation in a semigroup with zero.

Theorem 2.1. If S is a semigroup, then

(1) ∼r is an equivalence relation in any semigroup.
(2) [0]r = {0}.
(3) If S is a group, then ∼r reduces to the usual notion of conjugacy.

Proof. (1) Let x ∼r y then there exist p, q, u, v ∈ S1 such that xp = py, yq = qx, x =

pyu and y = qxv.

(i) Reflexivity: We take p = q = u = v = 1, and we get the required result.
(ii) Symmetry: This follows by definition.
(iii) Transitivity: Let x ∼r y and y ∼r z. Then there exist p1, q1, u1, v1 and p2, q2, u2, v2

such that xp1 = p1y, yq1 = q1x, x = p1yu1 and y = q1xv1 and yp2 = p2z, zq2 =

q2y, y = p2zu2 and z = q2yv2. Now ap1p2 = p1yp2 = p1p2z, zq2q1 = q2yq1 = q2q1x,
x = p1yu1 = p1p2zu2u1 and z = q2yv2 = q2q1xv1v2. Hence x ∼r z.
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(2) Let x ̸= 0 and let x ∼r 0. Then there exist p, q, u, v ∈ S1 such that xp = p0, 0q = qx, x =

p0u and 0 = qxv. This means x = 0. So we get [0]r = {0}.

(3) Let x ∼r y. Then there exist p, q, u, v ∈ S1 such that xp = py, yq = qx, x = pyu and
y = qxv. From xp = py, we can pre-multiply by p−1 on both sides to get y = g−1xg, which is
the usual notion of conjugacy.

In the next result, we compare the r-notion with the notions ∼n,∼c and ∼o.

Theorem 2.2. Let S be semigroup. Then ∼n⊆∼r⊆∼c⊆∼o.

Proof. Let x ∼n y. Then there exist p, q ∈ S1 such that xp = py, yq = qx, x = pyq and y = qxp.
we can take u = q and v = p so that we get x ∼r y. Thus ∼n⊆∼r. Next we prove ∼r⊆∼c. If
x = 0 then y = 0 since [0]r = 0. Suppose x ̸= 0 and let x ∼r y. Then there exist p, q, u, v ∈ S1

such that xp = py, yq = qx, x = pyu and y = qxv. Now let m ∈ S1 be such that mx ̸= 0.
Then (mx)p ̸= 0 since if (mx)p = 0 then mpy = 0 which implies mpyu = 0. This implies
mx = 0, which is a contradiction. Hence (mx)p ̸= 0. Similarly, if m ∈ S1 is such that my ̸= 0

then (my)q ̸= 0. So, p ∈ P1(x) and q ∈ P1(y). Hence x ∼c y. Since ∼c⊆∼o is obvious. Hence
we get the required result.

Let S be an inverse semigroup and let x, y ∈ S. Then x ∼i y if there exists p ∈ S1 such
that x = pyp−1 and y = p−1xp.

Theorem 2.3. [6, Theorem 2.6] Let S be an inverse semigroup and let a, b ∈ S. Then a ∼n b

if and only if there exists g ∈ S1 such that g1ag = b and gbg1 = a.

The semigroup I(X) is universal for the class of inverse semigroups because of the Vagner-
Preston theorem, which states that every inverse semigroup can be embedded in some I(X)

[4, Theorem 5.1.7]. This is analogous to the Cayley theorem for groups, which states that
every group can be embedded in some symmetric group Sym(X).

We now prove that ∼n reduces to ∼r in inverse semigroups.

Theorem 2.4. Let S be an inverse semigroup and let a, b ∈ S. Then a ∼r b if and only if
a ∼n b.

Proof. By Theorem 2.2, ∼n⊆∼r. So a ∼n b implies a ∼r b.
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For the converse, we may assume by the Vagner-Preston theorem that S is a subsemigroup
of some symmetric inverse semigroup I(X). Let a ∼r b. Then there exists g, h, u, v ∈ S1 such
that

ag = gb, bh = ha, a = gbu and b = hav.

