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1. Introduction

All topological spaces X are considered to be infinite Tychonoff, unless otherwise mentioned.
Let C(X) (resp., C∗(X)) be the ring of real-valued continuous functions (resp., bounded
functions) on a space X. For each f ∈ C(X), the set of zeros of f which is denoted by Z(f), is
called the zero-set of f and X\Z(f) is the cozero-set of f . The set of all zero-sets (resp., cozero-
sets) in X is denoted by Z(X) (resp., Coz(X)). βX denotes the Stone-Čech compactification
of X and υX is the Hewit real-compactification of X. For a zero dimensional space X the
counterpart of υX is υ0X. The subalgebra C∗(X) of C(X) has an important role in study
the relation between topological properties of X and algebraic properties of C(X). But it is
shown that, for any topological space X, C∗(X) ∼= C(βX). The subring of C(X) consisting of
those functions with countable image, which is denoted by Cc(X) is introduced and studied by
Karamzadeh et al. in [7, 8]. It is shown that for each topological space X does not necessarily
exist a topological space Y where Cc(X) ∼= C(Y ) despite Cc(X) behaves like C(X) and this
fact motivated us enough to study more Cc(X), see [4], [7], [8], and [15]. In this paper we aim
to introduce essential CP -spaces and investigate the relations between topological properties
of X and algebraic properties of Cc(X) via essential CP -spaces and some related spaces. We
remind the reader that the set of zeros of f for each f ∈ Cc(X) denoted by Z(f). An ideal I
in Cc(X) is called a zc-ideal, if Z(f) ⊆ Z(g) (where f ∈ I and g ∈ Cc(X)) implies that g ∈ I.
A subset S of X is called C∗

c -embedded in X if for each f ∈ C∗
c (S) there exists f̄ ∈ C∗

c (X)

such that f̄ |S = f . A space X is called Fc-space if every cozero-set is C∗
c -embedded, see [4].

The space X in which cl(coz(f)) is open for each f ∈ Cc(X) is called c-basically disconnected.
A topological space X with a base of clopen sets is called zero dimensional. Banaschewski has
shown that every zero dimensional space X has a zero dimensional compactification, denoted
by β0X. In [4], it is shown that X is an Fc-space if and only if β0X is an Fc-space. We
recall that X is an F -space if and only if βX is an F -space. It is shown that X is strongly
zero dimensional whenever βX is zero dimensional. We note that F -spaces and Fc-spaces
coincide for a strongly zero dimensional space X, see [4]. A point p of X is called a CP -point
if f(p) = 0 (where f ∈ Cc(X)) implies that p ∈ int(Z(f)). We recall that p ∈ X is a P -point
if for every f ∈ C(X), f(p) = 0 implies that p ∈ int(Z(f)). The subspace of all CP -points of
space X denotes by CP (X). A topological space X is called a CP -space whenever each point
of X is a CP -point, see [7]. We define the ideals Op

c and Mp
c in Cc(X) for p ∈ β0X such that,

Op
c = {f ∈ Cc(X) : p ∈ intβ0Xclβ0XZ(f)} and Mp

c = {f ∈ Cc(X) : p ∈ clβ0XZ(f)}, see [4].
The space X is called quasi Fc-space if each dense cozero-set in Cc(X) is C∗

c -embedded. We
remind the reader that an element f of a commutative ring R with identity element is called a
Von Neumann regular element if there is an element g ∈ R such that f2g = f . The ring Cc(X)

is Von Neumann regular (VNR) (X is called a CP -space), if and only if all elements in the
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ring, are Von Neumann regular. It is shown that any P -space is a CP -space but the converse
is not necessarily true, see [7]. For a zero dimensional space X, P -spaces and CP -spaces
coincide. X is called an essential CP -space whenever all points except almost one point of X
are CP -points. If X has exactly one non CP -point, it is called a proper essential CP -space
and its non CP -point is denoted by η. It is evident that every essential P -space is an essential
CP -space, but the converse is not necessarily true. The ring R is called a Von Neumann local
ring (VNL) whenever for each a ∈ R either a or 1 − a is a Von Neumann regular element.
It is shown that the ring Cc(X) is a Von Neumann local ring if and only if X is an essential
CP -space. In [1], it is shown that if a has a Von Neumann inverse (i.e., there exists b ∈ R

such that a2b = a), then there is a unit u of R such that au is an idempotent. Quasi Fc-
spaces are introduced and investigated versus quasi F -spaces and essential CP -spaces. Also,
c-basically disconnected spaces, almost CP -spaces and almost essential CP -spaces are defined
and studied. It is shown that whenever X is an essential CP -space and {η} is a Gδ, then
Fc-spaces, quasi Fc-spaces and c -basically disconnected spaces coincide. A Tychonoff space
X is called a CSV -space whenever Cc(X)

P is a valuation domain for each prime ideal P . It is
shown that for a proper essential CP -space X, X is a CSV -space if and only if Cc(X)

P is a
valuation domain, for each minimal prime ideal P contained in Mcη.

