

Algebraic Structures and Their Applications Vol. 9 No. 2 (2022) pp 121-133.

Research Paper

MODULES WHOSE SURJECTIVE ENDOMORPHISMS HAVE A $\gamma\text{-SMALL}$ KERNELS

ABDERRAHIM EL MOUSSAOUY* AND M'HAMMED ZIANE

ABSTRACT. In this paper, we introduce a proper generalization of that of Hopfian modules, called γ -Hopfian modules. A right *R*-module *M* is said to be γ -Hopfian, if any surjective endomorphism of *M* has a γ -small kernel. Some basic characterizations of γ -Hopfian modules are proved. We prove that a ring *R* is semisimple cosingular if and only if every *R*-module is γ -Hopfian. Further, we prove that the γ -Hopfian property is preserved under Morita equivalences. Some other properties of γ -Hopfian modules are also obtained with examples.

1. INTRODUCTION

Throughout this paper all rings have identity and all modules are unital right modules. We use the notations \subseteq , \leq and \leq^{\oplus} to denote inclusion, submodule and direct summand, respectively, and E(M), $Z^*(M)$, End(M) will denote the injective hull, the cosingular submodule, and the ring of endomorphisms of a module M. Recall that a submodule K of M is

DOI: 10.22034/as.2022.2677

MSC(2010): Primary 16D10; Secondary 16D40, 16D90.

Keywords: Dedekind finite modules, Generalized Hopfian modules, γ -Hopfian modules, Hopfian modules.

Received: 21 October 2020, Accepted: 01 May 2022.

^{*}Corresponding author

 $[\]ensuremath{\textcircled{O}}$ 2022 Yazd University.

said to be small in M ($K \ll M$), if for every submodule $L \leq M$ with K + L = M implies L = M. For a right R-module M, Ozcan [11], defined the submodule $Z^*(M)$ as a dual of singular submodule to be the set of all elements $m \in M$ such that mR is a small module, that is, $Z^*(M) = \{m \in M : mR \ll E(M)\}$. A right R-module M is called cosingular (resp., noncosingular) if $Z^*(M) = M$ (resp., $Z^*(M) = 0$). A submodule K of an R-module M is said to be μ -small in M ($K \ll_{\mu} M$), if for every submodule $L \leq M$ such that K + L = M with M/L cosingular implies M = L ([13]). It is clear that if A is a small submodule of M, then A is a μ -small submodule of M, the converse is not true in general. A submodule K of an R-module M is said to be γ -small in M ($K \ll_{\gamma} M$), if for every submodule $L \leq M$ such that K + L = M with K + L = M with M/L noncosingular implies M = L (see [8]). It is clear that if K is a small submodule of M, then K is a γ -small submodule of M, but the converse is not true in general.

The study of modules by properties of their endomorphisms has long been of interest. In [7], Hiremath introduced the concepts of Hopfian modules and rings. Later, in [12], Varadarajan, introduced the notion of co-Hopfian modules. An *R*-module *M* is called co-Hopfian (resp. Hopfian) if any injective (resp. surjective) endomorphism of *M* is an automorphism. Note that any Artinian module is co-Hopfian, and any Noetherian module is Hopfian, but the converse is not true in general. The additive group \mathbb{Q} of rational numbers is a non-Noetherian non-Artinian \mathbb{Z} -module, which is Hopfian and co-Hopfian. The notions Hopfian, co-Hopfian modules and their generalizations have been investigated by several authors, see, for instance, ([3], [4], [5], [6], [7], [12]).

In [5], Ghorbani and Haghany introduced the notion of generalized Hopfian modules. A right R-module M is called generalized Hopfian, if any surjective endomorphism of M has a small kernel.

In [4], we introduced and studied the concept of μ -Hopfian modules. A right *R*-module *M* is called μ -Hopfian, if any surjective endomorphism of *M* has a μ -small kernel.

By works mentioned we are motivated in this paper to introduce the notion of γ -Hopfian modules which is a proper generalization of that of Hopfian modules (Example 2.4), and in particular Noetherian modules. We call a module γ -Hopfian if any its surjective endomorphism has a γ -small kernel.

