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Λ-EXTENSION OF BINARY MATROIDS

MORTEZA KAZEMZADEH∗, HABIB AZANCHILER AND VAHID GHORBANI

Abstract. In this paper, we combine two binary operations Γ-Extension and element split-

ting under special conditions, to extend binary matroids. For a given binary matroid M , we

call a matroid obtained in this way a Λ-Extension of M . We note some attractive properties

of this matroid operation, particularly constructing a chordal matroid from a chordal binary

matroid.

1. Introduction

The matroid notations and terminology used here will follow Oxley [6]. Slater [8, 9] defined
several operations on graphs that have important roles in graph connectivity. Azadi [1] and
Azanchiler [2] define matroid generalizations of two of these operations (n-point splitting and
point addition operations, respectively) and they note some attractive properties of these
matroid operations. They called them, element splitting and Γ-Extension operations on binary
matroids, respectively. These operations are defined as follows:

DOI: 10.22034/as.2022.2608

MSC(2010): Primary: 05B35

Keywords: Γ-extension, element splitting, binary matroid, connectivity, chordal matroid.

Received: 23 November 2020, Accepted: 13 February 2022.

∗Corresponding author

© 2022 Yazd University.
1



2 M. Kazemzadeh, H. Azanchiler and V. Ghorbani

Definition 1.1. Let M be a binary matroid on a set E and A be a matrix that represents M

over GF (2). Consider a subset T of E(M). Let AT be the matrix that is obtained by adjoining
an extra row to A whose entries are zero everywhere except in the columns corresponding to
all elements of T . Let A′

T be the matrix that is obtained by adjoining an extra column to
AT with this column being zero everywhere except in the last row. Let MT and M ′

T be the
matroids that are represented by the matrices AT , A′

T , respectively. Then the transition from
M to MT and M ′

T is called the generalized splitting operation and element splitting operation,
respectively.

Let M be a matroid and T ⊆ E(M), a circuit C of M is called an OT -circuit if C contains
an odd number of elements of T , and C is an ET -circuit if C contains an even number of
elements of T . The following proposition characterizes the circuits of the element splitting
matroid M ′

T in terms of the circuits of the original binary matroid M .

Proposition 1.2. [1] Let M = (E, C) be a binary matroid together with the collection of
circuits C. Suppose T ⊆ E and α /∈ E. Then M ′

T = (E ∪ α, C′) where C′ = C0 ∪ C1 ∪ C2 and
C0 = {C ∈ C : C is an ET -circuit};
C1 = {C ∪ {α} : C ∈ C and C is an OT -circuit};
C2 = The set of minimal members of {C1 ∪ C2 : C1, C2 ∈ C, C1 ∩ C2 = ∅
and each of C1 and C2 is an OT -circuit}.

Now, let M be a binary matroid. By using the next definition, we obtain a matroid by
adding some new elements in parallel to selected members of E(M) and then applying the
generalized splitting operation on these new elements.

Definition 1.3. Let A be a matrix that represents a binary matroid M . Let X =

{x1, x2, ..., xk} be an independent subset of E(M) and let Γ = {γ1, γ2, ..., γk} be a set such
that E(M) ∩ Γ = ∅. Let AX be the matrix obtained from A by the following way.

(1) Obtain a matrix A′ from A by adjoining k columns labeled by γ1, γ2, ..., γk such that
the column labeled by γi is same as the column labeled by xi for i ∈ {1, 2, ...k}.

(2) Adjoin (generalized splitting) one extra row to A′ which has entry 1 in the column
labeled by γi and zero elsewhere, i ∈ {1, 2, ...k}.

The vector matroid of the matrix AX , denoted by MX , is called the Γ-Extension of M and
the transition from M to MX is called Γ-Extension operation on M .

Now we change part (2) of definition 1.3. We apply element splitting operation instead of
the generalized splitting operation on part (2) such that one can select some elements even if
they don’t belong to part (1) and we denote the resulting matrix and its vector matroid by AX

α
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and MX
α , respectively. We say that the transition from M to MX

α is Γ′-Extension operation
on M .

In the next section, we shall use the Γ′-Extension operation to characterize one special class
of graphic matroids, which we use the cycle matroids of all members of this class to define a
new extension of binary matroids.