We claim agg−1 = a. Clearly dom(agg−1) ⊆ dom(a). Let x ∈ dom(a) implies xa ∈ im(a) ⊆
dom(g) implies (xa) ∈ dom(g), which implies (xa)g ∈ dom(g−1). Hence x ∈ dom(agg−1),
which implies dom(a) ⊆ dom(agg−1). Thus dom(a) = dom(agg−1). Next for every x ∈
dom(a), x(agg−1) = (xa)gg−1 = xa. So agg−1 = a. Since ag = gb implies agg−1 = gbg−1 and
so a = gbg−1.

Next we claim that g−1gb = b. We have

g−1gb ̸= b

⇒ g−1ag ̸= b

⇒ g−1agg−1 ̸= bg−1

⇒ g−1a ̸= bg−1

⇒ g−1gbu ̸= bg−1

⇒ gg−1gbu ̸= gbg−1

⇒ gbu ̸= gbg−1

⇒ a ̸= gbg−1

which is a contradiction. Hence g−1gb = b. Since ag = gb, we have g−1ag = g−1gb we have
g−1ag = b. Thus a ∼i b and so by Theorem 2.3, a ∼n b.

By Theorem 2.3 and Theorem 2.4, we have ∼n=∼r=∼i in I(X).

3. ∼r notion of conjugacy in Partial Injective Transformations I(X)

Let X be any set and let R be a binary relation on X. Then Γ = (X,R) is called a
directed graph (or a digraph). We call any x ∈ X a vertex and any (x, y) ∈ R an arc of Γ.
For example, Let X = {a, b, c, d, e, f} and R = {(a, e), (b, f)}. Then the digraph Γ is as follows,

a• −→ e• b• −→
f
• c• d•.

For any σ ∈ I(X), Γ(σ) = (X,Rσ) represents a digraph, where for all x, y ∈ X, (x, y) ∈ Rσ if
and only if x ∈ dom(σ) and xσ = y. For example, If X = {1, 2, 3} and Rσ = {(1, 2), (2, 1)}.
Then the digraph Γ(σ) is represented as

1• −→ 2• −→ 1• .
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A vertex x ∈ X for which there is no y in X such that (x, y) ∈ R is called a terminal vertex
of Γ. A vertex x ∈ X is said to be an initial vertex if there is no y ∈ X for which (y, x) ∈ R.
A vertex x ∈ X is said to be a non-initial vertex if (y, x) ∈ R for some y ∈ X.

Let Γ1 = (X1, R1) and Γ2 = (X2, R2) be digraphs. A mapping φ from X1 to X2 is called a
homomorphism from Γ1 to Γ2 if for all x, y ∈ X1, (x, y) ∈ R1 implies (xφ, yφ) ∈ R2.

A partial mapping φ from X1 to X2 is called a partial homomorphism from Γ1 to Γ2 if for
all x, y ∈ dom(φ), (x, y) ∈ R1 implies (xφ, yφ) ∈ R2.

Definition 3.1. A partial homomorphism φ from X1 to X2 is said to be a restrictive partial
homomorphism from Γ1 to Γ2 if the following hold:

(a) If (x, y) ∈ R1, then x, y ∈ dom(φ) and (xφ, yφ) ∈ R2.
(b) If x is a terminal vertex in Γ1 and x ∈ dom(φ), then xφ is a terminal vertex in Γ2.

We say that Γ1 is rp-homomorphic to Γ2 if there is an rp-homomorphism from Γ1 to Γ2.

For any σ ∈ P(X) span(σ) represents dom(σ) ∪ im(σ). By σ ̸= 0 we mean dom(σ) ̸= ∅.
For any semigroups S and T , by S ≤ T we mean S is a subsemigroup of T .