2. Characterization of an essential CP -spaces

We introduced essential CP -spaces and investigate the relation between topological prop-
erties of X and algebraic properties of Cc(X).

Definition 2.1. A topological space X is called an essential CP -space whenever all points
except almost one point of X are CP -point. If X has exactly one non CP -point, it is called
a proper essential CP -space and its non CP -point denotes by η.

It is evident that every essential P -space is an essential CP -space but the following example
shows that the converse does not necessarily hold.

Example 2.2. Let Σ = N∪ {σ} where σ /∈ N and define a topology on Σ as follow, all points
of N are isolated and the neighborhood of σ are the sets U ∪{σ} for U ∈ U , where U be a free
ultrafilter on N. The ideal Oσ in Σ is prime but it is not maximal. So Σ is not a P -space but
it is an proper essential P -space. Since N is a discrete space, we infer that it is a P -space. σ is
an only non P -point of Σ, therefore Σ is an essential CP -space too. Now, let X = Σ∪ [−1, 0].
Clearly, X is not an essential P -space but it is an essential CP -space.

We recall that Ocp = {f ∈ Cc(X) : p ∈ intX(Z(f))}, see [7]. The next proposition is the
counterpart of [2, Proposition 1.2]
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Proposition 2.3. Let X be a zero dimensional proper essential CP -space and P is a non-
maximal prime ideal of Cc(X), then P ⊂ Mcη, where Mcη = {f ∈ Cc(X) : η ∈ Z(f)}.

Proof. Let P be a nonmaximal prime ideal of Cc(X), so there exists p ∈ β0X such that
Op

c ⊆ P ⊆ Mp
c . If p ∈ β0X \X, then P = Op

c = Mp
c which is a contradiction by hypothesis.

Let p ∈ X, if p ̸= η, then Mcp = Ocp = P that is impossible. So p = η and it infers that
P ⊂ Mcη.

In the next proposition which is the counterpart of [1, Theorem 5.2] , the equivalent condi-
tions with essential CP -spaces are characterized for Cc(X).

Proposition 2.4. Let X be a topological space, then the following statements are equivalent.

(1) Cc(X) is a V NL-ring (Von Neumann Local ring).
(2) For each f ∈ Cc(X), either Z(f) or Z(1− f) is open.
(3) If Z(f) ∩ Z(g) = ∅, then Z(f) or Z(g) is open.
(4) X is an (proper) essential CP -space.
(5) For each ideal I of Cc(X), I is a zc-ideal or I ⊂ Mcη.
(6) For each ideal I of Cc(X), I = (f) or I = (1− f) is a zc-ideal.
(7) If f ∈ Cc(X), then coz(f) or coz(1− f) is Cc-embedded in X.
(8) Each ideal I is an intersection of prime ideals or I ⊂ Mcη.
(9) Each ideal I is an intersection of maximal ideals or I ⊂ Mcη.

Proof. (1) ⇐⇒ (2) Cc(X) is a V NL-ring if and only if for f ∈ Cc(X) there is a g ∈ Cc(X) such
that f = f2g. Therefore f(1− fg) = 0, so Z(f) ∪ Z(1− fg) = X and Z(f) ∩ Z(1− fg) = ∅.
Hence Z(f) = X \ Z(1− fg), i.e., Z(f) is open.
(2) ⇐⇒ (3) Let h = f2

f2+g2
. h ∈ Cc(X), since Z(f) ∩ Z(g) = ∅ and Z(h) = Z(f),

Z(1− h) = Z(g), therefore (2) and (3) are equivalent.
(3) =⇒ (4) Let p1 and p2 are two distinct non CP -points of X contained in disjoint neigh-
borhoods U1 and U2. So there are f1 and f2 in Cc(X) such that Z(f1) ⊆ U1, Z(f2) ⊆ U2 and
p1 /∈ int(Z(f1)), p2 /∈ int(Z(f2)). So Z(f1) and Z(f2) are two disjoint zero sets of X neither
of which is open.
(4) =⇒ (1) Suppose that X is a proper essential CP -space with non CP -point η and
f ∈ Cc(X). If η /∈ Z(f), then Z(f) is open. Let g(x) = 1

f (x) where x ∈ coz(f) and oth-
erwise g(x) = 0. g ∈ Cc(X) and f = f2g. If η ∈ Z(f), then η /∈ Z(1 − f) and by the similar
argument 1− f has Von Neumann inverse. Hence Cc(X) is a V NL-ring.
(4) =⇒ (5) Let I be an any ideal of Cc(X). It is sufficient to show that