2. Characterizing one special class of graphic matroid

An undirected graph is chordal (triangulated, rigid circuit) if every cycle of length greater
than three has a chord [3]. Suppose that Λn is a graph that is obtained from the cycle Cn

(cycle with n vertices and n edges) by adding n− 3 chords on exactly one of its vertices where
n ≥ 4. This graph has exactly one vertex of degree n−1, we denote such vertex by Vλ. Let λ1

and λn−1 be adjacent edges of Λn such that their common endpoint is Vλ. Let x1, x2, ..., xn−2

be the labels of the other edges of Cn and λ2, λ3, ..., λn−2 be the labels of all n − 3 chords of
Cn such that the set {λi, λi+1, xi} is a circuit of Λn, for i ∈ {1, 2, ..., n − 2}. For n ≥ 4, we
denote by Λ+

n , the graph that is obtained from Λn by adding a new edge to Λn with label xn−1

in parallel to the edge λ1 or λn−1 (see Figure 1). Clearly, these two graphs are chordal.

Figure 1. Two graphs Λn and Λ+
n .

Next, consider matrix Ln a special type of lower triangular matrix as follows:

(1) Lij =

 1, i ≥ j;

0, i < j.

Written explicitly,

(2) Ln =


1 0 · · · 0

1 1 · · · 0
...

... . . . ...

1 1 · · · 1


Theorem 2.1. For n ≥ 4, Let M(G) be the cycle matroid of the graph G = Λ+

n .
Let A = [In−1|Ln−1] be a matrix over GF (2) whose columns are labeled, in order
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x1, x2, ..., xn−2, xn−1, λ1, λ2, λ3, ..., λn−1 such that Ln−1 is an (n − 1) × (n − 1) lower trian-
gular matrix as (2). Then A represents M(G). Moreover, a set C is a circuit of M(G) if and
only if C has one of the following forms.

(i) {xn−1, λn−1};
(ii) {λi, λj , xi, xi+1, ..., xj−1} for i and j in {1, 2, 3, ..., n− 1} such that i < j;
(iii) C = C ′∆{xn−1, λn−1} where C ′ has the form in the part (ii) such that C ′ ∩

{xn−1, λn−1} ̸= ∅.

Proof. For n ≥ 4, let G be a graph Λ+
n for which graphic representations are shown in Figure

1. Suppose that X = {x1, x2, ..., xn−2, xn−1}. Then X is a spanning tree of G and so X is a
basis of M(G). Let A = [In−1|D] be a matrix over GF (2) whose columns are labeled, in order

x1, x2, ..., xn−1, λ1, λ2, λ3, ..., λn−1

and A represents M(G). Since X ∪ λ1 is a cycle of M(G), all entries in the corresponding
column of λ1 in A are 1. Moreover, the set (X−{x1})∪λ2 is a cycle of M(G). Thus, all entries
in the corresponding column of λ2 in A are 1 except in the first entry. For all j in {1, 2, ..., n−2},
one can easily check that the set (X − {x1, x2, ..., xj}) ∪ λj+1 is a cycle of M(G) and so all
entries in the corresponding column of λj+1 in A are 1 except in the corresponding entries of
the first row, the second row,...., the jth row. We conclude that D is an (n−1)× (n−1) lower
triangular matrix Ln−1. Clearly, the corresponding entries in columns xn−1 and λn−1 are the
same. Therefore the set {xn−1, λn−1} is a circuit of M(G). Moreover, for j ̸= n − 1, the set
X ′ = (X −{x1, x2, ..., xj})∪λj+1 contains xn−1. Hence X ′∆{xn−1, λn−1} is a circuit of M(G)

and has the form as part (ii). Now consider the set {λi, λj , xi, xi+1, ..., xj−1}, for i and j in
{1, 2, 3, ..., n− l} such that i < j. The corresponding column (n− 1)-vectors of λi and λj are

λi = (0, 0, ..., 0︸ ︷︷ ︸
i−1

, 1, 1, ..., 1)T and λj = (0, 0, ..., 0︸ ︷︷ ︸
i−1

, 0, 0, ..., 0

︸ ︷︷ ︸
j−1

, 1, 1, ..., 1)T .

Hence the corresponding vector of λi + λj over GF (2) is

(0, 0, ..., 0︸ ︷︷ ︸
i−1

, 1, 1, ..., 1

︸ ︷︷ ︸
j−1

, 0, 0, ..., 0)T .