Theorem 3.2. [11, Theorem 3.5] Let S ≤ P(X) and σ, τ ∈ S. Then σ ∼r τ if and only if
there are α, β, φ, ψ ∈ S1 for which α is an rp-homomorphism from Γ(σ) to Γ(τ) and β is an
rp-homomorphism from Γ(τ) to Γ(σ) with qαφ = q for every non-initial vertex q of Γ(σ) and
kβψ = k for every non-initial vertex k of Γ(τ).

If σ, τ ∈ T (X), then every homomorphism from Γ(σ) to Γ(τ) is an rp-homomorphism. So
we have the following corollary.

Corollary 3.3. [11, Corollary 3.6] Let S ≤ T (X) and σ, τ ∈ S. Then σ ∼r τ if and only
if there are α, β, φ, ψ ∈ S1 such that α is a homomorphism from Γ(σ) to Γ(τ) and β is a
homomorphism from Γ(τ) to Γ(σ) with qαφ = q for every non-initial vertex q of Γ(σ) and
kβψ = k for every non-initial vertex k of Γ(τ).

Definition 3.4. Let · · ·, p−2, p−1, p0, p1, p2, · · · be pairwise distinct elements of T . Then

(1) A δ ∈ P(X) is called a cycle of length k if δ = (p0p1p2 · · · pk−1) where (k ≥ 1). i.e.,
pj = pj−1δ, j = 1, 2, · · ·, k and p0 = pk−1σ and we write it as

p0 → p1 → p2 → · · · → pk−1 → p0.

(2) A ν ∈ P(X) is called a right ray if ν = [p0 p1 p2 · · · >. i.e., pj = pj−1ν, j ≥ 1 and we
write it as

p0 → p1 → p2 → · · · .

(3) A ω ∈ P(X) is called a double ray if ω =< · · · p−1 p0 p1 · · · >. i.e., pj = pj−1ω, j ∈ Z
and we write it as



Alg. Struc. Appl. Vol. 9 No. 2 (2022) 135-148. 141

· · · → p−1 → p0 → p1 → p2 → · · · .

(4) A λ ∈ P(X) is called a left ray, if λ =< · · · p2 p1 p0]. i.e., pjλ = pj−1, j ≥ 1 and we
write it as

· · · → p2 → p1 → p0.

(5) A θ ∈ P(X) is called a chain of length k if θ = [p0 p1 p2 · · · pk]. i.e., pj = pj−1θ,
j = 1, 2, · · ·, k and we write it as

p0 → p1 → p2 → · · · → pk.

These are called basic partial maps.

Let σ ∈ P(X) and let α be a basic partial map with α ⊂ σ. Then α is maximal in σ if x /∈
dom(α) implies x /∈ dom(σ) and x /∈ im(α) implies x /∈ im(σ) for every x ∈ span(α).

For example, let σ = [p q r s · ·· > ∪ [a b c p] ∈ P(Z). Then σ contains infinitely many right
rays. For example, [c p q r ··· > but only two of them, namely [p q r s··· > and [a b c p q r s··· >
are maximal in σ.

For any η ∈ {δ, θ, ω, ν, λ} and any φ ∈ I(X) such that span(η) ⊆ dom(φ), we define ηφ∗ to
be η in which pi has been replaced with piφ. For example,

δφ∗ = (p0φp1φ · · · pk−1φ) and λφ∗ =< · · ·p2φp1φp0φ]

Consider θ = [p0p1 · · · pk], ω =< · · ·p−1p0p1 · ·· >, ν = [p0p1p2 · ·· >, and λ =< · · ·p2p1p0] in
I(X). Then any [pipi+1 · · · pk] (0 ≤ i < k) is a terminal segment of θ; any [pipi+1pi+2 · ·· >
is a terminal segment of ω; any [pipi+1pi+2 · ·· > (i ≥ 0) is a terminal segment of ν; and any
[pipi−1 · ··](i ≥ 1) is a terminal segment of λ.

