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A NEW CHARACTERIZATION OF PROJECTIVE SPECIAL UNITARY
GROUPS U3(3

n) BY THE ORDER OF GROUP AND THE NUMBER OF
ELEMENTS WITH THE SAME ORDER

BEHNAM EBRAHIMZADEH, ALI IRANMANESH∗

Abstract. In this paper, we prove that projective special unitary groups U3(3
n), where

32n − 3n + 1 is a prime number and 3n ≡ ±2( mod 5), can be uniquely determined by the

order of group and the number of elements with the same order.

1. Introduction

Let G be a finite group, π(G) be the set of prime divisors of order of G and πe(G) be the
set of elements order in G. If k ∈ πe(G), then we denote the set of the number of elements
of order k in G by mk(G) and the set of the number of elements with the same order in G

by nse(G). In other word, nse(G) = mk(G)|k ∈ πe(G). Also we denote a Sylow p-subgroup
of G by Gp and the number of Sylow p-subgroups of G by np(G). The prime graph Γ(G) of
group G is a graph whose vertex set is π(G), and two distinct vertices u and v are adjacent if
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and only if uv ∈ πe(G). Moreover, assume that Γ(G) has t(G) connected components πi, for
i = 1, 2, , t(G). In the case where G is of even order, we always assume that 2 ∈ π1.
One of the important problems in finite groups theory is group characterization by group the-
oretic properties namely the element order, the set of elements with the same order, etc. In
this research, we discuss about group characterization by using the order of the group and
nse(G). Next, for example the authors in ([3, 4, 5, 9, 10, 11, 16, 18]), proved that the sporadic
groups, symmetric groups Sr, suzuki groups, Ree-groups 2G2(q) where q ±

√
3q + 1 is prime

number, simple K4-groups L2(p) and L2(2
n) where 2n − 1 or 2n + 1 is prime number, the

symplectic group C2(3
n) and suzuki group Sz(q), where q ±

√
2q + 1 is prime number by are

characterizable by using the order of the group and nse(G). In this paper, we prove that
projective special unitary groups U3(3

n), where 32n − 3n + 1 is a prime number and 3n ≡ ±2(

mod 5), can be uniquely determined by the order of group and the number of elements with
the same order. In fact, we prove the following main theorem.

Main Theorem. Let G be a group with |G| = |U3(3
n)| and nse(G) = nse(U3(3

n), where
32n − 3n + 1 is a prime number and 3n ≡ ±2( mod 5). Then G ∼= U3(3

n).

In this research, we consider the Projective special unitary group U3(3
n), where 32n − 3n + 1

is a prime number. In fact we use Lemma 2.8 of [22], where G be a non-abelian simple group
such that order of G and number 5 is coprime.

2. Preliminaries

Lemma 2.1. [8] Let G be a Frobenius group of even order with kernel K and complement H.
Then

(1) t(G) = 2, π(H) and π(K) are vertex sets of the connected components of Γ(G);
(2) |H| divides |K| − 1;
(3) K is nilpotent.

Definition 2.2. A group G is called a 2-Frobenius group if there is a normal series 1⊴H⊴K⊴G

such that G/H and K are Frobenius groups with kernels K/H and H respectively.

Lemma 2.3. [2] Let G be a 2-Frobenius group of even order. Then

(1) t(G) = 2, π(H) ∪ π(G/K) = π1 and π(K/H) = π2;
(2) G/K and K/H are cyclic groups satisfying |G/K| divides |Aut(K/H)|.

Lemma 2.4. [23] Let G be a finite group with t(G) ≥ 2. Then one of the following statements
holds:

(1) G is a Frobenius group;
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(2) G is a 2-Frobenius group;
(3) G has a normal series 1⊴H ⊴K ⊴G such that H and G/K are π1-groups, K/H is

a non-abelian simple group, H is a nilpotent group and |G/K| divides |Out(K/H)|.

Lemma 2.5. [7] Let G be a finite group and m be a positive integer dividing |G|. If Lm(G) =

{g ∈ G | gm = 1}, then m | |Lm(G)|.

Lemma 2.6. Let G be a finite group. Then for every i ∈ πe(G), φ(i) divides mi(G), and i

divides
∑

j|imj(G). Moreover, if i > 2, then mi(G) is even.

Proof. By Lemma 2.5, the proof is straightforward.