Recall that the module M is called Dedekind finite, if fg = 1 implies gf = 1 for each $f, g \in$ End(M). Consequently, M is a Dedekind finite module if and only if M is not isomorphic to any proper direct summand of itself. In [5, Corollary 1.4], it is shown that the concepts of Dedekind finite, Hopfian and generalized Hopfian modules equivalent for every (quasi-)projective module. It is clear that every generalized Hopfian module is γ -Hopfian, but the converse is not true in general (Example 3.5). Also, this example shows that a γ -Hopfian module need not be Dedekind finite. Therefore, we obtain the following diagram:

At the end of the paper, some open problems are given.

We list some properties of cosingular modules that will be used in the paper.

Lemma 1.1. [11]. For any ring R, the class of cosingular R-modules is closed under submodules, homomorphic images and direct sums but not (in general) under essential extensions or extensions.

Lemma 1.2. [11].

Let R be a right cosingular ring. Then any (right) R-module is cosingular

We list some properties of γ -small submodules that will be used in the paper.

Lemma 1.3. [8]. Let M be an R-module. Then the following statements hold.

- (1) Let $A \leq B \leq M$. Then $B \ll_{\gamma} M$ if and only if $A \ll_{\gamma} M$ and $B/A \ll_{\gamma} M/A$.
- (2) Let A, B be submodules of M with $A \leq B$, if $A \ll_{\gamma} B$, then $A \ll_{\gamma} M$.
- (3) Let $f: M \to M'$ be an epimorphism such that $A \ll_{\gamma} M$, then $f(A) \ll_{\gamma} M'$.
- (4) Let $M = M_1 \oplus M_2$ be an *R*-module and let $A_1 \leq M_1$ and $A_2 \leq M_2$. Then $A_1 \oplus A_2 \ll_{\gamma} M_1 \oplus M_2$ if and only if $A_1 \ll_{\gamma} M_1$ and $A_2 \ll_{\gamma} M_2$.

Definition 1.4. [6]. A right R-module M is called weakly co-Hopfian if any injective endomorphism of M is essential.

Examples 1.5. The following facts are well known:

- (1) Any Artinian R-module M (i.e., M has DCC on submodules), is co-Hopfian and it is weakly co-Hopfian [1].
- (2) The additive group \mathbb{Q} of rational numbers is a non-Artinian \mathbb{Z} -module, which is co-Hopfian and weakly co-Hopfian.

Definition 1.6. [9]. An *R*-module *M* is called quasi-projective if for any surjective homomorphism *g* of *M* onto *N* and any homomorphism, γ of *M* to *N*, there exists an endomorphism *h* of *M* such that: $\gamma = gh$ (i.e., there exists $h: M \to M$ such that the diagram

commute). Clearly, every projective module is quasi-projective.

Definition 1.7. [3]. A module M is called semi Hopfian if any surjective endomorphism of M has a direct summand kernel, i.e. any surjective endomorphism of M splits.

Examples 1.8. [3].

- (1) Any semisimple module is semi Hopfian.
- (2) Any quasi-projective module is semi Hopfian.
- (3) A vector space V over a field F is Hopfian if and only if it is finite dimensional, by [7, Theorem 16(ii)]. Thus an infinite-dimensional vector space over a field is semi Hopfian, but it is not Hopfian.
- (4) Any module with D2 is semi Hopfian. (Recall that a module M has D2 if any submodule N such that M/N is isomorphic to a direct summand of M is a direct summand of M).

Definition 1.9. [2]. An *R*-module *M* is said to be Fitting if for any endomorphism *f* of *M*, there exists a positive integer $n \ge 1$ such that $M = Kerf^n \oplus Imf^n$.

Remarks 1.10. The following facts are well known:

- (1) An *R*-module *M* is Fitting if and only if $\operatorname{End}(M)$ is strongly π -regular. (i.e., for every $f \in \operatorname{End}(M)$, there exists $g \in \operatorname{End}(M)$ and an integer *n* such that $f^n = gf^{n+1} = f^{n+1}g$). [2]
- (2) Every Artinian and Noetherian R-module is Fitting. [1]
- (3) Every Fitting R-module is Hopfian and co-Hopfian. [1]

2. γ -Hopfian modules

Motivated by the notion of Hopfian modules and the concept of generalized Hopfian modules, we define a γ -Hopfian module as follows.

Definition 2.1. Let M be an R-module. We say that M is γ -Hopfian if any surjective endomorphism of M has a γ -small kernel.

The next result gives several equivalent conditions for a γ -Hopfian module.

Theorem 2.2. Let M be an R-module. The following are equivalent:

Alg. Struc. Appl. Vol. 9 No. 2 (2022) 121-133.