For σ ̸= 0, ∆σ denotes the set of cycles of σ and Θσ denotes the set of chains of σ. For
k ≥ 1, ∆k

σ denotes the set of cycles of length k in σ and Θk
σ denotes the set of chains of length

k in σ. Ωσ denotes the set of double rays of σ. Υσ denotes the set of right rays of σ and Λσ

denotes the set of left rays of σ.

Proposition 3.5. [2, Proposition 2.10] Let σ, τ, α ∈ I(X). Then α is an rp-homomorphism
from Γ(σ) to Γ(τ) if and only if for all k ≥ 1, δ ∈ ∆k

σ, θ ∈ Θk
σ, ω ∈ Ωσ, ν ∈ Υσ and λ ∈ Λσ

(1) δα∗ ∈ ∆k
τ , ωα

∗ ∈ Ωτ and λα∗ ∈ Λτ .
(2) either there is a unique θ1 ∈ Θm

τ with m ≥ k such that θα∗ is a terminal segment of θ1
or there is a unique λ1 ∈ Λτ such that θα∗ is a terminal segment of λ1.

(3) either there is a unique ν1 ∈ Υτ such that να∗ is a terminal segment of ν1 or there is
a unique ω1 ∈ Λτ such that ωα∗ is a terminal segment of ω1.

The following proposition follows easily from Theorem 3.2 and Proposition 3.5.
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Proposition 3.6. Let σ, τ ∈ I(X). Then σ ∼r τ if and only if there exist α, β, φ, ψ ∈ I(X)

such that the following conditions hold:

(1) For all k ≥ 1, δ ∈ ∆k
σ, θ ∈ Θk

σ, ω ∈ Ωσ, ν ∈ Υσ and λ ∈ Λσ such that

(i) δα∗ ∈ ∆k
τ , ωα

∗ ∈ Ωτ and λα∗ ∈ Λτ .

(ii) either there is a unique θ1 ∈ Θm
τ with m ≥ k such that θα∗ is a terminal seg-

ment of θ1 or there is a unique λ1 ∈ Λτ such that θα∗ is a terminal segment of λ1.

(iii) either there is a unique ν1 ∈ Υτ such that να∗ is a terminal segment of ν1
or there is a unique ω1 ∈ Λτ such that ωα∗ is a terminal segment of ω1

(2) For all k ≥ 1 δ′ ∈ ∆k
τ , θ′ ∈ Θk

τ , ω′ ∈ Ωτ , ν ′ ∈ Υτ and λ′ ∈ Λτ such that

(i) δ′β∗ ∈ ∆k
σ, ω

′β∗ ∈ Ωσ and λ′β∗ ∈ Λσ.

(ii) either there is a unique θ′1 ∈ Θm
σ with m ≥ k such that θ′β∗ is a terminal segment

of θ′1 or there is a unique λ′1 ∈ Λσ such that θ′β∗ is a terminal segment of λ′1.

(iii) either there is a unique ν ′1 ∈ Υσ such that ν ′β∗ is a terminal segment of ν ′1
or there is a unique ω′

1 ∈ Λσ such that ω′β∗ is a terminal segment of ω′
1.

(3) qαφ = q for every non-initial vertex q of Γ(σ) and kβψ = k for every non-initial vertex
k of Γ(τ).

Proof. Let σ ∼r τ . Then by Theorem 3.2, there are α, β, φ, ψ ∈ S1 for which α is an rp-
homomorphism from Γ(σ) to Γ(τ) and β is an rp-homomorphism from Γ(τ) to Γ(σ) with
qαφ = q for every non-initial vertex q of Γ(σ) and kβψ = k for every non-initial vertex k of
Γ(τ). Therefore by Proposition 3.5 we get the required result.

