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MODULES WHOSE SURJECTIVE ENDOMORPHISMS HAVE A γ-SMALL
KERNELS

ABDERRAHIM EL MOUSSAOUY∗ AND M’HAMMED ZIANE

Abstract. In this paper, we introduce a proper generalization of that of Hopfian modules,

called γ-Hopfian modules. A right R-module M is said to be γ-Hopfian, if any surjective

endomorphism of M has a γ-small kernel. Some basic characterizations of γ-Hopfian modules

are proved. We prove that a ring R is semisimple cosingular if and only if every R-module is

γ-Hopfian. Further, we prove that the γ-Hopfian property is preserved under Morita equiva-

lences. Some other properties of γ-Hopfian modules are also obtained with examples.

1. Introduction

Throughout this paper all rings have identity and all modules are unital right modules.
We use the notations ⊆, ≤ and ≤⊕ to denote inclusion, submodule and direct summand,
respectively, and E(M), Z∗(M), End(M) will denote the injective hull, the cosingular sub-
module, and the ring of endomorphisms of a module M . Recall that a submodule K of M is
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said to be small in M (K ≪ M), if for every submodule L ≤ M with K + L = M implies
L = M . For a right R-module M , Ozcan [11], defined the submodule Z∗(M) as a dual of
singular submodule to be the set of all elements m ∈ M such that mR is a small module,
that is, Z∗(M) = {m ∈ M : mR ≪ E(M)}. A right R-module M is called cosingular (resp.,
noncosingular) if Z∗(M) = M (resp., Z∗(M) = 0). A submodule K of an R-module M is said
to be µ-small in M (K ≪µ M), if for every submodule L ≤ M such that K + L = M with
M/L cosingular implies M = L ([13]). It is clear that if A is a small submodule of M , then
A is a µ-small submodule of M , the converse is not true in general. A submodule K of an
R-module M is said to be γ-small in M (K ≪γ M), if for every submodule L ≤ M such that
K + L = M with M/L noncosingular implies M = L (see [8]). It is clear that if K is a small
submodule of M , then K is a γ-small submodule of M , but the converse is not true in general.

The study of modules by properties of their endomorphisms has long been of interest. In [7],
Hiremath introduced the concepts of Hopfian modules and rings. Later, in [12], Varadarajan,
introduced the notion of co-Hopfian modules. An R-module M is called co-Hopfian (resp.
Hopfian) if any injective (resp. surjective) endomorphism of M is an automorphism. Note
that any Artinian module is co-Hopfian, and any Noetherian module is Hopfian, but the
converse is not true in general. The additive group Q of rational numbers is a non-Noetherian
non-Artinian Z-module, which is Hopfian and co-Hopfian. The notions Hopfian, co-Hopfian
modules and their generalizations have been investigated by several authors, see, for instance,
([3], [4], [5], [6], [7], [12]).

In [5], Ghorbani and Haghany introduced the notion of generalized Hopfian modules. A
right R-module M is called generalized Hopfian, if any surjective endomorphism of M has a
small kernel.

In [4], we introduced and studied the concept of µ-Hopfian modules. A right R-module M

is called µ-Hopfian, if any surjective endomorphism of M has a µ-small kernel.
By works mentioned we are motivated in this paper to introduce the notion of γ-Hopfian

modules which is a proper generalization of that of Hopfian modules (Example 2.4), and in
particular Noetherian modules. We call a module γ-Hopfian if any its surjective endomorphism
has a γ-small kernel.

Recall that the module M is called Dedekind finite, if fg = 1 implies gf = 1 for each f, g ∈
End(M). Consequently, M is a Dedekind finite module if and only if M is not isomorphic to any
proper direct summand of itself. In [5, Corollary 1.4], it is shown that the concepts of Dedekind
finite, Hopfian and generalized Hopfian modules equivalent for every (quasi-)projective module.
It is clear that every generalized Hopfian module is γ-Hopfian, but the converse is not true
in general (Example 3.5). Also, this example shows that a γ-Hopfian module need not be
Dedekind finite.
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Therefore, we obtain the following diagram:

HopfianNoetherian Dedekind finite

generalized Hopfian

γ-Hopfian

At the end of the paper, some open problems are given.
We list some properties of cosingular modules that will be used in the paper.