- (1) M is γ -Hopfian.
- (2) For every surjective endomorphism f of M, if $N \ll_{\gamma} M$, then $f^{-1}(N) \ll_{\gamma} M$.
- (3) For any epimorphism $f: M/N \to M$, we have $N \ll_{\gamma} M$.
- (4) If f is a surjective endomorphism of M and if M/N is nonzero and noncosingular for some $N \leq M$, then $f(N) \neq M$.

Proof. (1) \Rightarrow (2) Let $f: M \to M$ is a surjective endomorphism and $N \ll_{\gamma} M$. Let $f^{-1}(N) + K = M$ for some $K \leq M$, where $Z^*(M/K) = 0$. Then N + f(K) = M. Since M/K is noncosingular and M/f(K) is an image of M/K, M/f(K) is noncosingular. Hence N + f(K) = M and $N \ll_{\gamma} M$, giving f(K) = M. So K + Ker(f) = M. Since M is γ -Hopfian, $Ker(f) \ll_{\gamma} M$. Hence M/K is noncosingular implies that K = M. Thus $f^{-1}(N) \ll_{\gamma} M$.

(2) \Rightarrow (3) Let $f : M/N \to M$ be an epimorphism and $\pi : M \to M/N$ be a canonical epimorphism. It is clear that $N \leq Ker(f\pi)$. By (2), $Ker(f\pi) = (f\pi)^{-1}(0) \ll_{\gamma} M$. Therefore $N \ll_{\gamma} M$ by Lemma 1.3.

(3) \Rightarrow (4) Let N be a proper submodule of M such that M/N is noncosingular and f: $M \rightarrow M$ a surjective endomorphism with f(N) = M. Then M = Ker(f) + N, moreover g: $M/Ker(f) \rightarrow M$ is an epimorphism, then $Ker(f) \ll_{\gamma} M$ by (3). Hence M = N, contradiction.

(4) \Rightarrow (1) Let $f: M \to M$ be a surjective endomorphism. If M = N + Ker(f), with M/N is noncosingular, hence M = f(M) = f(N). Then N = M by (4). Therefore $Ker(f) \ll_{\gamma} M$.

Corollary 2.3. Let M be a γ -Hopfian module, $g \in \text{End}(M)$ an epimorphism and $K \leq M$. Then $K \ll_{\gamma} M$ if and only if $g(K) \ll_{\gamma} M$ if and only if $g^{-1}(K) \ll_{\gamma} M$.

The following example shows that Hopfian modules form a proper subclass of γ -Hopfian modules.

Example 2.4. Let $M = \mathbb{Z}_{p^{\infty}}$. As any submodule of M is γ -small in M, we see that M is a γ -Hopfian \mathbb{Z} -modules. However M is not Hopfian since the multiplication by p induces an epimorphism of M which is not an isomorphism.

Theorem 2.5. Let M be an R-module. The following are equivalent:

- (1) M is γ -Hopfian.
- (2) There exists a fully invariant γ -small submodule N of M such that M/N is γ -Hopfian.

Proof. $(1) \Rightarrow (2)$ Clear.

(2) \Rightarrow (1) Assume that N is a fully invariant γ -small submodule of M with M/N is γ -Hopfian. Let $f: M \to M$ be a surjective endomorphism. Then $g: M/N \to M/N$ given by g(m+N) = f(m) + N is a well-defined surjective endomorphism, since M/N is γ -Hopfian, $Ker(g) \ll_{\gamma} M/N$. Suppose Ker(g) = L/N for some appropriate submodule L of M, then $L/N \ll_{\gamma} M/N$. Since $N \ll_{\gamma} M$, $L \ll_{\gamma} M$ by Lemma 1.3. As Ker(f) is a submodule of L, $Ker(f) \ll_{\gamma} M$. Therefore M is γ -Hopfian. \Box

Proposition 2.6. Let M be an R-module and let N be a γ -Hopfian fully invariant submodule of M such that M/N is Hopfian. Then M is γ -Hopfian.