Conversely, let (1), (2) and (3) hold. Then by Proposition 3.5, α is an rp-homomorphism
from Γ(σ) to Γ(τ) and β is an rp-homomorphism from Γ(τ) to Γ(σ). So by (3) and Theorem
3.2 we get σ ∼r τ .

For a countable set A, we define two cardinal numbers that will be crucial in our character-
ization of r-conjugacy in the semigroup I(X). We denote by Z+ the set of positive integers
and by N the set Z+ ∪ {0}.
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Definition 3.7. Let A be countable and suppose that σ ∈ I(X). We define kσ ∈ N∪{ℵ0} by

kσ = sup{k ∈ Z+ : Θσ ̸= ∅}.

If Θk
σ = ∅ for every k ∈ Z+, we define kσ to be 0.

Suppose kσ ∈ Z+, that is, kσ is the largest positive integer k such that Θk
σ ̸= ∅. We define

mσ ∈ N by
mσ = maA{m ∈ {1, 2, · · ·, kσ} : |Θm

σ | = ℵ0}.

If Θm
σ is finite for every m ∈ {1, 2, · · ·, kσ}, we define mσ to be 0.

For any chain θ ∈ I(X), we denote the length of θ by l(θ). For example, if θ = [1234] then
l(θ) = 3.

Lemma 3.8. [2, Lemma 2.13] Let A be countably infinite and let σ, τ ∈ I(X). Suppose that
kσ = kτ = ℵ0. Then there exists an injective mapping p : Θσ → Θτ such that for every θ ∈ Θσ,
if θ ∈ Θk

σ and θp ∈ Θm
τ , then m ≥ k.

Theorem 3.9. [2, Theorem 2.14] Suppose that A is countable. Let σ, τ ∈ I(X). Then σ ∼c τ

if and only if the following conditions are satisfied:

(1) |∆k
σ| = |∆k

τ | for every k ∈ Z+, |Ωσ| = |Ωτ | and |Λσ| = |Λτ |;
(2) If Ωσ is finite, then |Υσ| = |Υτ |; and
(3) If Λσ is finite, then

(i) kσ = kτ ; and
(ii) If kσ ∈ Z+, then mσ = mτ and for every k ∈ {mσ + 1, · · ·, kσ}, |Θk

σ| = |Θk
τ |.

In the next result we characterize the r-notion in I(X).

Proposition 3.10. Suppose that A is countable. Let σ, τ ∈ I(X). Then σ ∼r τ if and only if
the following conditions are satisfied:

(1) |∆k
σ| = |∆k

τ | for every k ∈ Z+, |Ωσ| = |Ωτ | and |Λσ| = |Λτ |;
(2) If Ωσ is finite, then |Υσ| = |Υτ |; and
(3) If Λσ is finite, then

(i) kσ = kτ ; and
(ii) If kσ ∈ Z+, then mσ = mτ and for every k ∈ {mσ + 1, · · ·, kσ}, |Θk

σ| = |Θk
τ |.

(4) There are α, β, φ, ψ ∈ S1 such that qαφ = q for every non-initial vertex q of Γ(σ) and
kβψ = k for every non-initial vertex k of Γ(τ).

Proof. Suppose σ ∼r τ . Then by Theorem 3.2, there are α, β, φ, ψ ∈ S1 for which α is an
rp-homomorphism from Γ(σ) to Γ(τ) and β is an rp-homomorphism from Γ(τ) to Γ(σ) with
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qαφ = q for every non-initial vertex q of Γ(σ) and kβψ = k for every non-initial vertex k of
Γ(τ) As σ ∼r τ implies σ ∼c τ , therefore by Proposition 3.9, (1), (2) and (3) hold.

Conversely, suppose condition (1), (2), (3) and (4) holds We will define an injective ho-
momorphism φ from Γ(σ) to Γ(τ). By (1), for every k ∈ Z+, there is an injective mapping
fk : ∆k

σ → ∆k
τ .