Lemma 1.1. [11]. For any ring R, the class of cosingular R-modules is closed under submod-
ules, homomorphic images and direct sums but not (in general) under essential extensions or
extensions.

Lemma 1.2. [11].
Let R be a right cosingular ring. Then any (right) R-module is cosingular

We list some properties of γ-small submodules that will be used in the paper.

Lemma 1.3. [8]. Let M be an R-module. Then the following statements hold.

(1) Let A ≤ B ≤ M . Then B ≪γ M if and only if A ≪γ M and B/A ≪γ M/A.
(2) Let A, B be submodules of M with A ≤ B, if A ≪γ B, then A ≪γ M .
(3) Let f : M → M ′ be an epimorphism such that A ≪γ M , then f(A) ≪γ M ′.
(4) Let M = M1⊕M2 be an R-module and let A1 ≤ M1 and A2 ≤ M2. Then A1⊕A2 ≪γ

M1 ⊕M2 if and only if A1 ≪γ M1 and A2 ≪γ M2.

Definition 1.4. [6]. A right R-module M is called weakly co-Hopfian if any injective endo-
morphism of M is essential.

Examples 1.5. The following facts are well known:

(1) Any Artinian R-module M (i.e., M has DCC on submodules), is co-Hopfian and it is
weakly co-Hopfian [1].

(2) The additive group Q of rational numbers is a non-Artinian Z-module, which is co-
Hopfian and weakly co-Hopfian.

Definition 1.6. [9]. An R-module M is called quasi-projective if for any surjective homomor-
phism g of M onto N and any homomorphism, γ of M to N , there exists an endomorphism
h of M such that: γ = gh (i.e., there exists h : M → M such that the diagram



124 A. El Moussaouy and M. Ziane

NM 0

M

g

γh

commute). Clearly, every projective module is quasi-projective.

Definition 1.7. [3]. A module M is called semi Hopfian if any surjective endomorphism of
M has a direct summand kernel, i.e. any surjective endomorphism of M splits.

Examples 1.8. [3].

(1) Any semisimple module is semi Hopfian.
(2) Any quasi-projective module is semi Hopfian.
(3) A vector space V over a field F is Hopfian if and only if it is finite dimensional, by [7,

Theorem 16(ii)]. Thus an infinite-dimensional vector space over a field is semi Hopfian,
but it is not Hopfian.

(4) Any module with D2 is semi Hopfian. (Recall that a module M has D2 if any submod-
ule N such that M/N is isomorphic to a direct summand of M is a direct summand
of M).

Definition 1.9. [2]. An R-module M is said to be Fitting if for any endomorphism f of M ,
there exists a positive integer n ≥ 1 such that M = Kerfn ⊕ Imfn.

Remarks 1.10. The following facts are well known:

(1) An R-module M is Fitting if and only if End(M) is strongly π-regular. (i.e., for every
f ∈ End(M), there exists g ∈ End(M) and an integer n such that fn = gfn+1 =

fn+1g). [2]
(2) Every Artinian and Noetherian R-module is Fitting. [1]
(3) Every Fitting R-module is Hopfian and co-Hopfian. [1]

2. γ-Hopfian modules

Motivated by the notion of Hopfian modules and the concept of generalized Hopfian modules,
we define a γ-Hopfian module as follows.

Definition 2.1. Let M be an R-module. We say that M is γ-Hopfian if any surjective
endomorphism of M has a γ-small kernel.

The next result gives several equivalent conditions for a γ-Hopfian module.

Theorem 2.2. Let M be an R-module. The following are equivalent:
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(1) M is γ-Hopfian.
(2) For every surjective endomorphism f of M , if N ≪γ M , then f−1(N) ≪γ M .
(3) For any epimorphism f : M/N → M , we have N ≪γ M .
(4) If f is a surjective endomorphism of M and if M/N is nonzero and noncosingular for

some N ≤ M , then f(N) ̸= M .