Proof. Let $f: M \to M$ be a surjective endomorphism. Since the induced map $g: M/N \to M/N$ is surjective, it must be an isomorphism, thus $N = f^{-1}(N)$. Therefore $f|_N : N \to N$ is a surjective endomorphism. Now if N is γ -Hopfian, $Ker(f) \cap N \ll_{\gamma} N$. Since Ker(f) is a submodule of N, then $Ker(f) \ll_{\gamma} N \leq M$. Hence by Lemma 1.3, $Ker(f) \ll_{\gamma} M$ and M is γ -Hopfian. \Box

Lemma 2.7. Let P be a property of modules preserved under isomorphism. If a module M has the property P and satisfies ACC on non γ -small submodules N such that M/N has the property P, then M is γ -Hopfian.

Proof. Suppose M is not γ -Hopfian. Then there exists a submodule N_1 with N_1 not γ -small in M and $M/N_1 \simeq M$. Hence M/N_1 is not γ -Hopfian but satisfies P. Then there exists a submodule $N_2 \supseteq N_1$ with N_2/N_1 not γ -small in M/N_1 and $M/N_2 \simeq M/N_1$. So we get $N_1 \subseteq N_2$ and both non γ -small in M with $M/N_i \simeq M$ for i = 1, 2. Repeating the process yields a chain of submodules of the type that contradicts our hypothesis. Then M is γ -Hopfian. \square

Corollary 2.8. Let M be a weakly co-Hopfian module with ACC on non γ -small submodules N of M. If M/N is weakly co-Hopfian, then M is γ -Hopfian.

Proof. We may assume M is a weakly co-Hopfian module with ACC on non γ -small submodules and that P is the property of being weakly co-Hopfian. This property is preserved under isomorphism. Then by Lemma 2.7, M is γ -Hopfian. \Box

Example 2.9. Let R be a semisimple cosingular ring. Hence by Theorem 3.4, $M = R^{(\mathbb{N})}$ is a γ -Hopfian R-module. As $M \oplus M \cong M$ and $M \neq 0$, then M is not weakly co-Hopfian by [6, Theorem 1.1].

Proposition 2.10. Let M be an R-module with ACC on non γ -small submodules. Then M is γ -Hopfian.

Proof. We may assume M is nonzero with ACC on non γ -small submodules and that P is the property of being nonzero. By Lemma 2.7, M is γ -Hopfian. \Box

Remarks 2.11. (1) Every Noetherian *R*-module is γ -Hopfian.

(2) By [5, Remarks 1.19(iii)], the module $M = \sum \bigoplus \overline{Z}_p$ is generalized Hopfian. Hence it is γ -Hopfian. But M fail ACC on non γ -small submodules. Thus the converse of Proposition 2.10 do not hold in general.

Proposition 2.12. Let M be an R-module. If M satisfies DCC on non γ -small submodules, then M is γ -Hopfian.

Proof. Assume that M satisfies DCC on non γ -small submodules and M is not γ -Hopfian. Hence there exists an epimorphism $f: M \to M$ such that K = Ker(f) is not a γ -small submodule of M. Then each submodule L of M, which contains K, is not a γ -small submodule of M. As M is not γ -Hopfian, then it is not generalized Hopfian and it is not Artinian by [5, Remarks 1.19(i)]. Hence $M/K \cong M$ is not Artinian and there is a descending chain $L_1/K \supset L_2/K \supset L_3/K \supset \ldots$ of submodules of M/K. Thus $L_1 \supset L_2 \supset L_3 \supset \ldots$ is a descending chain of non γ -small submodule of M, a contradiction. \Box

Remarks 2.13. (1) Every Artinian *R*-module is γ -Hopfian.

(2) The module $M = \sum \oplus \overline{Z}_p$ is generalized Hopfian by [5, Remarks 1.19(iii)], then it is γ -Hopfian. But M fail DCC on non γ -small submodules. Thus the converse of Proposition 2.12 do not hold in general.

Proposition 2.14. Let M be an R-module with the property that for any endomorphism f of M there exists an integer $n \ge 1$ such that $Kerf^n \cap Imf^n \ll_{\gamma} M$. Then M is γ -Hopfian.

Proof. Let $f: M \to M$ be an homomorphism. Then there exists $n \ge 1$ such that $Kerf^n \cap Imf^n \ll_{\gamma} M$. If f is surjective then so is f^n , i.e., $Imf^n = M$, so we get that $Kerf^n \ll_{\gamma} M$. Since $Kerf \le Kerf^n$, $Kerf \ll_{\gamma} M$ by Lemma 1.3. Therefore M is γ -Hopfian. \Box

Examples 2.15.