We conclude that the elements xi, xi+1, ..., xj−1 must be added to {λi, λj} to have a circuit of
M(G). By the fact that in all binary matroids, the symmetric difference of any set of circuits
is either empty or contains a circuit, all circuits of M(G) have the forms in part (i)-(iii).
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Corollary 2.2. Let M be a matroid defined on Theorem 2.1. Then

M(Λ+
n ) \ xn−1

∼= M(Λ+
n ) \ λn−1

∼= M(Λn).

Moreover, the collection of all circuits of M(G′) is

{
{λi, λj , xi, xi+1, ..., xj−1} : for i and j in {1, 2, 3, ..., n− 1} such that i < j

}
.

Let G = {M(Λn) : n > 4}. The next theorem shows that we can construct all members
of G from Λ4 by a sequence of Γ′-Extension operations.

Theorem 2.3. Let the ground set of M(Λn) be {x1, x2, ..., xn−2, xn−1, λ1, λ2 , ..., λn−2} such
that the two sets {xi : 1 ≤ i ≤ n − 1} and {λj : 1 ≤ j ≤ n − 2} ∪ xn−1 are bases of M(Λn).
Then M(Λn+1) can be obtained from M(Λn) by adding the new element λn−1 in parallel to
xn−1 and applying the element splitting operation on the set {λ1, λ2, ..., λn−2, λn−1}

Proof. Note that by adding the new element λn−1 in parallel to xn−1, we obtain M(Λ+
n ).

Suppose that N = M(Λ+
n ). We must show that after applying the element splitting operation

on N with respect to T = {λ1, λ2, ..., λn−2, λn−1} we obtain M(Λn+1). First, let n be an
even number greater than three and let α be a new element that it has been added to N

after applying the element splitting operation. By Theorem 2.1, the set {xn−1, λn−1} is an
OT -circuit. Therefore, by Proposition 1.2, {xn−1, λn−1, α} is a circuit of N ′

T . Moreover, the
set W = {λi, λj , xi, xi+1, ..., xj−1} is an ET -circuit of N , for i and j in {1, 2, 3, ..., n− 1} such
that i < j. By Proposition 1.2 again, W is a circuit of N ′

T . Now if W contains the element
λn−1, then, by Theorem 2.1, the set W ′ = (W − λn−1) ∪ xn−1 is an OT -circuit of N and so
by Proposition 1.2 again, W ′ ∪ α is a circuit of N ′

T . Clearly, there is no two OT -circuits of N
such that their intersection is empty. Hence, the collection C2 in Proposition 1.2 is an empty
set. Now Let α plays the role of λn in N ′

T . Then N ′
T
∼= M(Λn+1). Similarly, one can easily

check that if n is an odd number, then N ′
T
∼= M(Λn+1).

3. Λ-extension operation on binary matroids

In this section, we define a new operation on binary matroid by the matrix representation
of M(Λn), for n ≥ 4. indeed, we use Γ′-extension operation to define this operation.

Definition 3.1. Let A = [Ir|D] be a matrix that represents a binary rank r matroid M . Let
A′′ be the matrix obtained from A by the following way.

(1) Obtain a matrix A′ from A by adjoining r columns to A labeled λ1, λ2, ..., λr such that
these columns form the matrix Lr.
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(2) Adjoin (element splitting) one extra row to A′ which has entry 1 in the column labeled
by λi and zero elsewhere, i ∈ {1, 2, ...r} and then Adjoin one extra column with this
column being zero everywhere except in the last new row.

We say that the vector matroid of the matrix A′′ and we denote it by Λ(M), is Λ-extension of
M and we call the transition from M to Λ(M) is Λ-extension operation on M .

The following two theorems characterize the collection of all circuits of a matroid that is
obtained by Λ-extension operation in terms of the circuits of a given binary matroid.

Theorem 3.2. Let M and N be binary matroids with matrix representations [Ir|D] and
[Ir|D|Lr], respectively. Then the collection of all circuits of N is C(M) ∪ C0 ∪ C1 where C0 is
a collection of all circuits of M(Λ+

r+1) and a set C is a member of C1, if it is a member of the
following collection.

Minimal members of {C1∆C2 : C1 ∈ C(M) and C2 ∈ C0 such that C1 ∩ C2 ̸= ∅};

Proof. By the proof of Theorem 2.1 and by the fact that all circuits of a binary matroid can
be characterized by symmetric difference operation, the proof is straightforward.

