

Algebraic Structures and Their Applications

Algebraic Structures and Their Applications Vol. 9 No. 1 (2022) pp 145-159

Research Paper

ω -FILTERS OF DISTRIBUTIVE LATTICES

MUKKAMALA SAMBASIVA RAO* AND CHUKKA VENKATA RAO

ABSTRACT. The notion of ω -filters is introduced in distributive lattices and their properties are studied. A set of equivalent conditions is derived for every maximal filter of a distributive lattice to become an ω -filter which leads to a characterization of quasi-complemented lattices. Some sufficient conditions are derived for proper *D*-filters of a distributive lattice to become an ω -filter. Finally, ω -filters of a distributive lattice are characterized with the help of minimal prime *D*-filters.

1. INTRODUCTION

Many authors introduced the concept of annihilators in the structures of rings as well as lattices and characterized several algebraic structures in terms of annihilators. T.P. Speed [11] and W.H. Cornish [5] made an extensive study of annihilators in distributive lattices. In [4], some properties of minimal prime filters are studied in distributive lattices and the properties of dense elements and *D*-filters are studied in *MS*-algebras [9]. In [2], the notion of *D*-filters

MSC(2010): Primary: 06D99

© 2022 Yazd University.

DOI: 10.22034/as.2021.2553

Keywords: Prime *D*-filter, Minimal prime *D*-filter, Maximal filter, ω -filter, Quasi-complemented lattice, Boolean algebra. Received: 19 September 2021, Accepted: 2 December 2021. *Corresponding author

was introduced in pseudo-complemented semilattices. Later it was generalized by the author [9] in MS-algebras. In [10], the authors investigated certain important properties of prime D-filters of distributive lattices. In this paper, some properties of minimal prime D-filters of distributive lattices are derived with respect to congruences.

The main aim of this paper is to introduce the notion of ω -filters and to study certain properties of these filters with the help of maximal filters and minimal prime *D*-filters of distributive lattices. These of ω -filters are the dual of O-ideals of distributive lattices [6] whenever $D = \{1\}$. In this paper, we initially observe the properties of prime *D*-filters in quasicomplemented lattices and Boolean algebras in order to elevate their properties in distributive lattices. A necessary and sufficient condition is derived for a proper ω -filter of a distributive lattice to become a prime ω -filter. A set of equivalent conditions is derived for every maximal filter of a distributive lattice to become an ω -filter which leads to a characterization of quasicomplemented lattice. Some equivalent conditions are derived for the class of all ω -filters to become a sublattice of the lattice of all filters of a distributive lattices. Finally, the role of minimal prime *D*-filters is observed in the characterization of ω -filters of distributive lattices.

2. Preliminaries

The reader is referred to [1] and [3] for the elementary notions and notations of distributive lattices. However some of the preliminary definitions and results of [9] and [10] are presented for the ready reference of the reader.

Definition 2.1. [1] An algebra (L, \wedge, \vee) of type (2, 2) is called a distributive lattice if for all $x, y, z \in L$, it satisfies the following properties (1), (2), (3) and (4) along with (5) or (5')

(1) $x \wedge x = x, x \vee x = x,$ (2) $x \wedge y = y \wedge x, x \vee y = y \vee x,$ (3) $(x \wedge y) \wedge z = x \wedge (y \wedge z), (x \vee y) \vee z = x \vee (y \vee z),$ (4) $(x \wedge y) \vee x = x, (x \vee y) \wedge x = x,$ (5) $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z),$ (5') $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z).$

A non-empty subset A of L is called an ideal(filter) of L if $a \lor b \in A(a \land b \in A)$ and $a \land x \in A(a \lor x \in A)$ whenever $a, b \in A$ and $x \in L$. The set $\mathcal{I}(L)$ of all ideals of $(L, \lor, \land, 0)$ forms a complete distributive lattice as well as the set $\mathcal{F}(L)$ of all filters of $(L, \lor, \land, 1)$ forms a complete distributive lattice. A proper ideal (filter) M of a lattice is called *maximal* if there exists no proper ideal(filter) N such that $M \subset N$.

Alg. Struc. Appl. Vol. 9 No. 1 (2022) 145-159.

The set $(a] = \{x \in L \mid x \leq a\}$ is called a *principal ideal* generated by a and the set of all principal ideals is a sublattice of $\mathcal{I}(L)$. Dually the set $[a) = \{x \in L \mid a \leq x\}$ is called a *principal filter* generated by a and the set of all principal filters is a sublattice of $\mathcal{F}(L)$. A proper ideal (proper filter) P of a lattice L is called *prime* if for all $a, b \in L$, $a \wedge b \in P$ $(a \lor b \in P)$ then $a \in P$ or $b \in P$. Every maximal(ideal) filter is prime. For any element a of a distributive lattice L, the *annihilator* of a is defined as the set $(a)^* = \{x \in L \mid x \land a = 0\}$. An element a of a lattice L is called a *dense element* if $(a)^* = \{0\}$. The set D of all dense elements of a lattice L forms a filter of L. A distributive lattice L with 0 is called *quasi-complemented* [6] if to each $x \in L$ there exists $x' \in L$ such that $x \land x' = 0$ and $x \lor x' \in D$.

Definition 2.2. [10] A filter F of a lattice L is called a D-filter if $D \subseteq F$.

The set D of all dense elements of a distributive lattice is the smallest D-filter of the lattice. For any subset A of a distributive lattice L, define $A^{\circ} = \{x \in L \mid a \lor x \in D \text{ for all } a \in A\}$. Clearly $L^{\circ} = D$ and $D^{\circ} = L$. It can also be observed that $D \subseteq A^{\circ}$ for any subset A of a lattice L. For any $a \in L$, we simply represent $(\{a\})^{\circ}$ by $(a)^{\circ}$. Then it is obvious that $(1)^{\circ} = L$. For any subset A of L, A° is a D-filter of L. It is clear that $([x))^{\circ} = (x)^{\circ}$. Then clearly $(0)^{\circ} = D$.