- (1) Every proper submodule of \mathbb{Z} -module $M = \mathbb{Z}_{p^{\infty}}$ is γ -small, then for any endomorphism f of M there exists an integer $n \geq 1$ such that $Kerf^n \cap Imf^n \ll_{\gamma} M$. Hence M is a γ -Hopfian \mathbb{Z} -module.
- (2) If M is a Noetherian module, then for any endomorphism f of M there exists an integer $n \ge 1$ such that $Kerf^n \cap Imf^n = 0$. Hence M is γ -Hopfian.

Proposition 2.16. Any direct summand of a γ -Hopfian module M is γ -Hopfian.

Proof. Let K be a direct summand of M. Then there exists a submodule N of M such that $M = K \oplus N$. Let $f: K \to K$ be a surjective endomorphism of K, then f induces a surjective endomorphism of M, $f \oplus 1_N : M \to M$ with $(f \oplus 1_N)(k+n) = f(k) + n$, where $k \in K$ and $n \in N$. Since M is γ -Hopfian, then $Ker(f \oplus 1_N) \ll_{\gamma} M$. Hence $Kerf \ll_{\gamma} K$ by Lemma 1.3, and K is γ -Hopfian. \Box

Proposition 2.17. Let $M = M_1 \oplus M_2$ be an *R*-module. If for every $i \in \{1, 2\}$, M_i is a fully invariant submodule of M, then M is γ -Hopfian if and only if M_i is γ -Hopfian for each $i \in \{1, 2\}$.

Proof. \Rightarrow) Clear from Proposition 2.16.

(ǫ) Let $f = (f_{ij})$ be an epimorphism of M, where $f_{ij} \in Hom(M_i, M_j)$ and $i, j \in \{1, 2\}$. Since M_i is a fully invariant submodule of M, then $Hom(M_i, M_j) = 0$ for every $i, j \in \{1, 2\}$ with $i \neq j$. Since f is an epimorphism, f_{ii} is an epimorphism of M_i for each $i \in \{1, 2\}$. As M_i is γ-Hopfian for each $i \in \{1, 2\}$, $Ker(f_{ii}) \ll_{\gamma} M_i$. Then $Ker(f) = Ker(f_{11}) \oplus Ker(f_{22}) \ll_{\gamma} M_1 \oplus M_2 = M$ by Lemma 1.3. Hence M is γ-Hopfian. □

Definition 2.18. Let M and N be two R-modules. M is called γ -Hopfian relative to N, if for any epimorphism $f: M \to N$, $Ker(f) \ll_{\gamma} M$.

In view of the above definition, an *R*-module M is γ -Hopfian if and only if M is γ -Hopfian relative to M.

In the following Proposition, we characterize the γ -Hopfian modules in terms of their direct summands and factor modules.

Proposition 2.19. Let M and N be two R-modules. Then the following are equivalent:

- (1) M is γ -Hopfian relative to N.
- (2) For each $L \leq^{\oplus} M$, L is γ -Hopfian relative to N.
- (3) For each $L \leq M$, M/L is γ -Hopfian relative to N.

Proof. (1) \Rightarrow (2) Let $L \leq^{\oplus} M$ say $M = L \oplus K$, where $K \leq M$ and $f : L \to N$ an epimorphism. Let $\pi : M \to L$ be the natural projection. Then $f\pi : M \to N$ is an epimorphism and so $Ker(f\pi) \ll_{\gamma} M$ by (1). It is clear that $Ker(f\pi) = Ker(f) \oplus K$. Then $Ker(f\pi) = Ker(f) \oplus K \ll_{\gamma} M$. Hence by Lemma 1.3, $Ker(f) \ll_{\gamma} L$.

 $(2) \Rightarrow (1)$ Clear, take L = M.

(1) \Rightarrow (3) Let $L \leq M$ and $f : M/L \rightarrow N$ be an epimorphism. Then $f\pi : M \rightarrow N$ is an epimorphism, where $\pi : M \rightarrow M/L$ is the natural homomorphism. As $Ker(f\pi) =$

 $\pi^{-1}(Ker(f))$ and $Ker(f\pi) \ll_{\gamma} M$, $\pi(Ker(f\pi)) = Ker(f) \ll_{\gamma} M/L$ by Lemma 1.3. Hence M/L is γ -Hopfian relative to N.

(3) \Rightarrow (1) Clear, take L = 0.

Proposition 2.20. Let M be a semi Hopfian R-module. If M is co-Hopfian, then it is γ -Hopfian.