Lemma 2.7. [24] Let q, k, l be natural numbers. Then

(1) (qk − 1, ql − 1) = q(k,l) − 1.

(2) (qk + 1, ql + 1) =

q(k,l) + 1 if both k
(k,l) and l

(k,l) are odd,

(2, q + 1) otherwise.

(3) (qk − 1, ql + 1) =

q(k,l) + 1 if k
(k,l) is even and l

(k,l) is odd,

(2, q + 1) otherwise.

In particular, for every q ≥ 2 and k ≥ 1, the inequality (qk − 1, qk + 1) ≤ 2 holds.

Lemma 2.8. [22] Let G be a non-abelian simple group such that (5, |G|) = 1. Then G is
isomorphic to one of the following groups:

(1) An(q), n = 1, 2, q ≡ ±2 (mod 5);
(2) G2(q), q ≡ ±2 (mod 5);
(3) 2A2(q), q ≡ ±2 (mod 5);
(4) 3D4(q), q ≡ ±2 (mod 5);
(5) 2G2(q), q = 32m+1, m ≥ 1.

3. Proof of the Main Theorem

In this section,we prove that the projective special unitary groups U3(3
n) are characterizable

by order of group and the number of elements with the same order. In fact, we prove that
if G is a group with|G| = |U3(3

n)| and nse(G) = nse(U3(3
n), where 3n ≡ ±2( mod 5) and

32n − 3n + 1 is a prime number, then G ∼= U3(3
n). We divide the proof to several lemmas.

From now on, we denote the projective special unitary group U3(3
n) by U and the numbers

3n and 32n − 3n + 1 by q and p, respectively. Recall that G is a group with |G| = |U | and
nse(G) = nse(U).
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Lemma 3.1. Let U := U3(3
n). If p := 32n − 3n + 1 is a prime number. Then mp(U) =

(p− 1)|U |/(3p) and for every i ∈ πe(U)− {1, p}, p divides mi(U).

Proof. Since |Up| = p, we deduce that Up is a cyclic group of order p. Thus mp(U) =

φ(p)np(U) = (p − 1)np(U). Now it is enough to show np(U) = |U |/(3p). By [23], p is an
isolated vertex of Γ(G). Hence |CU (Up)| = p and |NU (Up)| = xp for a natural number x.
We know that NU (Up)/CU (Up) embeds into Aut(Up), which implies x | p − 1. Furthermore,
by the Sylow’s Theorem, np(U) = |U : NU (Up)| and np(U) ≡ 1 (mod p).Therefore p divides
|U |/(xp) − 1. Thus q2 − q + 1 divides q3(q3 + 1)(q2 − 1)/(xp) − 1. It follows that q2 − q + 1

divides q6 + q5 − q4 − q3 − x, so we have p | 3 − x, since x | p − 1, we deduce that x = 3.
Therefore np(U) = |U |/(3p). Let i ∈ πe(U)− {1, p}. Since p is an isolated vertex of Γ(U), we
conclude that p ∤ i and pi /∈ πe(U). Thus Up acts fixed point freely on the set of elements of
order i by conjugation and hence |Up| | mi(U). So we conclude that p | mi(U).

Lemma 3.2. m2(G) = m2(U), mp(G) = mp(U), np(G) = np(U), p is an isolate vertex of
Γ(G) and p | mk(G) for every k ∈ πe(G)− {1, p}.

Proof. By Lemma 2.6, for every 1 ̸= r ∈ πe(G), r = 2 if and only if mr(G) is odd. Thus
m2(G) = m2(U). According to Lemma 2.6, (mp(G), p) = 1.Thus p ∤ mp(G) and hence Lemma
3.1 implies that mp(G) ∈ {m1(U),m2(U),mp(U)}. Moreover, mp(G) is even, so mp(G) =

mp(U). Since Gp and Up are cyclic groups of order p and mp(G) = mp(U), so mp(G) =