Proposition 2.3. [10] Let L be a distributive lattice. For any $a, b, c \in L$, we have

- (1) $a \leq b$ implies $(a)^{\circ} \subseteq (b)^{\circ}$,
- (2) $(a \wedge b)^{\circ} = (a)^{\circ} \cap (b)^{\circ}$,
- (3) $(a \lor b)^{\circ\circ} = (a)^{\circ\circ} \cap (b)^{\circ\circ}$,
- (4) $(a)^{\circ} = L$ if and only if $a \in D$.

Let F be a D-filter and P be a prime D-filter of a lattice L such that $F \subseteq P$. Then P is called a *minimal prime* D-filter belonging to F if there is no prime D-filter Q such that $F \subseteq Q \subset P$. A prime D-filter belonging to D is simply called *minimal prime* D-filter. A prime D-filter P of a lattice L is minimal prime D-filter belonging to F [10] if and only if to each $x \in P$, there exists $y \notin P$ such that $x \lor y \in F$. Throughout this article, all lattices are bounded distributive lattices unless otherwise mentioned.

3. ω -filters of lattices

In this section, we initially observe certain properties of prime *D*-filters. The notion of ω -filters is introduced in a distributive lattice. A characterization theorem of quasi-complemented lattices is derived. Finally, the class of all ω -filters are characterized in terms of minimal prime *D*-filters.

Proposition 3.1. Let P be a prime filter of a quasi-complemented lattice L. Then the following assertions are equivalent:

- (1) $D \subseteq P$;
- (2) for any $x \in L$, $x \in P$ if and only if $(x)^{\circ} \nsubseteq P$;
- (3) for any $x, y \in L$ with $(x)^{\circ} = (y)^{\circ}$, $x \in P$ implies that $y \in P$;
- (4) $D \cap (L P) = \emptyset$.

Proof. (1) \Rightarrow (2): Assume that $D \subseteq P$. Suppose $x \in P$. Since L is quasi-complemented, there exists $x' \in L$ such that $x \wedge x' = 0$ and $x \vee x' \in D$. Hence $x' \in (x)^{\circ}$. Suppose $x' \in P$. Then $0 = x \wedge x' \in P$, which is a contradiction. Hence $x' \notin P$. Therefore $(x)^{\circ} \notin P$. Conversely, suppose that $(x)^{\circ} \notin P$. Then there exists $x' \in L$ such that $x' \in (x)^{\circ}$ and $x' \notin P$. Clearly $x \vee x' \in D \subseteq P$. Since P is prime and $x' \notin P$, we must have $x \in P$.

(2) \Rightarrow (3): Assume the condition (2). Let $x, y \in L$ such that $(x)^{\circ} = (y)^{\circ}$. Suppose $x \in P$. Then by (2), we get $y \in P$.

(3) \Rightarrow (4): Assume that condition (3) holds. Let $x \in L$. Suppose $x \in D \cap (L - P)$. Then $(x)^{\circ} = L$ and $x \notin P$. Hence $(x)^{\circ} = L = (d)^{\circ}$ for any $d \in D \subseteq P$. Since $d \in P$, by (3), we get $x \in P$ which is a contradiction. Therefore $D \cap (L - P) = \emptyset$.

 $(4) \Rightarrow (1)$: It is obvious.

Theorem 3.2. Let L be a quasi-complemented lattice and $x \in L$. If x' is the quasi-complement of x, then every prime D-filter must contain exactly one of x or x'.

Proof. Let P be a prime D-filter of L. Clearly $x \lor x' \in D \subseteq P$. Since P is prime, we get $x \in P$ or $x' \in P$. Suppose both x and x' are in P. Then $0 = x \land x' \in P$, which is a contradiction. Therefore P must contain exctly one of x or x'. \Box

In the following theorem, a set of equivalent conditions is derived, with the help of prime filters, for a quasi-complemented lattice to become a Boolean algebra.

Proposition 3.3. Let L be a quasi-complemented lattice and $x \in L$. Then the following assertions are equivalent:

- (1) L is a Boolean algebra;
- (2) every prime filter contains exactly one of x or x';
- (3) every prime filter is a D-filter;
- (4) every minimal prime filter is a D-filter;

where x' is the quasi-complement of x in L.

Proof. (1) \Rightarrow (2): Assume that *L* is Boolean. Let *P* be a prime filter of *L* and $x \in P$. Since *L* is Boolean, we get $D = \{1\}$. Hence $x \wedge x' = 0$ and $x \vee x' = 1 \in P$. Since *P* is prime, we

get $x \in P$ or $x' \in P$. If both x and x' are in P, then $0 = x \wedge x' \in P$ which is a contradiction. Therefore P must contain exactly one of x or x'.

 $(2) \Rightarrow (3)$: Assume the condition (2). Let P be a prime filter of L. Let $x \in D$. Since L is quasi-complemented, we get that $x' \in (x)^* = \{0\}$. Hence $x' = 0 \notin P$. By the condition (2), we get $x \in P$. Thus $D \subseteq P$. Therefore P is a D-filter of L.

 $(3) \Rightarrow (4)$: It is clear.

 $(4) \Rightarrow (1)$: Assume that condition (4) holds. Let $x \in L$. Suppose $x \lor x' \neq 1$. Then there exists a maximal ideal M of L such that $x \lor x' \in M$. Then L - M is a minimal prime filter such that $x \lor x' \notin M$. Hence $x \notin M$ and $x' \notin M$. By the hypothesis, we get $D \subseteq L - M$. Since Lis quasi-complemented, by Theorem 3.2, L - M must contain exactly one of x or x', which is a contradiction. Hence $x \lor x' = 1$. Therefore L is a Boolean algebra. \Box

Theorem 3.4. Let M be a proper filter of a quasi-complemented lattice L. Then M is maximal if and only if M is prime D-filter.