√
I is a zc-ideal or

I ⊆ Mcη. Suppose that P ∈ Min(I). If P is a maximal ideal, then it is a zc-ideal, so
√
I is a

zc-ideal, thus I is a zc-ideal. Otherwise, if there is a P0 ∈ Min(I) such that P0 is not maximal



Alg. Struc. Appl. Vol. 9 No. 2 (2022) 97-111. 101

ideal, then by Proposition 2.3, P0 ⊂ Mcη, so I ⊂ P0 ⊂ Mcη.
(5) =⇒ (4) Suppose that there is x ∈ X such that x ̸= η. We show that Mcx = Ocx. Let
f ∈ Mcx−Ocx, then there exists a prime ideal P that is not zc-ideal and Ocx ⊆ P . From That
P is not zc-ideal by assumption P ⊆ Mcη. So Ocx ⊂ Mcη and it is a contradiction since Mcx

is an only maximal ideal including Ocx.
(2) ⇐⇒ (6) It follows immediately from that I = (f) is a zc-ideal if and only if Z(f) is open.
(2) =⇒ (7) Let f ∈ Cc(X), suppose that Z(f) is open. Let V = X \ Z(f) = coz(f). So
V and Z(f) are two disjoint open sets in X. If g ∈ Cc(V ) let h(x) = g(x), for each x ∈ V

and h(x) = 0, otherwise. So h ∈ Cc(X) and h|V = g. Thus coz(f) is Cc-embedded in X. If
Z(1− f) is open similarity coz(1− f) is Cc-embedded in X.
(7) =⇒ (1) If f ∈ Cc(X), put Z1 = Z(f) and Z2 = Z(1 − f). From (7), V = X \ Z1 or
W = X \Z2 are Cc-embedded in X. If V is Cc-embedded in X. Let f0 =

1
(f |V ) , so f0 ∈ Cc(V )

and there is a g ∈ Cc(X) such that g|V = f0 and f2g = f . Hence f has a Von Neumann
inverse.
(5) =⇒ (8) If I is a zc-ideal, then it is a semiprime. So I is an intersection of prime ideals.
(8) =⇒ (1) Let f ∈ Cc(X), then ideal (f2) is an intersection of prime ideals or (f2) ⊆ Mcη.
Suppose that (f2) is an intersection of prime ideals. So (f2) =

∩
{P : P is prime} and f2 ∈ P

implies that f ∈ P , for every prime ideal P . Hence f ∈
∩
{P : P is prime}. Therefore f ∈ (f2)

and it follows that there is f0 ∈ Cc(X) such that f = f2f0. So f has a Von Neumann inverse.
Otherwise, if (f2) ⊆ Mcη, then f2 ∈ Mcη, so η ∈ Z(f2) = Z(f), thus η /∈ Z(1 − f). Hence
1− f is a regular.
(9) =⇒ (8) It is clear.
(8) =⇒ (9) From (8), I is an intersection of prime ideals or I ⊂ Mcη. If all prime ideals
are maximal we are done. Otherwise, if there is P ∈ Min(I) such that P is not maximal by
Proposition 2.3, I ⊂ P ⊂ Mcη, so I ⊂ Mcη.

An ideal I ⊂ R is called pure if I = mI, where mI = {a ∈ R : I + A(a) = R} = {a ∈ R :

a = ai, for some i ∈ I}, see [1]. We remind the reader that the ring R is called a SV NL-ring,
if for a nonempty subset S of R that ⟨S⟩ = R, at least one element of S has Von Neumann
inverse.
For a proper essential CP -space X with non CP -point η and f ∈ Cc(X) if η /∈ Z(f), then f

has a Von Neumann inverse. The next proposition is the counterpart of [1, Corollary 5.5].

Proposition 2.5. Cc(X) is a V NL-ring if and only if it is a SV NL-ring.

Proof. If Cc(X) is a SV NL-ring, then evidently it is a V NL-ring. Conversely, if Cc(X) is a
V NL-ring, then X is an (proper) essential CP -space. Suppose that Cc(X) = ⟨f1, f2, · · · , fn⟩
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for fi ∈ Cc(X), 1 ⩽ i ⩽ n. So
∩n

i=1 Z(fi) = ∅. Hence there is 1 ⩽ j ⩽ n such that η /∈ Z(fj),
Therefore fj has a Von Neumann inverse and it follows that Cc(X) is a SV NL-ring.