Proof. (1) ⇒ (2) Let f : M → M is a surjective endomorphism and N ≪γ M . Let f−1(N) +

K = M for some K ≤ M , where Z∗(M/K) = 0. Then N + f(K) = M . Since M/K

is noncosingular and M/f(K) is an image of M/K, M/f(K) is noncosingular. Hence N +

f(K) = M and N ≪γ M , giving f(K) = M . So K + Ker(f) = M . Since M is γ-Hopfian,
Ker(f) ≪γ M . Hence M/K is noncosingular implies that K = M . Thus f−1(N) ≪γ M .

(2) ⇒ (3) Let f : M/N → M be an epimorphism and π : M → M/N be a canonical
epimorphism. It is clear that N ≤ Ker(fπ). By (2), Ker(fπ) = (fπ)−1(0) ≪γ M . Therefore
N ≪γ M by Lemma 1.3.

(3) ⇒ (4) Let N be a proper submodule of M such that M/N is noncosingular and f :

M → M a surjective endomorphism with f(N) = M . Then M = Ker(f) + N , moreover g :

M/Ker(f) → M is an epimorphism, then Ker(f) ≪γ M by (3). Hence M = N , contradiction.
(4) ⇒ (1) Let f : M → M be a surjective endomorphism. If M = N +Ker(f), with M/N

is noncosingular, hence M = f(M) = f(N). Then N = M by (4). Therefore Ker(f) ≪γ M .

Corollary 2.3. Let M be a γ-Hopfian module, g ∈ End(M) an epimorphism and K ≤ M .
Then K ≪γ M if and only if g(K) ≪γ M if and only if g−1(K) ≪γ M .

The following example shows that Hopfian modules form a proper subclass of γ-Hopfian
modules.

Example 2.4. Let M = Zp∞ . As any submodule of M is γ-small in M , we see that M is
a γ-Hopfian Z-modules. However M is not Hopfian since the multiplication by p induces an
epimorphism of M which is not an isomorphism.

Theorem 2.5. Let M be an R-module. The following are equivalent:

(1) M is γ-Hopfian.
(2) There exists a fully invariant γ-small submodule N of M such that M/N is γ-Hopfian.

Proof. (1) ⇒ (2) Clear.
(2) ⇒ (1) Assume that N is a fully invariant γ-small submodule of M with M/N is γ-

Hopfian. Let f : M → M be a surjective endomorphism. Then g : M/N → M/N given by
g(m + N) = f(m) + N is a well-defined surjective endomorphism, since M/N is γ-Hopfian,
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Ker(g) ≪γ M/N . Suppose Ker(g) = L/N for some appropriate submodule L of M , then
L/N ≪γ M/N . Since N ≪γ M , L ≪γ M by Lemma 1.3. As Ker(f) is a submodule of L,
Ker(f) ≪γ M . Therefore M is γ-Hopfian.

Proposition 2.6. Let M be an R-module and let N be a γ-Hopfian fully invariant submodule
of M such that M/N is Hopfian. Then M is γ-Hopfian.

Proof. Let f : M → M be a surjective endomorphism. Since the induced map g : M/N →
M/N is surjective, it must be an isomorphism, thus N = f−1(N). Therefore f |N : N → N

is a surjective endomorphism. Now if N is γ-Hopfian, Ker(f) ∩N ≪γ N . Since Ker(f) is a
submodule of N , then Ker(f) ≪γ N ≤ M . Hence by Lemma 1.3, Ker(f) ≪γ M and M is
γ-Hopfian.

Lemma 2.7. Let P be a property of modules preserved under isomorphism. If a module M

has the property P and satisfies ACC on non γ-small submodules N such that M/N has the
property P , then M is γ-Hopfian.

Proof. Suppose M is not γ-Hopfian. Then there exists a submodule N1 with N1 not γ-small
in M and M/N1 ≃ M . Hence M/N1 is not γ-Hopfian but satisfies P . Then there exists a
submodule N2 ⊇ N1 with N2/N1 not γ-small in M/N1 and M/N2 ≃ M/N1. So we get N1 ⊆ N2

and both non γ-small in M with M/Ni ≃ M for i = 1, 2. Repeating the process yields a chain
of submodules of the type that contradicts our hypothesis. Then M is γ-Hopfian.