Proof. Assume that M is a maximal filter of L. Clearly M is prime. Let $x \in D$. Then $(x)^* = \{0\}$. Suppose $x \notin M$. Then $M \lor [x] = L$. Hence $0 = m \land x$ for some $0 \neq m \in M$. Then $m \in (x)^* = \{0\}$, which is a contradiction. Hence $x \in M$. Thus $D \subseteq M$. Therefore M is a prime D-filter of L.

Conversely, assume that M is a prime D-filter of L. Suppose M is not maximal. Let Q be a proper filter of L such that $M \subset Q$. Choose $x \in Q - M$. Since L is quasi-complemented, there exists $x' \in L$ such that $x \wedge x' = 0$ and $x \vee x' \in D \subseteq M$. Since M is prime and $x \notin M$, we get $x' \in M \subset Q$. Hence $0 = x \wedge x' \in Q$, which is a contradiction. Therefore M is maximal. \square

From Theorem 3.4, one can notice that the class of all maximal filters and the class of all prime D-filters of a quasi-complemented lattice are the same. Since every prime D-filter is maximal, we can conclude that every prime D-filter is minimal in a quasi-complemented lattice. Therefore maximal filters, prime D-filter, and minimal prime D-filters are the same in a quasi-complemented lattice.

Definition 3.5. Let *I* be an ideal of a lattice *L*. Then define $\omega(I) = \{x \in L \mid x \lor a \in D \text{ for some } a \in I\}$. In other words, $\omega(I) = \bigcup_{x \in I} (x)^{\circ}$.

Proposition 3.6. For any ideal I of a lattice L, the set $\omega(I)$ is a D-filter in L.

Proof. Clearly $D \subseteq \omega(I)$. Let $x, y \in \omega(I)$. Then $x \lor a \in D$ and $y \lor b \in D$ for some $a, b \in I$. Now $(x \land y) \lor (a \lor b) = (x \lor a \lor b) \land (y \lor a \lor b) \in D$ and $a \lor b \in I$. Hence $x \land y \in \omega(I)$. Again, let $x \in \omega(I)$ and $x \leq y$. Then $x \lor a \in D$ for some $a \in I$. Since $x \lor a \leq y \lor a$, we get $y \lor a \in D$. Thus $y \in \omega(I)$. Therefore $\omega(I)$ is a *D*-filter of *L*. \Box

Lemma 3.7. For any two ideals I, J of a lattice L, the following properties hold:

- (1) $I \cap \omega(I) \neq \emptyset$ if and only if $\omega(I) = L$,
- (2) $I \subseteq J$ implies $\omega(I) \subseteq \omega(J)$,
- (3) $\omega(I) \cap \omega(J) = \omega(I \cap J)$

Proof. (1): Suppose $I \cap \omega(I) \neq \emptyset$. Choose $x \in I \cap \omega(I)$. Then $x \in I$ and $x \lor a \in D$ for some $a \in I$. By Proposition 2.3(4), we get $(x \lor a)^{\circ} = L$. Since $x \in I$ and $a \in I$, we get $x \lor a \in I$. Therefore $\omega(I) = \bigcup_{x \in I} (x)^{\circ} = L$. Conversely, assume that $\omega(I) = L$. Then $0 \in \omega(I)$. Hence $0 \in I \cap \omega(I)$, which means that $I \cap \omega(I) \neq \emptyset$.

(2): Suppose $I \subseteq J$. Let $x \in \omega(I)$. Then $x \lor a \in D$ for some $a \in I \subseteq J$. Hence $x \in \omega(J)$. Therefore $\omega(I) \subseteq \omega(J)$.

(3) : Clearly $\omega(I \cap J) \subseteq \omega(I) \cap \omega(J)$. Conversely, let $x \in \omega(I) \cap \omega(J)$. Then $x \lor a \in D$ and $x \lor b \in D$ for some $a \in I$ and $b \in J$. Then $a \land b \in I \cap J$. Hence $x \lor (a \land b) = (x \lor a) \land (x \lor b) \in D$. Hence $x \in \omega(I \cap J)$. Therefore $\omega(I) \cap \omega(J) \subseteq \omega(I \cap J)$. \Box

Proposition 3.8. Let I, J be two ideals of a lattice L such that $\omega(I) \cap J = \emptyset$, then there exists a prime D-filter P such that $\omega(I) \subseteq P$ and $P \cap J = \emptyset$.

Proof. Let I and J be as mentioned in the hypothesis. Then there exists a maximal ideal Q such that $J \subseteq Q$ and $\omega(I) \cap Q = \emptyset$. Since Q is a prime ideal, we get that L - Q is a prime filter. Since $\omega(I) \cap Q = \emptyset$, we get that $D \subseteq \omega(I) \subseteq L - Q$. Therefore L - Q = P is a prime D-filter of L that is containing $\omega(I)$. \Box

We now introduce the concept of ω -filters of lattices.

Definition 3.9. Let *F* be a *D*-filter of a lattice *L*. Then *F* is called an ω -filter of *L* if $F = \omega(I)$ for some ideal *I* of *L* such that $I \cap D = \emptyset$.

From the above definition, it is an easy consequence that $\omega(\{0\}) = D$. Hence D is proper and the smallest ω -filter of the lattice L.