In [1, Theorem 2.6], it was shown that the ring R is an SV NL-ring if and only if all maximal
ideals of R except may be one of them are pure. By using this fact and Proposition 2.5, we
infer the next corollary.

Corollary 2.6. Cc(X) is a V NL-ring if and only if all maximal ideals of it except maybe one
of them are pure.

In case X is a CP -space, each ideal of Cc(X) is a zc-ideal. In the next proposition, it is
shown that in an essential CP -space X with non CP -point η for each ideal I of Cc(X), if each
point of

∩
Zc[I] be a CP -point, then I is a zc-ideal, see [5].

Proposition 2.7. Let X be an essential CP -space with non CP -point η and I be an ideal of
Cc(X). Whenever every point in

∩
Zc[I] is a CP -point, then I is a zc-ideal.

Proof. Let η be the only non CP -point of X, then η /∈
∩
Zc[I]. So there exists i ∈ I such that

η /∈ Z(i). Now suppose that Z(f) ⊆ Z(g), f ∈ I and g ∈ Cc(X), so Z(f2 + i2) ⊆ Z(g). Each
point of Z(f2 + i2) is a CP -point. Therefore Z(f2 + i2) is open and Z(f2 + i2) ⊆ intXZ(g).
Hence g is a multiple of f2 + i2. Therefore g ∈ I and I is a zc-ideal.

In the next theorem which is the counterpart of [1, Theorem 5.6] some properties of (proper)
essential CP -spaces are investigated.

Theorem 2.8. If X is an essential CP -space with a non CP -point η, then the following
statements hold.

(1) The subspaces of X are essential CP -spaces.
(2) Each continuous and open image of X is an essential CP -space.
(3) If X is compact, there is an infinite discrete space Y such that X is an one-point

compactification of it.
(4) If X is a zero dimensional space and β0X is an essential CP -space, then X = β0X.
(5) If X is a zero dimensional space and q ∈ β0X \X, M q

c is a pure ideal.
(6) If X is a zero dimensional space, then υ0X is an essential CP -space with a non

CP -point η.
(7) If |Y | ⩾ 2, then X × Y is not an essential CP -space.

Proof. (1) It is evident.
(2) Let φ : X −→ Y be an open and continuous surjection and Z1, Z2 be two disjoint zero
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sets in Y . Since φ is continuous we infer that φ−1(Z1) and φ−1(Z2) are disjoint zero sets of
X. But X is an essential CP -space, so by Proposition 2.4, one of them is open. Suppose that
φ−1(Z1) is open in X. Since φ is open and φ[φ−1(Z1)] = Z1, we infer that Z1 is open. So Y

is an essential CP -space.
(3) Let Ux be a compact neighborhood of x ̸= η, then it is a compact CP -space. So Ux is finite,
i.e., x is an isolated point. If U is an open cover of X, it is an union of {x} for each x ̸= η and
a neighborhood of η, so it must has a finite subcover. So X is the one-point compactification
of the discrete space X \ {η}. Therefore each neighborhood of η must be cofinite.
(4) Let Y = X \ {η}, then from (3), X and β0X are the one point compactifications of Y .
(5) If q ∈ β0X \X, then q /∈ X, so q ̸= η. Hence maximal ideal M q

c must be pure.
(6) Since Cc(X) ∼= Cc(υ0X) and Cc(X) is a V NL-ring, we infer that Cc(υ0X) is a V NL-ring
too, so υ0X is an essential CP -space.
(7) If y1 ̸= y2, then (η, y1), (η, y2) are two disjoint non CP -points of X × Y . So X × Y is not
an essential CP -space.

We recall that if X is an essential CP -space, then υ0X is an essential CP -space, see Theorem
2.8. Moreover, if X is a pseudocompact space, then by [14, Theorem 6.3] υ0X = β0X. Hence
β0X is an essential CP -space. Therefore by Theorem 2.8, X = β0X which implies that X is
compact. So we have the next corollary.

Corollary 2.9. Let X be a zero dimensional essential CP -space with a non CP -point η, then
the following statements are equivalent.

(1) X is pseudocompact.
(2) X is countably pseudocompact.
(3) X is compact.