Corollary 2.8. Let M be a weakly co-Hopfian module with ACC on non γ-small submodules
N of M . If M/N is weakly co-Hopfian, then M is γ-Hopfian.

Proof. We may assume M is a weakly co-Hopfian module with ACC on non γ-small submodules
and that P is the property of being weakly co-Hopfian. This property is preserved under
isomorphism. Then by Lemma 2.7, M is γ-Hopfian.

Example 2.9. Let R be a semisimple cosingular ring. Hence by Theorem 3.4, M = R(N) is a
γ-Hopfian R-module. As M ⊕M ∼= M and M ̸= 0, then M is not weakly co-Hopfian by [6,
Theorem 1.1].

Proposition 2.10. Let M be an R-module with ACC on non γ-small submodules. Then M

is γ-Hopfian.
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Proof. We may assume M is nonzero with ACC on non γ-small submodules and that P is the
property of being nonzero. By Lemma 2.7, M is γ-Hopfian.

Remarks 2.11. (1) Every Noetherian R-module is γ-Hopfian.
(2) By [5, Remarks 1.19(iii)], the module M =

∑
⊕Zp is generalized Hopfian. Hence

it is γ-Hopfian. But M fail ACC on non γ-small submodules. Thus the converse of
Proposition 2.10 do not hold in general.

Proposition 2.12. Let M be an R-module. If M satisfies DCC on non γ-small submodules,
then M is γ-Hopfian.

Proof. Assume that M satisfies DCC on non γ-small submodules and M is not γ-Hopfian.
Hence there exists an epimorphism f : M → M such that K = Ker(f) is not a γ-small
submodule of M . Then each submodule L of M , which contains K, is not a γ-small submodule
of M . As M is not γ-Hopfian, then it is not generalized Hopfian and it is not Artinian by
[5, Remarks 1.19(i)]. Hence M/K ∼= M is not Artinian and there is a descending chain
L1/K ⊃ L2/K ⊃ L3/K ⊃ ... of submodules of M/K. Thus L1 ⊃ L2 ⊃ L3 ⊃ ... is a descending
chain of non γ-small submodule of M , a contradiction.

Remarks 2.13. (1) Every Artinian R-module is γ-Hopfian.
(2) The module M =

∑
⊕Zp is generalized Hopfian by [5, Remarks 1.19(iii)], then it

is γ-Hopfian. But M fail DCC on non γ-small submodules. Thus the converse of
Proposition 2.12 do not hold in general.

Proposition 2.14. Let M be an R-module with the property that for any endomorphism f
of M there exists an integer n ≥ 1 such that Kerfn ∩ Imfn ≪γ M . Then M is γ-Hopfian.

Proof. Let f : M → M be an homomorphism. Then there exists n ≥ 1 such that Kerfn ∩
Imfn ≪γ M . If f is surjective then so is fn, i.e., Imfn = M , so we get that Kerfn ≪γ M .
Since Kerf ≤ Kerfn, Kerf ≪γ M by Lemma 1.3. Therefore M is γ-Hopfian.

Examples 2.15. .

(1) Every proper submodule of Z-module M = Zp∞ is γ-small, then for any endomorphism
f of M there exists an integer n ≥ 1 such that Kerfn ∩ Imfn ≪γ M . Hence M is a
γ-Hopfian Z-module.

(2) If M is a Noetherian module, then for any endomorphism f of M there exists an
integer n ≥ 1 such that Kerfn ∩ Imfn = 0. Hence M is γ-Hopfian.
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Proposition 2.16. Any direct summand of a γ-Hopfian module M is γ-Hopfian.

Proof. Let K be a direct summand of M . Then there exists a submodule N of M such that
M = K ⊕N . Let f : K → K be a surjective endomorphism of K, then f induces a surjective
endomorphism of M , f ⊕ 1N : M → M with (f ⊕ 1N )(k + n) = f(k) + n, where k ∈ K and
n ∈ N . Since M is γ-Hopfian, then Ker(f ⊕ 1N ) ≪γ M . Hence Kerf ≪γ K by Lemma 1.3,
and K is γ-Hopfian.