Proof. Let $f: M \to M$ be a surjective endomorphism. Since M is a semi Hopfian R-module, f splits, and hence there exists an endomorphism $g: M \to M$, such that fg = 1. This implies that g is an injective endomorphism. Now since M is co-Hopfian, g is an automorphism. Therefore f is an automorphism and M becomes a γ -Hopfian R-module. \Box

Corollaries 2.21. (1) Let M be an R-module with D2. If M is co-Hopfian, then it is γ -Hopfian.

- (2) Every semisimple co-Hopfian *R*-module is γ -Hopfian.
- (3) Every quasi-projective co-Hopfian R-module is γ -Hopfian.
- 3. Characterizations the class of rings R for which every R-module is γ -Hopfian

Lemma 3.1. Let M be an R-module and $N \leq M$. The following are equivalent.

- (1) $N \ll_{\gamma} M$.
- (2) If X + N = M, then $X \leq^{\oplus} M$ with M/X is a semisimple cosingular module.

Proof. (1) \Rightarrow (2) Let $Y \leq M$ such that $M/(X \oplus Y)$ is semisimple and injective, hence by [10, Lemma 1(iii)] $Z^*(M/(X \oplus Y)) = 0$. Since X + Y + N = M and $N \ll_{\gamma} M$, then $X \oplus Y = M$. To see that $M/X \cong Y$ is semisimple cosingular.

Let A be a submodule of Y. Then X + A + N = M. Arguing as above with X + A replacing X, we have that $X + A = X \oplus A$ is a direct summand of M, thus A is a direct summand of Y, so M/X is semisimple.

Write $Y = Z^*(Y) \oplus C$, where C is noncosingular. Then $M/(X \oplus Z^*(Y)) = (X \oplus Y)/(X \oplus Z^*(Y)) \cong C$ is noncosingular. Since $M = (X + Z^*(Y)) + N$, by (1) $X \oplus Z^*(Y) = M$. This shows that C = 0, implies $Z^*(Y) = Y$, then Y is cosingular.

 $(2) \Rightarrow (1)$ Let $K \leq M$ such that K+N = M and $Z^*(M/K) = 0$. By (2) M/K is semisimple cosingular, (i.e., $Z^*(M/K) = M/K$). Hence M/K = 0. Then M = K and $N \ll_{\gamma} M$.

Theorem 3.2. Let M be an R-module. The following are equivalent:

(1) M is γ -Hopfian.

(2) For every right *R*-module *Y*. If there is an epimorphism $M \to M \oplus Y$, then *Y* is semisimple and cosingular.

Proof. (1) \Rightarrow (2) Let $f: M \to M \oplus Y$ be an epimorphism, and $\pi: M \oplus Y \to M$ the natural projection. It is clear that $Ker(\pi f) = f^{-1}(0 \oplus Y)$. Since M is γ -Hopfian, $Ker(\pi f) \ll_{\gamma} M$. By Lemma 1.3, $0 \oplus Y = f[f^{-1}(0 \oplus Y)] = f(Ker(\pi f)) \ll_{\gamma} M \oplus Y$. Therefore $Y \ll_{\gamma} Y$ by Lemma 1.3. So, by Lemma 3.1, Y is semisimple and cosingular.

(2) \Rightarrow (1) Let f be a surjective endomorphism of M and Ker(f) + L = M for some $L \leq M$, where $Z^*(M/L) = 0$. Since $\frac{M}{Ker(f)} \oplus \frac{M}{L} \cong M \oplus \frac{M}{L}$, the epimorphism $M \to M \oplus \frac{M}{L}$ exists. By (6), M/L is semisimple and cosingular, then $Z^*(M/L) = M/L$. Then M/L = 0. Therefore M = L and $Ker(f) \ll_{\gamma} M$. \Box

Theorem 3.3. Let M be a (quasi-)projective R-module. Then the following are equivalent:

- (1) M is γ -Hopfian.
- (2) If f is a surjective endomorphism of M, then Ker(f) is semisimple cosingular.

Proof. (1) \Rightarrow (2) Let $f \in \text{End}(M)$ be a surjective endomorphism of M. Then by (1), $Ker(f) \ll_{\gamma} M$. Since M is (quasi-)projective, then there exists g in End(M) such that $fg = 1 \in \text{End}(M)$. It is clear that Ker(f) = (1 - gf)M and $M = Ker(f) \oplus (gf)M$. So, Ker(f) is semisimple and cosingular by Lemma 3.1.