φ(p)np(G) = φ(p)np(U) = mp(U), so np(G) = np(U). Now, we prove that p is an isolated
vertex of Γ(G). Assume to the contrary that there is t ∈ π(G)− {p} such that tp ∈ πe(G). So
mtp(G) = φ(tp)np(G)k, where k is the number of cyclic subgroups of order t in CG(Gp) and
since np(G) = np(U), it follows that mtp(G) = (t − 1)(p − 1)|U |k/(3p). If mtp(G) = mp(U),
then t = 2 and k = 1. Furthermore, Lemma 2.5 yields p | m2(G) + m2p(G) and since
m2(G) = m2(U) and p | m2(U), we have p | m2p(G) which is a contradiction. So Lemma 3.1
implies that p | mtp(G). Hence p | t − 1 and since mtp(G) < |G|, we deduce that p − 1 ≤ 3.
But this is impossible because (q2 − q+1)− 1 ≤ 3 and q = 3n Let k ∈ πe(G)−{1, p}. Since p

is an isolated vertex of Γ(G), p ∤ k and pk /∈ πe(G). Thus Gp acts fixed point freely on the set
of elements of order k by conjugation and hence |Gp| | mk(G). So p | mk(G).

Lemma 3.3. The group G nor a Frobenius group nor a 2-Frobenius group.

Proof. Let G be a Frobenius group with kernel K and complement H. Then by Lemma 2.1,
t(G) = 2 and π(H) and π(K) are vertex sets of the connected components of Γ(G) and |H|
divides |K| − 1. Now by Lemma 3.2, p is an isolated vertex of Γ(G). Thus we deduce that
(i) |H| = p and |K| = |G|/p or (ii) |H| = |G|/p and |K| = p. Since |H| divides |K| − 1,
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we conclude that the last case can not occur case(ii). So we consider case( i). In otherwords
|H| = p and |K| = |G|/p, hence q2− q+1 | q3(q3+1)(q2− 1)/(q2− q+1)− 1. So, we conclude
that (q2 − q + 1) | ((q2 − q + 1)(q4 + 2q3 − 3q − 3) + 2. Therefore p | 2 where is a impossible.
We now show that G is not a 2-Frobenius group. Let G be a 2-Frobenius group.Then G has
a normal series 1⊴H ⊴K ⊴G such that G/H and K are Frobenius groups by kernels K/H

and H respectively. Since p is an isolated vertex of Γ(G), then π2(G) = p in result |K/H| = p.
Now since |G/K| divides |Aut(K/H)|, so |G/K||(p−1). By Lemma 2.8, there is an odd prime
divisor t of q + 1 such that (p − 1, t) = 1. Now since |G/K| | (p − 1), so t | |H|, now since
H is nilpotent, Ht ⋊ K/H is a Frobenius group with kernel Ht and complementK/H. So
|K/H|divides |Ht| − 1. It implies that q2 − q + 1 ≤ (t− 1) ≤ q, but this is a contradiction.

Lemma 3.4. The group G is isomorphic to the group U .

Proof. By Lemma 3.2, p is an isolated vertex of Γ(G). Thus t(G) > 1 and G satisfies one of
the cases of Lemma 2.4. Now Lemma 3.3 implies that G is neither a Frobenius group nor a
2-Frobenius group. Thus only the case (c) of Lemma 2.4 occure. So G has a normal series
1 ⊴ H ⊴ K ⊴ G such that H and G/K are π1-groups, K/H is a non-abelian simple group.
Since p is an isolated vertex of Γ(G), we have p | |K/H|.By Lemma 3.2, p is an isolated vertex
of Γ(G). Thus t(G) > 1 and G satisfies one of the cases of Lemma 2.4. Now Lemma 3.3
implies that G is neither a Frobenius group nor a 2-Frobenius group. Thus only the case (c)
of Lemma 2.4 occure. So G has a normal series 1 ⊴ H ⊴ K ⊴ G such that H and G/K are
π1-groups, K/H is a non-abelian simple group. Since p is an isolated vertex of Γ(G), we have
p | |K/H|. On the other hand, we know that 5 ∤ |G|.Thus K/H is isomorphic to one of the
groups in Lemma 2.8. Hence the following two cases
(1) If K/H ∼= G2(q

′), where q′ ≡ ±2( mod 5), then by[23], π(G2(q
′)) = q′2 ± q′ + 1. Now we

consider q2− q+1 = q′2± q′+1 so q2− q = q′2± q′. It follows that q = q′ or q = q′+1 because
(q′, q′ + 1) = (q′, q′ − 1) = (q, q − 1) = 1. Next we know that |G2(q