Suppose that both Ωσ and Λσ are infinite. Then |Ωσ ∪ Υσ| = |Ωτ | and |Λσ ∪ Θσ| = |Λτ |
and so there are injective mappings g : Ωσ ∪ Υσ → Υτ and d : Λσ ∪ Θσ → Λτ . For all
k ≥ 1, δ ∈ ∆k

σ, ω ∈ Ωσ, λ ∈ Λσ, ν ∈ Υσ and θ ∈ Θσ, we define φ on span(δ)∪ span(ω)∪
span(λ)∪ span(ν)∪ span(θ) in such a way that δφ∗ = δfk, ωφ

∗ = ωg, λφ∗ = λd, νφ∗ is a
terminal segment of νg, and θφ∗ is a terminal segment of θd. Note that this defines φ for
every vertex x in Γ(σ). By the definition of φ and Proposition 3.5, φ ∈ I(X) and φ is an
rp-homomorphism from Γ(σ) to Γ(τ).

Suppose that Ωσ is finite and Λσ is infinite. Then |Υσ| = |Υτ | by (2), and so there exists
an injective mapping j : Υσ → Υτ . Let fk : ∆k

σ → ∆k
τ (k ∈ Z+) and d : Λσ ∪ Θσ → Λτ

be the injective mappings defined in the previous paragraph. Since |Ωσ| = |Ωτ |, there exists
an injective mapping g : Ωσ → Ωτ . We define φ as in the previous paragraph, except that
νφ∗ = νj for every ν ∈ Υσ. Again, φ ∈ I(X) and φ is an rp-homomorphism from Γ(σ) to
Γ(τ).

Suppose that Ωσ is infinite and Λσ is finite. Then kσ = kτ by (3)(i). Let fk : ∆k
σ → ∆k

τ (k ∈
Z+) and g : Ωσ ∪ Υσ → Ωτ be the injective mappings defined in the case in which both Ωσ

and Λσ are infinite. Since |Λσ| = |Λτ |, there exists an injective mapping d : Λσ → Λτ .
Suppose that kσ = ℵ0. Then by lemma 3.4, there is an injective mapping p : Θσ → Θτ such

that for every θ ∈ Θσ, if θ ∈ Θk
σ and θp ∈ θmτ , then m ≥ k. We define φ as in the case in which

both Ωσ and Λσ are infinite, except that θφ∗ is a terminal segment of θp for every θ ∈ Θσ.
Again, φ ∈ I(X) and φ is an rp-homomorphism from Γ(σ) to Γ(τ).

Suppose that kσ < ℵ0. If kσ = 0, then Θσ = Θτ = ∅. Suppose that kσ ∈ Z+. Then by
(3)(ii), mσ = mτ and for every k ∈ {mσ + 1, · · ·, kσ}, |Θk

σ| = |Θk
τ |. Let m = mσ. We have

|Θ1
σ ∪ · · · ∪ Θm

σ | = |Θm
τ | = ℵ0 and |Θk

σ| = |Θk
τ | for every k > m. Thus, there are injective

mappings s : Θσ ∪ · · · ∪Θm
σ → Θm

σ and tk : Θk
σ → Θk

τ for every k > m. We define φ (whether
kσ is 0 or not) as in the case when both Ωσ and are infinite, except that for every θ ∈ Θσ, θφ∗

is a terminal segment of θs if θ ∈ Θk
σ with 1 ≤ k ≤ m, and θφ∗ is a terminal segment of θtk if

θ ∈ Θk
σ with k > m. As in the previous cases, φ ∈ I(X) and φ is an rp-homomorphism from

Γ(σ) to Γ(τ).
Finally, if both Ωσ and Ωσ are finite, we define an injective rp-homomorphism φ from Γ(σ)

to Γ(τ) as in the case in which Ωσ is infinite and Λσ is finite, except that νφ∗ = νj for every
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ν ∈ Υσ, where j : Υσ → Υτ is an injective mapping from the case in which Ωσ is finite and
Λσ is infinite.