Proposition 2.17. Let M = M1 ⊕ M2 be an R-module. If for every i ∈ {1, 2}, Mi is a
fully invariant submodule of M , then M is γ-Hopfian if and only if Mi is γ-Hopfian for each
i ∈ {1, 2}.

Proof. ⇒) Clear from Proposition 2.16.
⇐) Let f = (fij) be an epimorphism of M , where fij ∈ Hom(Mi,Mj) and i, j ∈ {1, 2}.

Since Mi is a fully invariant submodule of M , then Hom(Mi,Mj) = 0 for every i, j ∈ {1, 2}
with i ̸= j. Since f is an epimorphism, fii is an epimorphism of Mi for each i ∈ {1, 2}. As Mi

is γ-Hopfian for each i ∈ {1, 2}, Ker(fii) ≪γ Mi. Then Ker(f) = Ker(f11) ⊕Ker(f22) ≪γ

M1 ⊕M2 = M by Lemma 1.3. Hence M is γ-Hopfian.

Definition 2.18. Let M and N be two R-modules. M is called γ-Hopfian relative to N , if
for any epimorphism f : M → N , Ker(f) ≪γ M .

In view of the above definition, an R-module M is γ-Hopfian if and only if M is γ-Hopfian
relative to M .

In the following Proposition, we characterize the γ-Hopfian modules in terms of their direct
summands and factor modules.

Proposition 2.19. Let M and N be two R-modules. Then the following are equivalent:
(1) M is γ-Hopfian relative to N .
(2) For each L ≤⊕ M , L is γ-Hopfian relative to N .
(3) For each L ≤ M , M/L is γ-Hopfian relative to N .

Proof. (1) ⇒ (2) Let L ≤⊕ M say M = L⊕K, where K ≤ M and f : L → N an epimorphism.
Let π : M → L be the natural projection. Then fπ : M → N is an epimorphism and
so Ker(fπ) ≪γ M by (1). It is clear that Ker(fπ) = Ker(f) ⊕ K. Then Ker(fπ) =

Ker(f)⊕K ≪γ M . Hence by Lemma 1.3, Ker(f) ≪γ L.
(2) ⇒ (1) Clear, take L = M .
(1) ⇒ (3) Let L ≤ M and f : M/L → N be an epimorphism. Then fπ : M → N

is an epimorphism, where π : M → M/L is the natural homomorphism. As Ker(fπ) =
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π−1(Ker(f)) and Ker(fπ) ≪γ M , π(Ker(fπ)) = Ker(f) ≪γ M/L by Lemma 1.3. Hence
M/L is γ-Hopfian relative to N .

(3) ⇒ (1) Clear, take L = 0.

Proposition 2.20. Let M be a semi Hopfian R-module. If M is co-Hopfian, then it is γ-
Hopfian.

Proof. Let f : M → M be a surjective endomorphism. Since M is a semi Hopfian R-module,
f splits, and hence there exists an endomorphism g : M → M , such that fg = 1. This implies
that g is an injective endomorphism. Now since M is co-Hopfian, g is an automorphism.
Therefore f is an automorphism and M becomes a γ-Hopfian R-module.

Corollaries 2.21. (1) Let M be an R-module with D2. If M is co-Hopfian, then it is
γ-Hopfian.

(2) Every semisimple co-Hopfian R-module is γ-Hopfian.
(3) Every quasi-projective co-Hopfian R-module is γ-Hopfian.

3. Characterizations the class of rings R for which every R-module is
γ-Hopfian

Lemma 3.1. Let M be an R-module and N ≤ M . The following are equivalent.

(1) N ≪γ M .
(2) If X +N = M , then X ≤⊕ M with M/X is a semisimple cosingular module.

Proof. (1) ⇒ (2) Let Y ≤ M such that M/(X ⊕ Y ) is semisimple and injective, hence by [10,
Lemma 1(iii)] Z∗(M/(X ⊕ Y )) = 0. Since X + Y +N = M and N ≪γ M , then X ⊕ Y = M .
To see that M/X ∼= Y is semisimple cosingular.