(2) \Rightarrow (1) Let $f \in \text{End}(M)$ be a surjective endomorphism of M. Then by (2), Ker(f) is semisimple cosingular. We prove that $Ker(f) \ll_{\gamma} M$. Let Ker(f) + L = M for some $L \leq M$. Since Ker(f) is semisimple, $(Ker(f) \cap L) \oplus K = Ker(f)$ for some $K \leq Ker(f)$. Therefore $K \oplus L = M$. As K is semisimple cosingular by Lemma 1.1, hence $Ker(f) \ll_{\gamma} M$ by Lemma 3.1. \Box

In the following, we characterize the class of rings R for which every (free) R- module is γ -Hopfian.

Theorem 3.4. Let R be a ring. Then the following are equivalent:

- (1) Any *R*-module is γ -Hopfian.
- (2) Any projective *R*-module is γ -Hopfian.
- (3) Any free *R*-module is γ -Hopfian.
- (4) R is semisimple cosingular.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$ Clear.

 $(3) \Rightarrow (4)$ Let $M = R^{(\mathbb{N})}$, by (3) M is a γ -Hopfian R-module. Since $M \cong M \oplus M$, hence by Theorem 3.2, M is semisimple cosingular. Therefore R is semisimple cosingular.

Alg. Struc. Appl. Vol. 9 No. 2 (2022) 121-133.

(4) \Rightarrow (1) Let R be a semisimple cosingular ring and M be an R-module. Hence M is projective and for each surjective endomorphism f of M, Ker(f) is semisimple cosingular by Lemma 1.1 and Lemma 1.2. Hence by Theorem 3.3, M is γ -Hopfian. \Box

It is clear that every generalized Hopfian module is γ -Hopfian. The following example shows that the converse is not true, in general. Also, it shows that a γ -Hopfian module need not be Dedekind finite.

Example 3.5. Let R be a semisimple cosingular ring. Hence by Theorem 3.4, $M = R^{(\mathbb{N})}$ is a γ -Hopfian R-module. As $M \cong M \oplus M$ and $M \neq 0$, then M is not generalized Hopfian and it is not Dedekind finite by [5, Corollary 1.4].

The following result shows γ -Hopfian property is preserved under Morita equivalences.

Theorem 3.6. γ -Hopfian is a Morita invariant property.

Proof. Let T and S be Morita equivalent rings with inverse category equivalences

$$\alpha : \operatorname{Mod-}T \to \operatorname{Mod-}S, \ \beta : \operatorname{Mod-}S \to \operatorname{Mod-}T.$$

Let $M \in \text{Mod-}T$ be a γ -Hopfian module. To prove that $\alpha(M)$ is γ -Hopfian in Mod-S. Assume that $f : \alpha(M) \to \alpha(M) \oplus Y$ be an S-module epimorphism where Y is a right S-module. Since any category equivalence preserves direct sums and epimorphisms, we have $\beta(f) : \beta\alpha(M) \to \beta\alpha(M) \oplus \beta(Y)$, as an epimorphism in Mod-T.

Since $\beta \alpha(M) \cong M$, we have an epimorphism $M \to M \oplus \beta(Y)$ in Mod-*T*. This implies that $\beta(Y)$ is semisimple cosingular as an *T*-module, by Theorem 3.2. As any category equivalence preserves semisimple and cosingularity properties, *Y* is semisimple cosingular as an *S*-module. Therefore $\alpha(M)$ is γ -Hopfian, by Theorem 3.2. \Box

Corollary 3.7. Let R be a ring. The following are equivalent for $n \ge 2$:

- (1) Any *n*-generated *R*-module is γ -Hopfian.
- (2) Any cyclic $M_n(R)$ -module is γ -Hopfian.

Proof. Let $K = T^n$ and S = End(K). Then, it is known that

$$Hom_T(K,.): N_T \to Hom(_SK_T, N_T)$$

defines a Morita equivalence between Mod-T and Mod-S with the inverse equivalence.

$$-\otimes_S K: M_S \to M \otimes K.$$

Moreover, for any cyclic S-module M, $M \otimes_S K$ is an *n*-generated T-module and if N is a *n*-generated T-module, then $Hom_T(K, N)$ is a cyclic S-module. By Theorem 3.6, a Morita equivalence preserves the γ -Hopfian property of modules. Therefore, every cyclic S-module is γ -Hopfian if and only if every *n*-generated T-module is γ -Hopfian. \Box

In the following Corollary, we characterize the rings R for which every finitely generated free R-module is γ -Hopfian.