We have proved that there exists an injective rp-homomorphism φ from Γ(σ) to Γ(τ). By
symmetry, there exists an injective rp-homomorphism ψ from Γ(τ) to Γ(σ). Hence, σ ∼r τ by
Theorem 3.2.

4. ∼r notion of Conjugacy in Full Injective Transformations F(X)

For σ ∈ F(X) we denote by Xσ, Yσ and Zσ the set of maximal right rays contained in σ,
the set of double rays contained in σ and the set of cycles contained in σ.

For µ = [a0a1a2 · ·· >,ω =< · · ·a−1a0a1 · ·· >, δ = (a0a1 · · · ak−1) and any φ in F(X), we
define:

µφ∗ = [a0φa1φa2φ · ·· >,

ωφ∗ =< · · ·a−1φa0φa1φ · ·· >,

δφ∗ = (a0φa1φ · · · ak−1φ).

Proposition 4.1. [3, Proposition 7.3] Let σ, τ, α ∈ F(X). Then α is a homomorphism from
Γ(σ)to Γ(τ) if and only if for all µ ∈ Xσ, ω ∈ Yσ, and δ ∈ Zσ:

(1) either there is a unique µ1 ∈ Xτ such that µα∗ ⊆ µ1 or there is a unique ω1 ∈ Yτ such
that µα∗ ⊂ ω1.

(2) ωα∗ ∈ Yτ and δα∗ ∈ Zτ .

Proposition 4.2. Let σ, τ ∈ F(X). Then σ ∼r τ if and only if there are α, β, φ, ψ ∈ S1 such
that

(1) For all µ ∈ Xσ, ω ∈ Yσ, and δ ∈ Zσ:
(i) either there is a unique µ1 ∈ Xτ such that µα∗ ⊆ µ1 or there is a unique ω1 ∈ Yτ

such that µα∗ ⊂ ω1.
(ii) ωα∗ ∈ Yτ and δα∗ ∈ Zτ .

(2) For all µ′ ∈ Xτ , ω
′ ∈ Yτ , and δ′ ∈ Zτ :

(i) either there is a unique µ′1 ∈ Xσ such that µ′β∗ ⊆ µ′1 or there is a unique ω′
1 ∈ Yσ

such that µ′β∗ ⊂ ω′
1.

(ii) ω′β∗ ∈ Yσ and δ′ψ∗ ∈ Zσ.

(3) qαφ = q for every non-initial vertex q of Γ(σ) and kβψ = k for every non-initial vertex
k of Γ(τ).

Proof. Let σ ∼r τ then by Corollary 3.3, there are α, β, φ, ψ ∈ F(X) such that α is a ho-
momorphism from Γ(σ) to Γ(τ) and β is a homomorphism from Γ(τ) to Γ(σ) with qαφ = q



146 A. H. Shah and M. R. Parray

for every non-initial vertex q of Γ(σ) and kβψ = k for every non-initial vertex k of Γ(τ). By
Proposition 4.1, (1) and (2) hold.

Conversely, let (1), (2) and (3) holds. Then by Proposition 4.1, α is a homomorphism from
Γ(σ) to Γ(τ). Similarly β is a homomorphism from Γ(τ) to Γ(σ). Then by Corollary 3.3,
σ ∼r τ .

Lemma 4.3. [3, Lemma 7.5] Let A1, B1, A2 and B2 be sets such that A1 ∩ B1 = ∅, A2 ∩
B2 = ∅, |A1| + |B1| ≤ |A2| + |B2| and |B1| ≤ |B2|. Then there is an injective mapping
f : A1 ∪B1 → A2 ∪B2 such that xf ∈ B2 for every x ∈ B1.