′) | |G|, hence we deduce
two the following cases :
(i) q′6(q′6 − 1)(q′2 − 1) | (q′3(q′3 + 1)(q′2 − 1),
or
(ii) q′6(q′6 − 1)(q′2 − 1) | (q′ + 1)3((q′ + 1)3 + 1)((q′ + 1)2 − 1) which is a contradiction.
(2) If K/H ∼= 2G2(q

′), where q′ = 32m+1, then by [23], π(2G2(q
′)) = q′ ±

√
3q′ + 1. So we

consider q2 − q + 1 = q′ ±
√

(3q
′
) + 1. It followes that 3m(3m − 1) = 32n+1(32n+1 ± 1) and in

result m = 2n+ 1. Now since |2G2(q
′) ∤ |G|, we deduce a contradiction.

(3) If K/H ∼= 3D4(q
′) then by [23], π(3D4(q

′) = q′4 − q′2 + 1. Now we consider q2 − q + 1 =

q′4−q′2+1 in conclude we deduce q(q−1) = (q′2(q′2−1) and hence q = q′2 because (q, q−1) = 1.
Now since |3D4(q

′) ∤ |G|, we deduce a contradiction.
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(4) If K/H ∼= L2(q
′), where q′ ≡ ±2( mod 5), q′ = p′m, then by [7,13] π(L2(q

′) = q′ ± 1,
where q′ be even also q′, q′ ± 1)/2 where q′ be Odd.
Now, we assume q′ be even then p = q′ ± 1, so we have q2 − q + 1 = q′ ± 1. First we assume
q2− q+1 = q′+1 then q(q− 1) = q′, which is a contradiction because q′ is power of p′. Now if
q2−q+1 = q′−1 then q2−q+2 = q′. Since |L2(q

′) ∤ |G|, we deduce a contradiction. In the way
we assume q′ be odd. First we consider p = q′, so q2 − q + 1 = q′ now since that |L2(q

′)| ∤ |G|
where this is a contradiction. Now if p = (q′ ± 1)/2, then we have q2 − q + 1 = (q′ ± 1)/2, so
q′ = 2q2 − 2q + 1 or q′ = 2q2 − 2q + 3. Since |L2(q

′) ∤ |G|, we have a contradiction.
(5) If K/H ∼= L3(q

′), where q′ ≡ ±2( mod 5), then by [23], π(L3(q
′)) = q′2+ q′+1/(3, q′− 1)

so we consider two cases. First we assume (3, q′−1) = 1 then we have q2−q+1 = (q′2+q′+1),
so q(q−1) = q′(q′+1). Now since that (q, q−1) = (q′, q′+1) = 1 so q′ = q−1. Now since that
|L3(q

′) ∤ |G|, so we have a contradiction. Now if (3, q′− 1) = 3 then q2− q+1 = q′2+ q′+1/3,
so 3q2 − 3q + 3 = q′2 + q′ + 1. Therefore 3q2 − 3q = q′2 + q′ − 2 so 3q(q − 1) = (q′ − 1)(q′ + 2).
As a result 3n+1(3n+1 − 1) = (q′ − 1)(q′ +2). On the otherhand we have (q′ − 1, q′ +2) = 1 or
3. Now if (q′−1, q′+2) = 1 then q′−1 = 3n+1−1 and q′+2 = 3n+1. First, if q′−1 = 3n+1−1

then q′ = 3n+1, so 3n+1(3n+1 − 1) = (3n+1 − 1)(3n+1 + 2). Therefore 3n+1 = 3n+1 + 2, where
this is a contradiction, also if q′ + 2 = 3n+1 then we have a contradiction, similarily. Now if
(q′ − 1, q′ + 2) = 3 then 3 | q′ − 1, 3 | q′ + 2, so we have q′ = 3k + 1 and q′ = 3k − 2. Now if
q′ = 3k+1 then we have 3q(q− 1) = 3k(3k+3), so we have 3q2 − 3q− 9k2 − 9k = 0. Now, we
can see easily this equation has not any solution. Hence this is a contradiction. Now assume
q′ = 3k − 2, where is a contradiction, similarily. Hence, K/H ∼= U therefore |K/H| = |U |.
Now since p is an isolated vertex and also p | |K/H|, we consider q2 − q + 1 = q′2 − q′ + 1, so
q = q′. Therefore n = n′. On the otherhand 1⊴H ⊴K ⊴G, so H = 1, G = K ∼= U .
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