Corollary 3.8. Let R be a ring. Then the following statements are equivalent:

- (1) Every finitely generated free *R*-module is γ -Hopfian.
- (2) Every finitely generated projective *R*-module is γ -Hopfian.
- (3) $M_n(R)$ is γ -Hopfian $M_n(R)$ -module for each $n \ge 1$.

Proof. $(1) \Rightarrow (2)$ Clear from Proposition 2.16.

 $(2) \Rightarrow (1)$ Clear.

(1) \Leftrightarrow (3) Let *n* be a positive integer and $S = M_n(R)$. By Theorem 3.6 and the proof of Corollary 3.7, if $M = R^n$ is γ -Hopfian, then $Hom_R(M, M)$ is γ -Hopfian as an S-module. Conversely, if S is γ -Hopfian as an S-module, then $S \otimes_S M$ is γ -Hopfian as an R-module. \Box

4. CONCLUSION

In this paper the notion of γ -Hopfian modules are present. The relation between the class of γ -Hopfian and other classes of Hopfian modules are given. Some basic characterizations of γ -Hopfian modules are proved. And some other properties of γ -Hopfian modules are also obtained with examples.

For further studies we shall be interested in the following problems:

- What is the structure of rings whose finitely generated right modules are γ -Hopfian?
- Let R be a ring with identity, and M be a γ -Hopfian module. Is $M[X, X^{-1}] \gamma$ -Hopfian in $R[X, X^{-1}]$ -module?
- Let R be a γ -Hopfian ring and $n \ge 1$ an integer. Is the matrix ring $M_n(R) \gamma$ -Hopfian?

5. Acknowledgments

The authors would like to express their sincere thanks to the referee for his/her helpful suggestions and comments.

References

- F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules*, Vol. 13, Springer-Verlag, New York, 1992.
- [2] E. P. Armendariz, J. W. Fisher and R. L. Snider, On injective and surective endomorphisms of finitely generated modules, Comm. Alg., 6 No. 7 (1978) 659-672.
- [3] P. Aydogdu and A. C. Ozcan, Semi co-Hopfian and Semi Hopfian Modules, East West J. Math., 10 No. 1 (2008) 57-72.
- [4] A. El Moussaouy and M. Ziane, Modules in which every surjective endomorphism has a μ-small kernel, Ann. Univ. Ferrara, 66 (2020) 325-337.
- [5] A. Ghorbani, A. Haghany, Generalized Hopfian modules, J. Algebra, 255 No. 2 (2002) 324-341.
- [6] A. Haghany and M. R. Vedadi, Modules whose injective endomorphisms are essential, J. Algebra, 243 No. 2 (2001) 765-779.
- [7] V. A. Hiremath, Hopfian rings and Hopfian modules, Indian J. Pure Appl. Math., 17 No. 7 (1986) 895-900.
- [8] M. Hosseinpour and A. R. M. Hamzekolaee, γ-Small submodules and γ-Lifting modules, East West J. Math., 22 No. 1 (2020) 52-63.
- [9] A. Koehler, Quasi-projective and quasi-injective modules, Pacific J. Math., 36 No. 3 (1971) 713-720.
- [10] A. C. Ozcan and A. Harmanci, Characterizations of Some Rings by Functor Z*(.), Turkish J. Math., 21 (1997) 325-331.
- [11] A. C. Ozcan, Modules with small cyclic submodules in their injective hulls, comm. In Algebra., 30 No. 4 (2002) 1575-1589.
- [12] K. Varadarajan, Hopfian and co-Hopfian objects. Publications, Matematiques, 36 (1992) 293-317.
- [13] K. Wasan and M. K. Enas, On a Generalization of small submodules, Sci. Int. (Lahore), 30 No. 3 (2018) 359-365.

Abderrahim El Moussaouy

Department of Mathematics, Faculty of Sciences

University of Mohammed First

Oujda, Morocco.

a.elmoussaouy@ump.ac.ma

M'Hammed Ziane

Department of Mathematics, Faculty of Sciences

University of Mohammed First

Oujda, Morocco.

ziane12001@yahoo.fr