Theorem 4.4. [3, Theorem 7.6] Let σ, τ ∈ F(X). Then σ ∼c τ in F(X) if and only if
|Xσ|+ |Yσ| = |Xτ |+ |Yτ |, |Yσ| = |Yτ | and |Zn

σ | = |Zn
τ | for every n ≥ 1.

In the next result we characterize the r-notion in F(X).

Theorem 4.5. Let σ, τ ∈ F(X). Then σ ∼r τ in F(X) if and only if |Xσ| + |Yσ| =

|Xτ |+ |Yτ |, |Yσ| = |Yτ | and |Zn
σ | = |Zn

τ | for every n ≥ 1 and there are α, β, φ, ψ ∈ F(X) such
that qαφ = q for every non-initial vertex q of Γ(σ) and kβψ = k for every non-initial vertex
k of Γ(τ).

Proof. Suppose σ ∼r τ in F(X). Then by Corollary 3.3, there are α, β, φ, ψ ∈ F(X) such that
α is a homomorphism from Γ(σ) to Γ(τ) and β is a homomorphism from Γ(τ) to Γ(σ) with
qαφ = q for every non-initial vertex q of Γ(σ) and kβψ = k for every non-initial vertex k of
Γ(τ). Since ∼r⊆∼c, we obtain the required result by Theorem 4.4, we get required.

Conversely, suppose |Xσ| + |Yσ| = |Xτ | + |Yτ |, |Yσ| = |Yτ | and |Zn
σ | = |Zn

τ | for every n ≥ 1

and there are α, β, φ, ψ ∈ F(X) such that qαφ = q for every non-initial vertex q of Γ(σ) and
kβψ = k for every non-initial vertex k of Γ(τ). By Lemma 4.3, the mapping f : Xσ ∪ Yσ →
Xτ ∪ Yτ is injective such that ωf ∈ Yτ for every ω ∈ Yσ. For every n ≥ 1, fix a bijection
gn : Zn

σ → Zn
τ . Let n ≥ 1. For all µ ∈ Xσ, ω ∈ Yσ and δ ∈ Zσ, we define α on dom(µ)∪

dom(ω)∪ dom(δ) in such a way that µα∗ ⊂ µf, ωα∗ = ωf and δα∗ = δgn if µ ∈ Xσ, ω ∈ Yσ and
δ ∈ Zn

σ . Note that this defines α for every x ∈ X. By the definition of α and Proposition 4.1,
α ∈ F(X) and α is a homomorphism from Γ(σ) to Γ(τ). By symmetry, there is an injective
homomorphism β from Γ(τ) to Γ(σ). Hence σ ∼r τ by Corollary 3.3.

5. Number of Conjugacy classes

J.Koneiczny in [6] proved that if X is a finite set with n elements, then the symmetric inverse
semigroup I(X) has

∑n
r=0 p(r)p(n−r), n-conjugacy classes and if X is infinite, then I(X) has

κℵ0 , n-conjugacy classes. Also he proved that if X is finite with |X| = n, then F(X) has p(n),
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n-conjugacy classes and if X is infinite then both Sym(X) and F(X) have κℵ0 , n-conjugacy
classes. By Theorem 2.4, as ∼n=∼r in I(X). Since sym(X) ⊆ F(X) ⊆ I(X). Therefore
∼n=∼r in F(X) and sym(X). These facts enable us to have the following results.

Theorem 5.1. Let X be a non-empty set. Then

(1) If X is finite with |X| = n then I(X) has
∑n

r=0 p(r)p(n− r) r conjugacy classes;
(2) If X is infinite with |X| = ℵε then I(X) has κℵ0 r conjugacy classes where κ = ℵ0+ |ε|.

Theorem 5.2. Let X be a non-empty set. Then

(1) If X is finite with |X| = n, then F(X) has p(n) r-conjugacy classes.
(2) If X is infinite with |X| = ℵε, then Sym(X) and F(X) have κℵ0 r- conjugacy classes

, where κ = ℵ0 + |ε|.
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