Example 3.10. Consider the distributive lattice $L = \{0, a, b, c, 1\}$ whose Hasse diagram is given in the following figure:

Consider the filters $F_1 = \{a, c, 1\}, F_2 = \{b, c, 1\}$ and the ideals $I_1 = \{0, b\}, I_2 = \{0, a\}$. It is easily seen that $F_1 = \omega(I_1)$ and $F_2 = \omega(I_2)$ such that $I_1 \cap D = I_2 \cap D = \emptyset$. Therefore F_1 and F_2 are ω -filters of L.

Proposition 3.11. Let L be a lattice and $x \in L - D$. Then $(x)^{\circ}$ is an ω -filter of L.

Proof. Let $x \in L - D$. Clearly $(x] \cap D = \emptyset$. Let $t \in (x)^{\circ}$. Then $t \lor x \in D$. Since $x \in (x]$, we get $t \in \omega((x])$. Therefore $(x)^{\circ} \subseteq \omega((x])$. Conversely, let $t \in \omega((x])$. Then $t \lor a \in D$ for some $a \in (x]$. Hence $t \lor x \in D$, which implies that $t \in (x)^{\circ}$. Thus $\omega((x]) \subseteq (x)^{\circ}$. Hence $(x)^{\circ} = \omega((x])$. Therefore $(x)^{\circ}$ is an ω -filter of L. \Box

Theorem 3.12. Every prime D-filter P of a lattice with $P^{\circ} \neq D$ is an ω -filter.

Proof. Let P be a prime D-filter of a lattice L. Suppose $P^{\circ} \neq D$. Since $D \subset P^{\circ}$, there exists $x \notin D$ such that $x \in P^{\circ}$. Clearly $(x] \cap D = \emptyset$ and $x \notin P$. Then $P \subseteq P^{\circ \circ} \subseteq (x)^{\circ}$. On the other hand, let $a \in (x)^{\circ}$. Then $a \lor x \in D \subseteq P$. Since $x \notin P$, we must have $a \in P$. Thus $(x)^{\circ} \subseteq P$. Hence $P = (x)^{\circ} = \omega((x])$. Therefore P is an ω -filter of L. \Box

Theorem 3.13. Every minimal prime D-filter of a lattice is an ω -filter.

Proof. Let P be a minimal prime D-filter of a lattice L. Then L-P is a prime ideal of L such that $D \cap (L-P) = \emptyset$. We now show that $P = \omega(L-P)$. Let $x \in P$. Since P is minimal, there exists $y \in L - P$ such that $x \lor y \in D$. Hence $x \in \omega(L-P)$. Therefore $P \subseteq \omega(L-P)$. Conversely, let $x \in \omega(L-P)$. Then, we get $x \lor a \in D \subseteq P$ for some $a \in L - P$. Since P is prime and $a \notin P$, we get $x \in P$. Thus $\omega(L-P) \subseteq P$. Hence $P = \omega(L-P)$. Therefore P is an ω -filter of L. \Box

We now turn our intension towards the converse of the above theorem. In general, every ω -filter of a lattice need not be a minimal prime *D*-filter. In fact it need not even be a prime *D*-filter. It can be observed in the following example:

Example 3.14. Let $X = \{1, 2, 3, 4\}$ be a set and L the sublattice of the power set of X, which is generated by the sets $\{1\}, \{2\}$ and $\{3\}$. That is, $L = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}, \{1, 2\}, \{1, 2, 3\}\}$. Clearly $D = \{\{1, 2, 3\}\}$. Consider $F = \{\{1, 2\}, \{1, 2, 3\}\}$ and $I = \{\emptyset, \{2\}, \{3\}, \{2, 3\}\}$. Clearly F is a filter and I is an ideal of L such that $I \cap D = \emptyset$. It can be easily verified that $\omega(I) = \{\{1, 2\}, \{1, 2, 3\}\} = F$. Therefore F is an ω -filter of L. Note that the filter F is not a prime D-filter of L, because $\{2, 3\} \notin F$ and $\{1, 3\} \notin F$ but $\{2, 3\} \vee \{1, 3\} = \{1, 2, 3\} \in F$.

Though every ω -filter need not be a prime *D*-filter, we derive a necessary and sufficient condition for an ω -filter of a lattice to become a prime *D*-filter.

Theorem 3.15. Let F be a proper ω -filter of a lattice L. Then F is a prime D-filter if and only if F contains a prime D-filter.

Proof. The necessary part is clear. For sufficiency, assume that F contains a prime D-filter, say P. Since $D \subseteq P \subseteq F$, F is a D-filter of L. Since F is an ω -filter, we get $F = \omega(I)$ for some ideal I of L with $I \cap D = \emptyset$. Choose $a, b \in L$ such that $a \notin F$ and $b \notin F$. Since $P \subseteq F$, we get $a \notin P$ and $b \notin P$. Since P is prime, we get $a \lor b \notin P$. Thus $(a \lor b)^{\circ} \subseteq P \subseteq F = \omega(I)$. Suppose $a \lor b \in F = \omega(I)$. Then $a \lor b \lor i \in D$ for some $i \in I$. Hence $i \in (a \lor b)^{\circ} \subseteq \omega(I)$. Thus $i \in I \cap \omega(I)$. Hence $I \cap \omega(I) \neq \emptyset$. By Lemma 3.7(1), $F = \omega(I) = L$ which is a contradiction. Thus F is a prime D-filter of L. \Box

We have already observed in Theorem 3.15 that every minimal prime D-filter is a prime ω -filter of L. Now we derive, in the following theorem, the equivalency between prime ω -filters and minimal prime D-filters of a lattices.

Theorem 3.16. Every prime ω -filter of a lattice L is a minimal prime D-filter.