3. The essential CP -spaces via related spaces

In this section, we introduce a quasi Fc-space and investigate relations between quasi F -
spaces, quasi Fc-spaces and essential CP -spaces. Also, we define c-basically disconnected
spaces, almost CP -spaces and almost essential CP -spaces. It is shown that whenever X is
an essential CP -spaces and {η} is a Gδ, then Fc-spaces, quasi Fc-spaces and c -basically
disconnected spaces coincide.

Definition 3.1. A space X is called a quasi Fc-space if each dense cozero-set in Cc(X) is
C∗
c -embedded.

It is clear that any quasi F -space is a quasi Fc-space, but the converse is not necessarily
true. For example, R with usual topology is a quasi Fc-space that is not a quasi F -space.
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Remark 3.2. Each CP -space is a quasi Fc-space, but the converse is not necessarily true. For
example, space Σ = N ∪ {σ} in Example 2.2 is a Fc-space and an essential CP -space with a
non CP -point σ. Since every Fc-space is a quasi Fc-space, we infer that Σ is a quasi Fc-space
too.

Definition 3.3. A space X in Y is Zc-embedded if for each Z ∈ Zc(X), there is a set H in
Zc(Y ) such that H ∩X = Z. A dense subspace X of Tychonoff space Y is Z♯

c-embedded in Y

if for each Z ∈ Zc(X) there is H in Zc(Y ) such that clX(intXZ) = X ∩ clY (intY H).

Theorem 3.4. If X is an open or dense subspace of Y , Then the following are equivalent.

(1) X is Z♯
c-embedded in Y .

(2) If C ∈ Coz(X), then there exists V ∈ Coz(Y ) such that clXC = X ∩ clY V .

Proof. (1) =⇒ (2) Let C ∈ Coz(X). So there exists f ∈ Cc(X) that C = X \ Z(f). From (1)

there exists g ∈ Cc(Y ) such that Z(f) = X ∩ Z(g), therefore X \ Z(f) = X ∩ (Y \ Z(g)). So
clX(X \Z(f)) = clX(X ∩ (Y \Z(g))) = X ∩ clX(Y \Z(g)). Now, if we put Y \Z(g) = V , the
proof is complete.
(2) =⇒ (1) It is evident.

The next proposition is the counterpart of [12, Proposition 3.2], that shows C∗
c -embedded,

Zc-embedded and Z♯
c-embedded are coincide for each dense subspace of a quasi Fc-space.

Proposition 3.5. If X is a dense subspace of a quasi Fc-space Y , then the following statements
are equivalent.

(1) X is C∗
c -embedded in Y .

(2) X is Zc-embedded in Y .
(3) X is Z♯

c-embedded in Y .

Proof. (1) =⇒ (2) It is evident.
(2) =⇒ (3) Let Z ∈ Zc(X). So by (2) there exists H ∈ Zc(Y ) such that H ∩ X = Z. By
Theorem 3.4, it is sufficient to show that clXZ = X ∩ clY H. Since H ∩X = Z, we infer that
clXZ = clX(H ∩X) = clY H ∩X.
(3) =⇒ (1) From [9], to show that X is c∗-embedded in Y , let Z1 and Z2 be two disjoint
zero-sets in X. We show that clY Z1 ∩ clY Z2 = ∅. Since each two disjoint zero-sets in X are
completely seperated, we infer that there exist disjoint zero-sets S1 and S2 in X such that
Z1 ⊆ intXS1 and Z2 ⊆ intXS2. Since X is Z♯

c-embedded in Y , there exist V1 and V2 in
Coz(Y ) such that clX intXS1 = X ∩ clY intY (Y \ V1) and clX intXS2 = X ∩ clY intY (Y \ V2)

and from Theorem 3.4, we have clX(X \ S1) = X ∩ clY V1 and clX(X \ S2) = X ∩ clY V2.
Since S1 ∩ S2 = ∅, we infer that intXS1 ∩ intXS2 = ∅, hence X \ intXS1 = clX(X \ S1) =
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X ∩ clY V1 ⊆ clY V1. Therefore intY (Y \ V1) ⊆ intXS1 and similarly intY (Y \ V2) ⊆ intXS2, so
intY (Y \ V1) ∩ intY (Y \ V2) = ∅.
Since Y is a quasi Fc-space, we infer that clY (intY (Y \ V1)) ∩ clY (intY (Y \ V2)) = ∅, see [18].
So clX(intXS1)∩ clX(intXS2) = ∅, therefore clXZ1 ∩ clXZ2 = ∅. Hence clY Z1 ∩ clY Z2 = ∅ and
we are done.

Definition 3.6. A space X is called c-basically disconnected if for each f ∈ Cc(X), cl(coz(f))
be open.