Let A be a submodule of Y . Then X+A+N = M . Arguing as above with X+A replacing
X, we have that X + A = X ⊕ A is a direct summand of M , thus A is a direct summand of
Y , so M/X is semisimple.

Write Y = Z∗(Y )⊕ C, where C is noncosingular. Then M/(X ⊕ Z∗(Y )) = (X ⊕ Y )/(X ⊕
Z∗(Y )) ∼= C is noncosingular. Since M = (X + Z∗(Y )) + N , by (1) X ⊕ Z∗(Y ) = M . This
shows that C = 0, implies Z∗(Y ) = Y , then Y is cosingular.

(2) ⇒ (1) Let K ≤ M such that K+N = M and Z∗(M/K) = 0. By (2) M/K is semisimple
cosingular, (i.e., Z∗(M/K) = M/K). Hence M/K = 0. Then M = K and N ≪γ M .

Theorem 3.2. Let M be an R-module. The following are equivalent:

(1) M is γ-Hopfian.
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(2) For every right R-module Y . If there is an epimorphism M → M ⊕ Y , then Y is
semisimple and cosingular.

Proof. (1) ⇒ (2) Let f : M → M ⊕ Y be an epimorphism, and π : M ⊕ Y → M the natural
projection. It is clear that Ker(πf) = f−1(0 ⊕ Y ). Since M is γ-Hopfian, Ker(πf) ≪γ M .
By Lemma 1.3, 0 ⊕ Y = f [f−1(0 ⊕ Y )] = f(Ker(πf)) ≪γ M ⊕ Y . Therefore Y ≪γ Y by
Lemma 1.3. So, by Lemma 3.1, Y is semisimple and cosingular.

(2) ⇒ (1) Let f be a surjective endomorphism of M and Ker(f)+L = M for some L ≤ M ,
where Z∗(M/L) = 0. Since M

Ker(f) ⊕
M
L

∼= M ⊕ M
L , the epimorphism M → M ⊕ M

L exists. By
(6), M/L is semisimple and cosingular, then Z∗(M/L) = M/L. Then M/L = 0. Therefore
M = L and Ker(f) ≪γ M .

Theorem 3.3. Let M be a (quasi-)projective R-module. Then the following are equivalent:

(1) M is γ-Hopfian.
(2) If f is a surjective endomorphism of M , then Ker(f) is semisimple cosingular.

Proof. (1) ⇒ (2) Let f ∈ End(M) be a surjective endomorphism of M . Then by (1),
Ker(f) ≪γ M . Since M is (quasi-)projective, then there exists g in End(M) such that
fg = 1 ∈ End(M). It is clear that Ker(f) = (1 − gf)M and M = Ker(f) ⊕ (gf)M . So,
Ker(f) is semisimple and cosingular by Lemma 3.1.

(2) ⇒ (1) Let f ∈ End(M) be a surjective endomorphism of M . Then by (2), Ker(f)

is semisimple cosingular. We prove that Ker(f) ≪γ M . Let Ker(f) + L = M for some
L ≤ M . Since Ker(f) is semisimple, (Ker(f) ∩ L) ⊕ K = Ker(f) for some K ≤ Ker(f).
Therefore K ⊕ L = M . As K is semisimple cosingular by Lemma 1.1, hence Ker(f) ≪γ M

by Lemma 3.1.

In the following, we characterize the class of rings R for which every (free) R- module is
γ-Hopfian.

Theorem 3.4. Let R be a ring. Then the following are equivalent:

(1) Any R-module is γ-Hopfian.
(2) Any projective R-module is γ-Hopfian.
(3) Any free R-module is γ-Hopfian.
(4) R is semisimple cosingular.

Proof. (1) ⇒ (2) ⇒ (3) Clear.
(3) ⇒ (4) Let M = R(N), by (3) M is a γ-Hopfian R-module. Since M ∼= M ⊕M , hence by

Theorem 3.2, M is semisimple cosingular. Therefore R is semisimple cosingular.
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(4) ⇒ (1) Let R be a semisimple cosingular ring and M be an R-module. Hence M is
projective and for each surjective endomorphism f of M , Ker(f) is semisimple cosingular by
Lemma 1.1 and Lemma 1.2. Hence by Theorem 3.3, M is γ-Hopfian.