Proof. Let P be a prime ω -filter of L. Then $P = \omega(I)$ for some ideal I of L with $I \cap D = \emptyset$. Let $x \in P = \omega(I)$. Then $x \lor y \in D$ for some $y \in I$. Suppose $y \in P$. Then $y \in I \cap \omega(I)$. Hence $I \cap \omega(I) \neq \emptyset$. By Lemma 3.7(1), $P = \omega(I) = L$ which is a contradiction. Hence $y \notin P$. Therefore P is a minimal prime D-filter. \Box

Theorem 3.17. The following assertions are equivalent in a lattice L:

- (1) L is quasi-complemented;
- (2) every prime D-filter is an ω -filter;
- (3) every prime D-filter is minimal;
- (4) every maximal filter is a minimal prime D-filter;
- (5) every maximal filter is an ω -filter.

Proof. (1) \Rightarrow (2): Assume that L is quasi-complemented. Let P be a prime D-filter L. Then L - P is a prime ideal of L such that $(L - P) \cap D = \emptyset$. We now prove that $P = \omega(L - P)$. Let $x \in P$. Since L is quasi-complemented, there exists $y \in L$ such that $x \wedge y = 0$ and $x \vee y \in D$. If $y \in P$, then $0 = x \wedge y \in P$, which is a contradiction. Hence $y \notin P$, which gives that $y \in L - P$. Since $x \vee y \in D$, we get $x \in \omega(L - P)$. Thus $P \subseteq \omega(L - P)$. Conversely, let $x \in \omega(L - P)$. Then $x \vee y \in D$ for some $y \in L - P$. Since $x \vee y \in D \subseteq P$ and $y \notin P$, we must have $x \in P$. Hence $\omega(L - P) \subseteq P$. Therefore P is an ω -filter of L.

(2) \Rightarrow (3): Assume that every prime *D*-filter is an ω -filter. Let *P* be a prime *D*-filter of *L*. By (2), *P* will be a prime ω -filter. By Theorem 3.16, *P* is minimal.

- $(3) \Rightarrow (4)$: Since every maximal filter is a prime *D*-filter, it is clear.
- (4) \Rightarrow (5): Since every minimal prime *D*-filter is an ω -filter, it is clear.

 $(5) \Rightarrow (1)$: Assume that every maximal filter is an ω -filter. Let $x \in L$. Suppose $0 \notin [x) \lor (x)^{\circ}$. Then there exists a maximal filter M such that $[x) \lor (x)^{\circ} \subseteq M$. Hence $x \in M$ and $(x)^{\circ} \subseteq M$. By the assumption, M is an ω -filter. Since M is prime, by Theorem 3.16, M is minimal prime D-filter. Hence $x \notin M$, which is a contradiction. Therefore $0 \in [x) \lor (x)^{\circ}$. Hence $x \land a = 0$ for some $a \in (x)^{\circ}$. Since $a \in (x)^{\circ}$, we get $a \lor x \in D$. Therefore L is quasi-complemented. \Box

We conclude this paper with a characterization theorem of ω -filters in terms of minimal prime *D*-filters. For this, we first need the following results.

Lemma 3.18. Let I be an ideal of a lattice L such that $I \cap D = \emptyset$. If P is a minimal prime D-filter containing $\omega(I)$, then $I \cap P = \emptyset$.

Proof. Let P be a minimal prime D-filter containing $\omega(I)$. Suppose $x \in I \cap P$. Then $x \in P$ and $x \in I$. Since P is minimal, there exists $y \notin P$ such that $x \lor y \in \omega(I)$. Then $x \lor y \lor i \in D$ for some $i \in I$. Hence $y \lor (x \lor i) \in D$ and $x \lor i \in I$. Thus $y \in \omega(I) \subseteq P$, which is a contradiction. Therefore $I \cap P = \emptyset$. \Box

Lemma 3.19. Every minimal prime D-filter of a lattice L containing an ω -filter is a minimal prime D-filter in L.

Proof. Let F be an ω -filter of L. Then $F = \omega(I)$ for some ideal I of L such that $I \cap D = \emptyset$. Let P be a minimal prime D-filter containing $F = \omega(I)$. By the above lemma, $I \cap P = \emptyset$. Let $x \in P$. Then there exists $y \notin P$ such that $x \vee y \in \omega(I)$. Hence $x \vee y \vee i \in D$ for some $i \in I$. Thus $x \vee (y \vee i) \in D \subseteq P$ and $y \vee i \notin P(\text{since } I \cap P = \emptyset)$, we get that $i \notin P$ and also $y \notin P$). Hence P is a minimal prime D-filter of L. \Box Now, ω -filters are characterized in terms of minimal prime *D*-filters.

Theorem 3.20. Every ω -filter of a lattice L is the intersection of all minimal prime D-filters containing it.

Proof. Let F be an ω -filter of L. Then $F = \omega(I)$ for some ideal I of L such that $I \cap D = \emptyset$. Let $F_0 = \bigcap \{P \mid P \text{ is a minimal prime } D$ -filter containing $F\}$. Clearly $F \subseteq F_0$. Conversely, let $a \notin F = \omega(I)$. Then $a \lor t \notin D$ for all $t \in I$. Then there exists a minimal prime D-filter P such that $a \lor t \notin P$. Hence $a \notin P$ and $t \notin P$. Since P is prime, $(t)^\circ \subseteq P$ for all $t \in I$. Therefore $F = \omega(I) \subseteq P$. Thus P is minimal such that $F \subseteq P$ and $a \notin P$. Hence $a \notin F_0$, which yields $F_0 \subseteq F$. Therefore $F = F_0$. \Box

4. Lattice of ω -filters

In this section, we derive the lattice-theoretic properties of ω -filters of lattices. A set of equivalent conditions is derived for the class of all ω -filters of a distributive lattice to become a sublattice of the lattice of all filters.

Theorem 4.1. Let $\{F_{\alpha}\}_{\alpha \in \Delta}$ be a family of ω -filters of a lattice L. Then $\bigcap_{\alpha \in \Delta} F_{\alpha}$ is again an ω -filter of L.