Definition 3.7. p ∈ X is called an almost CP -point if int(Z(f)) ̸= ∅ for each f ∈ Mcp. A
topological space X is called an almost CP -space where each point of X is an almost CP -point.

Clearly each almost P -space is an almost CP -space, but the converse is not necessarily true.
For instance, consider R with usual topology. For each x ∈ R, int([x]) = ∅ ([x] ∈ Z(R)), so x

is not an almost P -point but R is a CP -space and hence it is an almost CP -space. We note
that for a zero dimensional space X, almost CP -space and almost P -space coincide, see [3].

Example 3.8. σ ∈ Σ is not an almost P -point. From that {σ} is a zero set in Σ, there is
f ∈ C(X) such that Z(f) = {σ}, but σ /∈ int(Z(f)). If σ ∈ int(Z(f)), then there exists an
open set G in Σ such that σ ∈ G ⊆ Z(f), so G = U ∪ {σ} for U ∈ U , thus U = ∅ which is a
contradiction. Therefore σ is not an almost P -point.

Remark 3.9. Essential P -spaces and almost P -spaces may not be concluded each other. The
space Σ in Example 2.2, is an essential P -space which is not an almost P -space. Consider
βN \N. Any nonempty Gδ-set in βN \N has an nonempty interior, see [9, 6S]. So βN \N is an
almost P -space. But, βN\N has more than one non P -point, so it is not an essential P -space,
see [9, 6T].

In the next definition we introduce spaces in which all points of them, maybe almost one of
them are almost CP -points and characterize these spaces via essential CP -spaces and almost
CP -spaces.

Definition 3.10. X is called an almost essential CP -space if all points of X except almost
one of them are almost CP -point.

For example space Σ = N ∪ {σ} is an almost essential P -space and hence it is an almost
essential CP -space. Let X = Σ ∪ [−1, 0] in Example 2.2, then X is an almost essential
CP -space that is not an almost essential P -space.

Let mCc(X) be the set of all minimal prime ideals of Cc(X) that are not maximal, see [11].
mCc(X) need not to be compact. We can see that X is c-basically disconnected in case of
mCc(X) is compact and any almost CP -point of X is CP -point.
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Proposition 3.11. For a topological space X where CP (X) is dense the following statements
hold.

(1) If CP (X) is Zc-embedded in X, then mCc(X) is compact.
(2) If CP (X) is a cozero set in X, then mCc(X) is compact.
(3) If CP (X) is a Lindelöf subspace of X, then mCc(X) is compact.

Proof. (1) Let CP (X) be a CP -space, so Cc(CP (X)) is a Von Neumann regular ring. There-
fore mCc(CP (X)) is a compact space, see [11]. Since CP (X) is dense and Zc-embedded in X,
we infer that the space mCc(CP (X)) is homeomorphic with m(Cc(X)) and hence m(Cc(X))

is compact, see [17, Theorem 7.6].
(2) We show that each cozero-set in X is Zc-embedded. If g ∈ Cc(X) and Y = coz(g), we
put h(x) = 0 for each x ∈ Z(g) and otherwise h(x) = (f ∧ g)(x). Clearly, h ∈ Cc(X) and
Z(f) = Z(h) ∩ Y . Hence Y is a Zc-embedded in X. Now, by (1) the proof is complete.
(3) Suppose that S be a Lindelöf subspace of X. From (1) it is sufficient to show that S is Zc-
embedded in X. Let Z ∈ Zc(X), since S \Z is a Fσ-set and each Fσ-set in a Lindelöf space is
Lindelöf, we infer that S\Z is a Lindelöf space. Let F =

{
(S\Z)∩Z ′

: Z
′ ∈ Zc(X) , Z ⊆ Z

′}
.

Each element of F is closed in S \Z. We show that
∩
F = ∅. Since S \Z is open in S, for each

x ∈ S\Z there exists open subset U in X such that S\Z = U ∩S. It is evident that U ∩Z = ∅.
So x /∈ clXZ, hence there exists f ∈ Cc(X) such that f(clXZ) = {0} and f(x) = 1, therefore
x /∈ Z(f) ∩ (S \ Z). Therefore

∩
F = ∅. Since S \ Z is a Lindelöf space, we infer that F

has not countable intersection property. So there exists a family of zero-sets of X such that
{Zn : n ∈ N} that Z ⊆ Zn for each n ∈ N and

∩
n∈N(Zn ∩ (S \ Z)) = ∅. Let Z∗ =

∩
n∈N Zn.

Then Z∗ ∈ Zc(X), Z ⊆ Z∗ and Z∗∩(S\Z) = ∅. Hence Z∗∩S = Z, therefore S is Zc-embedded
in X and we are done.