It is clear that every generalized Hopfian module is γ-Hopfian. The following example shows
that the converse is not true, in general. Also, it shows that a γ-Hopfian module need not be
Dedekind finite.

Example 3.5. Let R be a semisimple cosingular ring. Hence by Theorem 3.4, M = R(N) is a
γ-Hopfian R-module. As M ∼= M ⊕M and M ̸= 0, then M is not generalized Hopfian and it
is not Dedekind finite by [5, Corollary 1.4].

The following result shows γ-Hopfian property is preserved under Morita equivalences.

Theorem 3.6. γ-Hopfian is a Morita invariant property.

Proof. Let T and S be Morita equivalent rings with inverse category equivalences

α : Mod-T → Mod-S, β : Mod-S → Mod-T .

Let M ∈ Mod-T be a γ-Hopfian module. To prove that α(M) is γ-Hopfian in Mod-S. Assume
that f : α(M) → α(M)⊕Y be an S-module epimorphism where Y is a right S-module. Since
any category equivalence preserves direct sums and epimorphisms, we have β(f) : βα(M) →
βα(M)⊕ β(Y ), as an epimorphism in Mod-T .

Since βα(M) ∼= M , we have an epimorphism M → M ⊕ β(Y ) in Mod-T . This implies that
β(Y ) is semisimple cosingular as an T -module, by Theorem 3.2. As any category equivalence
preserves semisimple and cosingularity properties, Y is semisimple cosingular as an S-module.
Therefore α(M) is γ-Hopfian, by Theorem 3.2.

Corollary 3.7. Let R be a ring. The following are equivalent for n ≥ 2:
(1) Any n-generated R-module is γ-Hopfian.
(2) Any cyclic Mn(R)-module is γ-Hopfian.

Proof. Let K = Tn and S = End(K). Then, it is known that

HomT (K, .) : NT → Hom(SKT , NT )

defines a Morita equivalence between Mod-T and Mod-S with the inverse equivalence.

−⊗S K : MS → M ⊗K.
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Moreover, for any cyclic S-module M , M ⊗S K is an n-generated T -module and if N is a
n-generated T -module, then HomT (K,N) is a cyclic S-module. By Theorem 3.6, a Morita
equivalence preserves the γ-Hopfian property of modules. Therefore, every cyclic S-module is
γ-Hopfian if and only if every n-generated T -module is γ-Hopfian.

In the following Corollary, we characterize the rings R for which every finitely generated
free R-module is γ-Hopfian.

Corollary 3.8. Let R be a ring. Then the following statements are equivalent:

(1) Every finitely generated free R-module is γ-Hopfian.
(2) Every finitely generated projective R-module is γ-Hopfian.
(3) Mn(R) is γ-Hopfian Mn(R)-module for each n ≥ 1.

Proof. (1) ⇒ (2) Clear from Proposition 2.16.
(2) ⇒ (1) Clear.
(1) ⇔ (3) Let n be a positive integer and S = Mn(R). By Theorem 3.6 and the proof

of Corollary 3.7, if M = Rn is γ-Hopfian, then HomR(M,M) is γ-Hopfian as an S-module.
Conversely, if S is γ-Hopfian as an S-module, then S ⊗S M is γ-Hopfian as an R-module.

4. Conclusion

In this paper the notion of γ-Hopfian modules are present. The relation between the class
of γ-Hopfian and other classes of Hopfian modules are given. Some basic characterizations
of γ-Hopfian modules are proved. And some other properties of γ-Hopfian modules are also
obtained with examples.

For further studies we shall be interested in the following problems:

• What is the structure of rings whose finitely generated right modules are γ-Hopfian?
• Let R be a ring with identity, and M be a γ-Hopfian module. Is M [X,X−1] γ-Hopfian

in R[X,X−1]-module?
• Let R be a γ-Hopfian ring and n ≥ 1 an integer. Is the matrix ring Mn(R) γ-Hopfian?
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