Proof. For each $\alpha \in \Delta$, let $F_{\alpha} = \omega(I_{\alpha})$ where I_{α} is an ideal of L such that $I_{\alpha} \cap D = \emptyset$. Then $\{I_{\alpha}\}_{\alpha \in \Delta}$ will be an arbitrary family of ideals in L such that $I_{\alpha} \cap D = \emptyset$ for each $\alpha \in \Delta$. Hence $\bigcap_{\alpha \in \Delta} I_{\alpha}$ is an ideal of L such that $(\bigcap_{\alpha \in \Delta} I_{\alpha}) \cap D = \emptyset$. By Lemma 3.7(3), we get $\bigcap_{\alpha \in \Delta} \omega(I_{\alpha}) = \omega(\bigcap_{\alpha \in \Delta} I_{\alpha})$. Therefore $\bigcap_{\alpha \in \Delta} F_{\alpha}$ is an ω -filter of L. \Box

Note that the class of all ω -filters of a lattice is closed under set-intersection. In general, ω -filters need not be closed under finite joins. However, in the following, we prove that the class $\mathcal{F}_{\omega}(L)$ of all ω -filters of a lattice L forms a complete lattice.

Theorem 4.2. Let I, J be two ideals of a lattice L such that $I \cap D = J \cap D = \emptyset$. Then $\omega(I \lor J)$ is the smallest ω -filter containing both $\omega(I)$ and $\omega(J)$.

Proof. Let I, J be two ideals of L such that $I \cap D = J \cap D = \emptyset$. Clearly $(I \vee J) \cap D = \emptyset$. By Lemma 3.7(2), we get $\omega(I) \subseteq \omega(I \vee J)$ and $\omega(J) \subseteq \omega(I \vee J)$. Suppose $\omega(I) \subseteq \omega(K)$ and $\omega(J) \subseteq \omega(K)$ for some ideal K of L with $K \cap D = \emptyset$. Then

$$x \in \omega(I \lor J) = x \lor (i \lor j) \in D \quad \text{for some } i \in I \text{ and } j \in J$$
$$= x \lor i \in \omega(J) \subseteq \omega(K)$$
$$= x \lor i \lor k_1 \in D \quad \text{for some } k_1 \in K$$
$$= x \lor k_1 \in \omega(I) \subseteq \omega(K)$$
$$= x \lor k_1 \lor k_2 \in D \quad \text{for some } k_2 \in K$$
$$= x \in \omega(K) \quad \text{since } k_1 \lor k_2 \in K$$

Hence $\omega(I \vee J)$ is the supremum of $\omega(I)$ and $\omega(J)$. Denote this supremum by $\omega(I) \sqcup \omega(J)$. Then $(\mathcal{F}_{\omega}(L), \cap, \sqcup)$ forms a lattice. \Box

Corollary 4.3. Let $\{\omega(I_{\alpha})\}_{\alpha\in\Delta}$ be a family of ω -filters of a lattice L where $I_{\alpha} \cap D = \emptyset$ for each $\alpha \in \Delta$. Then $\bigsqcup_{\alpha\in\Delta} \omega(I_{\alpha})$ is the smallest ω -filter containing each $\omega(I_{\alpha})$.

It can be easily observed that the class of all ω -filters of a lattice forms a complete lattice with respect to set inclusion \subseteq , in which for any $\{\omega(I_{\alpha})\}_{\alpha\in\Delta}$ of ω -filters, inf $\{\omega(I_{\alpha})\}_{\alpha\in\Delta} = \omega(\bigcap_{\alpha\in\Delta} I_{\alpha})$ and the sup $\{\omega(I_{\alpha})\}_{\alpha\in\Delta} = \omega(\bigvee_{\alpha\in\Delta} I_{\alpha})$. Since the class of all ideals of a distributive lattice forms a complete distributive lattice, the class $\mathcal{F}_{\omega}(L)$ of all ω -filters of a distributive lattice L forms a complete distributive lattice. In general, the class $\mathcal{F}_{\omega}(L)$ of all ω -filters of a lattice L is not a sublattice of the filter lattice $\mathcal{F}(L)$. However, in the following, we derive a set of equivalent conditions for $\mathcal{F}_{\omega}(L)$ to become a sublattice of $\mathcal{F}(L)$. For this, we first need the following result.

Lemma 4.4. Every proper ω -filter is contained in a minimal prime D-filter.

Proof. Let F be a proper ω -filter of L. Then $F = \omega(I)$ for some ideal I of L with $I \cap D = \emptyset$. Hence $D \subseteq \omega(I) = F$. Clearly $F \cap I = \omega(I) \cap I = \emptyset$. Consider, the set

Im = $\{J \mid J \text{ is an ideal of } L \text{ such that } I \subseteq J \text{ and } F \cap J = \emptyset\}.$

Clearly $I \in \text{Im}$ and Im satisfies the Zorn's lemma. Let M be a maximal element of Im. Then M is an ideal of L such that $I \subseteq M$ and $F \cap M = \emptyset$. Since $D \subseteq F$, we get $D \cap M = \emptyset$. Hence M is an ideal which is maximal with respect to the property that $D \cap M = \emptyset$. Therefore L - M is a minimal prime D-filter such that $F \subseteq L - M$. \Box

Theorem 4.5. The following conditions are equivalent in a lattice L:

(1) *F*_ω(*L*) is a sublattice of *F*(*L*);
 (2) for *a*, *b* ∈ *L*, *a* ∨ *b* ∈ *D* implies (*a*)° ∨ (*b*)° = *L*;
 (3) for *a*, *b* ∈ *L*, (*a*)° ∨ (*b*)° = (*a* ∨ *b*)°;
 (4) for *I*, *J* ∈ *I*(*L*), *I* ∨ *J* = *L* implies ω(*I*) ∨ ω(*J*) = *L*;