We recall that X is basically disconnected if and only if βX is basically disconnected, see
[9]. It is shown that for a zero dimensional space X, X is c-basically disconnected if and only
if β0X is c-basically disconnected. So if X is a zero dimensional CP -space, then X and β0X

are c-basically disconnected.

Theorem 3.12. If X is a proper essential CP -space, then the following statements hold.

(1) mCc(X) is compact if and only if {η} is a Gδ.
(2) If X is a zero dimensional quasi Fc-space and {η} is a Gδ, then X is a c-basically

disconnected.

Proof. (1) Suppose that {η} is a Gδ. So CP (X) = X \ {η} is a cozero-set, hence from
Proposition 3.11, mCc(X) is a compact space. Conversely suppose that mCc(X) be a compact
space and {η} does not be a Gδ-set. From [10, Corollary 2.6.6], {η} is an almost CP -point
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that is not a CP -point. So mCc(X) is not a compact space and it is a contradiction. Therefore
{η} need to be a Gδ-set.
(2) From Proof of (1), CP (X) is a cozero-set of a quasi Fc-space X. So CP (X) is C∗-embedded
in X, therefore β0X and so X is a c-basically disconnected space.

Corollary 3.13. If X is a proper essential CP -space and {η} is a Gδ, then the following
statements are equivalent.

(1) X is a quasi Fc-space.
(2) X is c-basically disconnected.
(3) X is an Fc-space.
(4) Cc(X) has a unique prime ideal that is not maximal.

Proof. (1) =⇒ (2) It is evident.
(2) =⇒ (3) In each c-basically disconnected space every two disjoint cozero-set are completely
separated. So for each f ∈ Cc(X), neg(f) and pos(f) are completely separated, therefore from
[4], X is a Fc-space.
(3) =⇒ (4) It is evident.
(4) =⇒ (1) It is evident.

We remind the reader that if X is a strongly zero dimensional space, then X is a quasi
F -space if and only if whenever f ∈ C(X) is regular, then there is a k ∈ C(X) such that
f = k|f |, see [18]. It is evident that the recent fact holds for quasi Fc-spaces too.

4. Cc(X) as a CSV -ring where X is an essential CP -space

In this section we investigate conditions that Cc(X)
P is a valuation domain for prime ideal

P of Cc(X). We remind the reader that a commutative ring R is a valuation ring if for each
nonzero elements a and b in R, a|b or b|a. An integral domain D is called a valuation domain
if it is a valuation ring. Any field F is a valuation domain and any valuation domain is a local
ring. Each finitely generated ideal of a valuation ring is principal (i.e., any valuation ring is a
Bezout domain). Also recall that a commutative ring R with identity is called an SV -ring if
R
P is a valuation domain for every proper prime ideal P . For each maximal ideal M of a ring
R, number of minimal prime ideals of R that are contained in M is the rank of M and the
rank of R is the supremum of the ranks of all maximal ideals of R, see [2]. A commutative
integral domain D is called real-closed if a) it is totally ordered; b) nonnegative elements of it
have square roots in D; c) each monic polynomial of odd degree in D[X] has a zero in D; d)
for a, b in D which 0 < a < b, we have b|a, see [6].
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Definition 4.1. A Tychonoff space X is called a CSV -space whenever Cc(X)
P is a valuation

domain for each prime ideal P . In this case Cc(X) is called a CSV -ring.

Proposition 4.2. Each zero dimensional Fc-space is a CSV -space.

Proof. Suppose that X is a zero dimensional Fc-space. We show that Cc(X)
P is a valuation ring

for each minimal prime ideal P in Cc(X). For given ideals I and J in Cc(X)
P there are ideals

A and B in Cc(X) such that I = A
P and J = B

P and P ⊆ A, P ⊆ B. Since P is a prime ideal
in Cc(X) there exists p ∈ β0X such that Ocp ⊆ P . So Ocp ⊆ A and Ocp ⊆ B. Since X is
a Fc-space we infer that the prime ideals of Cc(X) contained in any given maximal ideal of
Cc(X) form a chain, from [4]. Therefore A ⊆ B or B ⊆ A. Hence I ⊆ J or J ⊆ I and so Cc(X)

P

is a valuation ring.

Corollary 4.3. Each zero dimensional c-basically disconnected space is a CSV -space.

We remind that for a commutative ring R ideal P is called real-closed if and only if R
P is

real-closed. Let P be a real-closed ideal of Cc(X). For each proper prime ideal Q where P ⊂ Q,
then Q is a real-closed. From that we have the next proposition which is the counterpart of
[13, Proposition 2.1].