Theorem 3.3. Under the hypotheses of Theorem 3.2, Let T = {λ1, λ2, ..., λr} be the set of
all labels of the corresponding columns of submatrix Lr. Then the collection of all circuits of
Λ(M) is C(M) ∪ C2 ∪ C3 where C2 is a collection of all circuits of M(Λr+2) and a set C is a
member of C3, if it is a member of the following collections.

(i) {C ∪ {λr+1} : C ∈ C1 and C is an OT -circuit};

(ii) {C1 ∪ C2 : C1, C2 ∈ C1, C1 ∩ C2 = ∅ and each of C1 and C2 is an OT -circuit}.

Proof. Let M and N be binary matroids with matrix representations [Ir|D] and [Ir|D|Lr],
respectively. Let T = {λ1, λ2, ..., λr} be the set of all labels of the corresponding columns
of submatrix Lr. Then, by Definition 3.1, Λ(M) = N ′

T (The element splitting of N). The
intersection of any circuit of M with T is empty, so all circuits of M are ET -circuits and
by Proposition 1.2, these circuits are also circuits of Λ(M). By Theorem 2.3, all circuits of
M(Λr+2) can be obtained by applying element splitting operation on M(Λ+

r+1). Now let λr+1

be the new element that is added to N after applying the element splitting operation. Then,
by Proposition 1.2 again, one can easily find all members of collection C3.

Theorem 3.4. Let M be a binary matroid. Let r and r′ be the rank functions of M and
Λ(M), respectively. Then r′ = r + 1.
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Proof. Let M be a binary matroid of rank r and let A = [Ir|D] be the matrix that represents
M over GF (2). Let M ′ = M [A′] be a vector matroid obtained from A by adding r new
columns to it such that M ′ \D ∼= M(Λr+1). In fact, the corresponding submatrix of these r

columns is an r × r lower triangle matrix Lr. Therefore the matrix A′ has the form [Ir|D|Lr]

and

r(M ′ \D) = r(M ′ \ Lr) = r(M ′)

So r(M ′) = r(M). Now let M ′′ be the matroid obtained from M ′ by element splitting op-
eration with respect to all corresponding elements of Lr. By the fact that the element split-
ting operation increases the rank of given binary matroid always one unit, we conclude that
r(M ′′) = r(M) + 1.

Theorem 3.5. Let M be a binary n-connected matroid, for n ≥ 3. Then Λ(M) is a 3-connected
matroid.

Proof. By Definition 3.1, Let A and A′′ be the matrices that represent a given binary matroid
M and Λ(M), respectively. Let r and r′ be the rank functions of M and Λ(M), respectively.
For some k, let E(M) = {x1, x2, ..., xr, d1, d2, d3, ..., dk} and

E(Λ(M)) = {x1, x2, ..., xr, d1, d2, d3, ..., dk, λ1, λ2, λ3, ..., λr, λr+1},

where the set {x1, x2, ..., xr} is a basis of M and {x1, x2, ..., xr, λr+1} is a basis of Λ(M) such
that the matrices A and A′′ are constructed by these bases. By Theorem 3.2, the set X =

{λi, λi+1, xi} is a circuit of Λ(M), for i in {1, 2, ..., r}. Then r′(X) = 2. Let Y = E(Λ(M))−X.
Then, by the fact that r ≥ 3, min{|X|, |Y |} = 3. Now Let z = r′(X) + r′(Y )− r′(Λ(M)) and
Λ = {λ1, λ2, ..., λi−1, λi+2, ..., λr+1}. Then

z = r′
(
(E(M)− xi) ∪ Λ

)
− r(M) + 1.

But

r′
(
(E(M)− {xi}) ∪ Λ

)
≤ r(M) + 1.

We conclude that z ≤ 2 and this means (X,Y ) is a 3-separation of Λ(M). One can easily see
that if Λ(M) has a 2 or 1-separation, then M is not an n-connected matroid. Hence Λ(M)is
a 3-connected matroid.

Chordal matroids are the natural generalization of chordal graphs. We are interested in the
following the effect of the Λ-Extension operation on the notion of a chordal matroid.
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Definition 3.6. In [4, 5], a binary matroid M is said to be chordal if each circuit C of M

that has four or more elements has a chord, that is, a circuit C of a matroid M has a chord e

if there are two circuits C1 and C2 such that C1 ∩C2 = {e} and C = C1∆C2. In this case, we
say that C is the sum of C1 and C2 and also that C ∪ {e} is split into C1 and C2.
In [7], the author introduces an equivalent definition of chordal binary matroids as follows:
M is chordal if for every circuit C, |C| > 3, there is a pair of elements c, c;∈ C and an element
e ∈ E(M)−C such that {c, c′, e} is a triangle (A circuit of M is a triangle if it has cardinality
of exactly 3).