(5) for $I, J \in \mathcal{I}(L), \ \omega(I) \lor \omega(J) = \omega(I \lor J)$

Proof. (1) \Rightarrow (2): Assume that $\mathcal{F}_{\omega}(L)$ is a sublattice of $\mathcal{F}(L)$. Let $a, b \in L$ be such that $a \lor b \in D$. Suppose $(a)^{\circ} \lor (b)^{\circ} \neq L$. Since $(a)^{\circ}$ and $(b)^{\circ}$ are ω -filters of L, by hypothesis, we get that $(a)^{\circ} \lor (b)^{\circ}$ is a proper ω -filter of L. Hence by Lemma 4.4, there exists a minimal prime D-filter P such that $(a)^{\circ} \lor (b)^{\circ} \subseteq P$. Hence $(a)^{\circ} \subseteq P$ and $(b)^{\circ} \subseteq P$. Since P is a minimal prime D-filter, we get that $a \notin P$ and $b \notin P$. Since P is a prime filter, we get that $a \lor b \notin P$, which is a contradiction to that $a \lor b \in D \subseteq P$. Hence we must have $(x)^{\circ} \lor (y)^{\circ} = L$.

 $(2) \Rightarrow (3)$: Assume the condition (2). Let $a, b \in L$. Clearly $(a)^{\circ} \lor (b)^{\circ} \subseteq (a \lor b)^{\circ}$. Conversely, let $x \in (a \lor b)^{\circ}$. Then $(x \lor a) \lor (x \lor b) = x \lor (a \lor b) \in D$. Hence by condition (2), we get $(x \lor a)^{\circ} \lor (x \lor b)^{\circ} = L$. Thus $x \in (x \lor a)^{\circ} \lor (x \lor b)^{\circ}$. Hence $x = r \land s$ for some $r \in (x \lor a)^{\circ}$ and $s \in (x \lor b)^{\circ}$. Since $r \in (x \lor a)^{\circ}$, we get $r \lor x \in (a)^{\circ}$. Similarly, we can get $s \lor x \in (b)^{\circ}$. Now, we get

$$x = x \lor x$$

= $x \lor (r \land s)$
= $(x \lor r) \land (x \lor s) \in (a)^{\circ} \lor (b)^{\circ}.$

Hence $(a \lor b)^{\circ} \subseteq (a)^{\circ} \lor (b)^{\circ}$. Therefore $(a)^{\circ} \lor (b)^{\circ} = (a \lor b)^{\circ}$.

 $(3) \Rightarrow (4)$: Assume the condition (3). Let I, J be two ideals of L such that $I \lor J = L$. Let d be a dense element of L. Then $d = i \lor j$ for some $i \in I$ and $j \in J$. Hence by (3), we get $L = (d)^{\circ} = (i \lor j)^{\circ} = (i)^{\circ} \lor (j)^{\circ} \subseteq \omega(I) \lor \omega(J)$. Therefore $\omega(I) \lor \omega(J) = L$.

(4) \Rightarrow (5): Let I, J be two ideals of L. We have always $\omega(I) \lor \omega(J) \subseteq \omega(I \lor J)$. Let $x \in \omega(I \lor J)$. Then $x \lor a \in D$ for some $a \in I \lor J$. Now

$$\begin{aligned} x \in \omega(I \lor J) &\Rightarrow x \lor (i \lor j) \in D & \text{where } i \in I \text{ and } j \in J \\ &\Rightarrow ((x \lor i) \lor (x \lor j)] = (D] \\ &\Rightarrow (x \lor i] \lor (x \lor j] = L \\ &\Rightarrow \omega((x \lor i]) \lor \omega((x \lor j]) = L \\ &\Rightarrow (x \lor i)^{\circ} \lor (x \lor j)^{\circ} = L \end{aligned}$$

Hence $x \in (x \vee i)^{\circ} \vee (x \vee j)^{\circ}$. Thus $x = a \wedge b$ where $a \in (x \vee i)^{\circ}$ and $b \in (x \vee j)^{\circ}$. Since $a \in (x \vee i)^{\circ}$ and $b \in (x \vee j)^{\circ}$, we get $x \vee a \in (i)^{\circ}$ and $x \vee b \in (j)^{\circ}$. Now

$$\begin{array}{rcl} x & = & x \lor x \\ \\ & = & x \lor (a \land b) \\ \\ & = & (x \lor a) \land (x \lor b) \\ \\ & \in & (i)^{\circ} \lor (j)^{\circ} \\ \\ & \subseteq & \omega(I) \lor \omega(J) \end{array} \quad \text{since } i \in I \text{ and } j \in J \end{array}$$

Hence we get $\omega(I \lor J) \subseteq \omega(I) \lor \omega(J)$. Therefore $\omega(I \lor J) = \omega(I) \lor \omega(J)$. (5) \Rightarrow (1): It is obvious. \Box

Theorem 4.6. Let *L* be a lattice that satisfies the conditions of Theorem 4.5. If $\{F_{\alpha}\}_{\alpha \in \Delta}$ be an arbitrary family of ω -filters of *L*, then $\bigvee_{\alpha \in \Delta} F_{\alpha}$ is again an ω -filter of *L*.