Proposition 4.4. A topological space X is CSV -space if and only if every minimal prime
ideals of Cc(X) are real-closed.

For each maximal ideal M of Cc(X), since Cc(X)
M is a field and any field is a valuation

domain, we infer the next proposition.

Proposition 4.5. Each maximal ideal of Cc(X) is real-closed.

Since all prime ideals of a CP -space X are maximal, we infer that each prime ideals of X are
real-closed, so Cc(X)

P is valuation domain for each prime ideal P , therefore X is a CSV -space.

Definition 4.6. For each x ∈ X, the C-rank of x is the rank of Mcx, where Mcx = {f ∈
Cc(X) : x ∈ Z(f)}.

If the number of minimal prime ideals of Cc(X) that are contained in Mcx are infinite then
C-rank(x) = ∞.

Proposition 4.7. The C-rank of Cc(X) is the C-rank of Mcη where X is a proper essential
CP -space with non CP -point η.

Proof. As noted in Proposition 2.3 each prime ideals P of Cc(X) that are not maximal con-
tained in Mcη. So the C-rank of Mcη is the supremum of the C-rank of maximal ideals of
Cc(X). Therefore the C-rank of Cc(X) is the C-rank of Mcη.
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The next proposition is given from Proposition 2.3.

Proposition 4.8. For a proper essential CP -space X, X is a CSV -space if and only if Cc(X)
P

is a valuation domain for each minimal prime ideal P contained in Mcη.

From [16], the rank of x ∈ X is k if there exist precisely k pairwise of disjoint cozero sets
that x contained in their closure.

Corollary 4.9. If X is a CP -space (Fc-space), then Cc(X) has a finite C-rank and C-
rank(x) = 1 for each x ∈ X.

Proof. If X is a CP -space, then for each x ∈ X, Mcx = Ocx, so C-rank(Mcx) = C-rank(x) = 1.
Thus Cc(X) has a finite C-rank. Hence if X is a Fc-space, then from [4], every maximal ideal
of Cc(X) contains a unique minimal prime ideal, so C-rank(Mcx) = 1 for each x ∈ X.

By Corollary 3.13 and Proposition 4.7, we have the next proposition.

Proposition 4.10. If X is a proper essential CP -space with a non CP -point η and {η} is a
Gδ, then C-rank(Cc(X)) = C-rank(Mcη) = 1 if and only if X is an Fc-space.

From that Cc(X) ∼= Cc(υ0X) for a zero dimensional space X, see [14], we have the following
proposition which is the counterpart of [13, Proposition 2.2].

Proposition 4.11. For each zero dimensional Tychonoff space X, the following statements
are equivalent.

(1) X is a CSV -space.
(2) υ0X is a CSV -space.

By [14, Theorem 6.3], for a zero dimensional space X, X is pseudocompact if and only if
υ0X = β0X, so from Proposition 4.11 we have the next fact.

Corollary 4.12. For a zero dimensional pseudocompact Tychonoff space X, X is a CSV -space
if and only if β0X is a CSV -space if and only if υ0X is a CSV -space.

Proposition 4.13. If C∗
c (X) is a CSV -ring, then the homomorphism image of C∗

c (X) is a
CSV -ring.

Proof. Let P be an arbitrary prime ideal of C∗
c (Y ) and φ : C∗

c (X) −→ C∗
c (Y ) be an epimor-

phism. From that π : C∗
c (Y ) −→ C∗

c (Y )
P is a homomorphism, π ◦ φ : C∗

c (X) −→ C∗
c (Y )
P is an

epimorphism and Ker(π ◦ φ) = φ−1(P ). So C∗
c (X)

φ−1(P )
∼= C∗

c (Y )
P .
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Proposition 4.14. If X is a CSV -space and Y is an C∗
c -embedded subspace of X, then Y is

a CSV -space.

Proof. Let φ : C∗
c (X) −→ mC∗

c (Y ) where φ(f̄) = f̄ |Y for each f̄ ∈ C∗
c (X) and mC∗

c (Y ) be a
set of minimal prime ideals of C∗

c (Y ). For each f ∈ C∗
c (Y ), there exists f̄ ∈ C∗

c (X) such that
f̄ |Y = f . So C∗

c (Y ) is a homomorphism image of C∗
c (X). Hence Y is a CSV -space.

Remark 4.15. We know that each closed and compact subspace Y of X is C-embedded and
therefore it is Cc-embedded. So if X is a compact and CSV -space and Y is a closed subspace
of X, then Y is a CSV -space.
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