Theorem 3.7. Let M be a binary rank-r matroid that is not chordal. Then Λ(M) is not a
chordal matroid.

Proof. Let M be a binary rank-r matroid that is not chordal. Let [Ir|D] be a matrix represen-
tation of M with respect to basis {x1, x2, ..., xr}. Let C be a circuit of M with |C| ≥ 4 such
that C has no chord. Suppose that C = {x1, x2, ..., xi, d1, d2, ..., dj}, for some i and j. Then,
By Theorem 3.3, C is a circuit of Λ(M). Assume the contrary, that is, suppose that C has a
chord in Λ(M). Then exactly one of the following holds.

(i) For some l,k and s and for xl, dk ∈ C there is a circuit {xl, dk, λs} in Λ(M); a con-
tradiction (by Theorem 3.3, all circuits of Λ(M) have even cardinality with the set
{λ1, λ2, ..., λr+1}).

(ii) For some l′,k′ and s′ and for dl′ , dk′ ∈ C there is a circuit {dl′ , dk′ , λs′} in Λ(M); a
contradiction.

(iii) For some l′′,k′′ and s′′ and for xl′′ , xk′′ ∈ C there is a circuit {xl′,, xk′′ , λs′′} in Λ(M); a
contradiction.

We conclude that Λ(M) is not a chordal matroid.

Theorem 3.8. Let M be a binary rank-r chordal matroid. Then Λ(M) is a chordal matroid.

Proof. For r ≥ 3, Suppose that C and C′ are collections of all circuits of M(Λ+
r+1) and M(Λr+2),

respectively. Let M be a chordal binary matroid M with rank r and matrix representation
[Ir|D]. Then E(Λ(M)) = E(M) ∪ E(Λr+2) and every circuit of M that has four or more
elements has a chord. Let N be a binary matroid with matrix representation [Ir|D|Lr] whose
columns are labeled, for some k, in order

x1, x2, ..., xr, d1, d2, d3, ..., dk, λ1, λ2, λ3, ..., λr, λr+1.

Then, By Corollary 2.2, every member of M(Λr+2) belongs to a triangle. This means for
the circuit {λi, λj , xi, xi+1, ..., xj−1} from M(Λr+2), with i and j in {1, 2, 3, ..., r+1} such that
i < j and j ̸= i+ 1, there is a triangle {λi, λi+1, xi} and so every circuit of M(Λr+2) that has
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four or more elements has a chord. For T = {λ1, λ2, ..., λr}, we have Λ(M) = N ′
T . Let λr+1

be a new element that is added to N after applying the element splitting operation. Then,
all circuits of N have a chord and it suffices to show that all circuits belong to the collection
C3 of Theorem 3.3 have a chord. Let C ∈ C3 and C = C ′ ∪ λr+1. Then, by Theorem 3.2,
C = (C1∆C2) ∪ λr+1 where C1 ∈ C(M) and C2 ∈ C such that C1 ∩ C2 ̸= ∅ and |C2 ∩ T | is
odd. Therefore, by Theorem 2.1, if λi ∈ C2, then λi+1 /∈ C2, for i in {1, 2, ..., r− 1} (clearly, if
i = r, then xr is a chord of C). Now, if xi /∈ C1, then λi+1 is a chord of C; and if xi ∈ C1 and
C1 ∩ C2 = xi, then C = C1∆C ′

2 where C ′
2 ∈ C′ and so C has a chord. Finally, let C ∈ C3 and

C = C3 ∪C4 where C3 = C ′
3∆C ′′

3 and C4 = C ′
4∆C ′′

4 such that C ′
3, C

′′
3 ∈ C(M) and C ′

4, C
′′
4 ∈ C.

Then C = (C ′
3∆C ′

4)∆(C ′′
3∆C ′′

4 ). Now, there are two elements xl and λl in (C ′
3∆C ′

4)∩(C ′′
3∆C ′′

4 ),
for l in {1, 2, ..., r} and therefore λl+1 is a chord of C. We conclude that Λ(M) is a chordal
matroid.

The next corollary is an immediate consequence of the last two theorems.

Corollary 3.9. Let M be a binary matroid. Then M is a chordal matroid if and only if Λ(M)

is a chordal matroid.
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