Proof. For each $\alpha \in \Delta$, let $F_{\alpha} = \omega(I_{\alpha})$ where I_{α} is an ideal of L such that $I_{\alpha} \cap D = \emptyset$. Then $\{I_{\alpha}\}_{\alpha \in \Delta}$ will be an arbitrary family of ideals in L such that $I_{\alpha} \cap D = \emptyset$ for each $\alpha \in \Delta$. Clearly $(\bigvee I_{\alpha}) \cap D = \emptyset$. Since $F_{\alpha} = \omega(I_{\alpha}) \subseteq \omega(\bigvee I_{\alpha})$ for each $\alpha \in \Delta$, we get $\bigvee F_{\alpha} \subseteq \omega(\bigvee I_{\alpha})$. Conversely, let $x \in \omega(\bigvee I_{\alpha})$. Then $x \lor a \in D$ for some $a \in \bigvee I_{\alpha}$. Then there exists a positive integer n such that $a = a_1 \lor a_2 \lor \cdots \lor a_n$ where $a_i \in I_{\alpha_i}$. By condition (4) of Theorem 4.5, we get

$$\begin{aligned} x \lor a \in D &\Rightarrow x \lor (a_1 \lor a_2 \lor \cdots \lor a_n) \in D \\ &\Rightarrow (x \lor a_1) \lor (x \lor a_2) \lor \cdots \lor (x \lor a_n) \in D \\ &\Rightarrow (x \lor a_1] \lor (x \lor a_2] \lor \cdots \lor (x \lor a_n] = L \\ &\Rightarrow \omega((x \lor a_1]) \lor \omega((x \lor a_2]) \lor \cdots \lor \omega((x \lor a_n]) = L \\ &\Rightarrow (x \lor a_1)^\circ \lor (x \lor a_2)^\circ \lor \cdots \lor (x \lor a_n)^\circ = L \end{aligned}$$

Hence $x \in (x \vee a_1)^{\circ} \vee (x \vee a_2)^{\circ} \vee \cdots \vee (x \vee a_n)^{\circ}$. Thus $x = b_1 \wedge b_2 \wedge \cdots \wedge b_n$ where $b_i \in (x \vee a_i)^{\circ}$ for $i = 1, 2, \ldots, n$. Now

$$x = x \lor x$$

$$= x \lor (b_1 \land b_2 \land \dots \land b_n)$$

$$= (x \lor b_1) \land (x \lor b_2) \land \dots \land (x \lor b_n)$$

$$\in (a_1)^{\circ} \lor (a_2)^{\circ} \lor \dots \lor (a_n)^{\circ}$$

$$\subseteq \omega(I_1) \lor \omega(I_2) \lor \dots \lor \omega(I_n)$$

$$= F_1 \lor F_2 \lor \dots \lor F_n$$

$$\subseteq \bigvee F_{\alpha}$$

which concludes that $\omega(\bigvee I_{\alpha}) \subseteq \bigvee F_{\alpha}$. Therefore $\bigvee F_{\alpha}$ is an ω -filter of L.

Theorem 4.7. Let L be lattice that satisfies any one of the conditions of Theorem 4.5. For any D-filter F, there exists a unique ω -filter contained in F.

Proof. Let F be an arbitrary D-filter of L. Consider $\operatorname{Im}_F = \{H \in \mathcal{F}_{\omega}(L) \mid H \subseteq F\}$. Since D is the ω -filter and $D \subseteq F$, we get $D \in \operatorname{Im}_F$. Clearly Im_F satisfies the hypothesis of Zorn's Lemma. Let M be a maximal element of Im_F . It is enough to show that M is unique. Let M_1 and M_2 be two maximal elements of Im_F . Clearly $M_1 \vee M_2 \subseteq F$. By Theorem 4.5, $M_1 \vee M_2 \in \operatorname{Im}_F$. Thus $M_1 = M_1 \vee M_2 = M_2$. Hence Im_F has a unique maximal element, which is the required ω -filter contained in F. \Box

5. Acknowledgments

The authors would like to thank the referees for their valuable suggestions and comments that improved the presentation of this article.

References

- [1] G. Birkhoff, Lattice Theory, Providence: Amer. Math. Soc. Colloq. XXV, U.S.A, 1967.
- [2] T. S. Blyth, Ideals and filters of pseudo-complemented semilattices, Proc. Edinburgh Math. Soc., 23 (1980) 301-316.
- [3] S. Burris and H. P. Sankappanavar, A Cource in Universal Algebra, Springer Verlag, 1981.
- [4] W. H. Cornish, Normal lattices, J. Austral. Math. Soc., 14 (1972) 200-215.
- [5] W. H. Cornish, Annulets and α -ideals in distributive lattices, J. Austral. Math. Soc., 15 (1973) 70-77.
- [6] W. H. Cornish, Quasicomplemented lattices, Comment. Math. Univ. Carolin., 15 No.3 (1974) 501-511.
- [7] W. H. Cornish, O-ideals, Congruences, sheaf representation of distributive lattices, Rev. Roum. Math. Pures et Appl., 22 (1977) 1059-1067.

Alg. Struc. Appl. Vol. 9 No. 1 (2022) 145-159.

- [8] M. Sambasiva Rao, Normal filters of distributive lattices, Bull. Sec. logic, 41 (2012) 131-143.
- [9] M. Sambasiva Rao, e-filters of MS-algebras, Acta Math. Sci., 33 No.3 (2013) 738-746.
- [10] A. P. Phaneendra Kumar, M. Sambasiva Rao, and K. Sobhan Babu, Generalized prime D-filters of distributive lattices, Arch. Math., 57 No. 3 (2021) 157-174.
- [11] T. P. Speed, Some remarks on a class of distributive lattices, Jour. Aust. Math. Soc., 9 (1969) 289-296.

Mukkamala Sambasiva Rao

Department of Mathematics, MVGR College of Engineering, Vizianagaram, Andhra Pradesh-535005, India. mssraomaths35@rediffmail.com

Chukka Venkata Rao

Department of Mathematics, Albert Einstein School of Physical Sciences, Assam University, Silchar, Assam-788011, India. vraochukka@gmail.com