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ω-FILTERS OF DISTRIBUTIVE LATTICES

MUKKAMALA SAMBASIVA RAO∗ AND CHUKKA VENKATA RAO

Abstract. The notion of ω-filters is introduced in distributive lattices and their properties

are studied. A set of equivalent conditions is derived for every maximal filter of a distributive

lattice to become an ω-filter which leads to a characterization of quasi-complemented lattices.

Some sufficient conditions are derived for proper D-filters of a distributive lattice to become

an ω-filter. Finally, ω-filters of a distributive lattice are characterized with the help of minimal

prime D-filters.

1. Introduction

Many authors introduced the concept of annihilators in the structures of rings as well as
lattices and characterized several algebraic structures in terms of annihilators. T.P. Speed [11]
and W.H. Cornish [5] made an extensive study of annihilators in distributive lattices. In [4],
some properties of minimal prime filters are studied in distributive lattices and the properties
of dense elements and D-filters are studied in MS-algebras [9]. In [2], the notion of D-filters

DOI: 10.22034/as.2021.2553

MSC(2010): Primary: 06D99

Keywords: Prime D-filter, Minimal prime D-filter, Maximal filter, ω-filter, Quasi-complemented lattice, Boolean algebra.

Received: 19 September 2021, Accepted: 2 December 2021.

∗Corresponding author

© 2022 Yazd University.
145



146 M. Sambasiva Rao and Ch. Venkata Rao

was introduced in pseudo-complemented semilattices. Later it was generalized by the author
[9] in MS-algebras. In [10], the authors investigated certain important properties of prime
D-filters of distributive lattices. In this paper, some properties of minimal prime D-filters of
distributive lattices are derived with respect to congruences.

The main aim of this paper is to introduce the notion of ω-filters and to study certain
properties of these filters with the help of maximal filters and minimal prime D-filters of
distributive lattices. These of ω-filters are the dual of O-ideals of distributive lattices [6]
whenever D = {1}. In this paper, we initially observe the properties of prime D-filters in quasi-
complemented lattices and Boolean algebras in order to elevate their properties in distributive
lattices. A necessary and sufficient condition is derived for a proper ω-filter of a distributive
lattice to become a prime ω-filter. A set of equivalent conditions is derived for every maximal
filter of a distributive lattice to become an ω-filter which leads to a characterization of quasi-
complemented lattice. Some equivalent conditions are derived for the class of all ω-filters to
become a sublattice of the lattice of all filters of a distributive lattices. Finally, the role of
minimal prime D-filters is observed in the characterization of ω-filters of distributive lattices.

2. Preliminaries

The reader is referred to [1] and [3] for the elementary notions and notations of distributive
lattices. However some of the preliminary definitions and results of [9] and [10] are presented
for the ready reference of the reader.

Definition 2.1. [1] An algebra (L,∧,∨) of type (2, 2) is called a distributive lattice if for all
x, y, z ∈ L, it satisfies the following properties (1), (2), (3) and (4) along with (5) or (5′)

(1) x ∧ x = x, x ∨ x = x,

(2) x ∧ y = y ∧ x, x ∨ y = y ∨ x,

(3) (x ∧ y) ∧ z = x ∧ (y ∧ z), (x ∨ y) ∨ z = x ∨ (y ∨ z),

(4) (x ∧ y) ∨ x = x, (x ∨ y) ∧ x = x,

(5) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),

(5′) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

A non-empty subset A of L is called an ideal(filter) of L if a ∨ b ∈ A(a ∧ b ∈ A) and
a ∧ x ∈ A(a ∨ x ∈ A) whenever a, b ∈ A and x ∈ L. The set I(L) of all ideals of (L,∨,∧, 0)
forms a complete distributive lattice as well as the set F(L) of all filters of (L,∨,∧, 1) forms a
complete distributive lattice. A proper ideal (filter) M of a lattice is called maximal if there
exists no proper ideal(filter) N such that M ⊂ N .
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The set (a] = {x ∈ L | x ≤ a} is called a principal ideal generated by a and the set of
all principal ideals is a sublattice of I(L). Dually the set [a) = {x ∈ L | a ≤ x} is called
a principal filter generated by a and the set of all principal filters is a sublattice of F(L).
A proper ideal (proper filter) P of a lattice L is called prime if for all a, b ∈ L, a ∧ b ∈ P

(a∨ b ∈ P ) then a ∈ P or b ∈ P . Every maximal(ideal) filter is prime. For any element a of a
distributive lattice L, the annihilator of a is defined as the set (a)∗ = { x ∈ L | x∧a = 0 }. An
element a of a lattice L is called a dense element if (a)∗ = {0}. The set D of all dense elements
of a lattice L forms a filter of L. A distributive lattice L with 0 is called quasi-complemented
[6] if to each x ∈ L there exists x′ ∈ L such that x ∧ x′ = 0 and x ∨ x′ ∈ D.

Definition 2.2. [10] A filter F of a lattice L is called a D-filter if D ⊆ F .

The set D of all dense elements of a distributive lattice is the smallest D-filter of the lattice.
For any subset A of a distributive lattice L, define A◦ = {x ∈ L | a ∨ x ∈ D for all a ∈ A}.
Clearly L◦ = D and D◦ = L. It can also be observed that D ⊆ A◦ for any subset A of a lattice
L. For any a ∈ L, we simply represent ({a})◦ by (a)◦. Then it is obvious that (1)◦ = L. For
any subset A of L, A◦ is a D-filter of L. It is clear that ([x))◦ = (x)◦. Then clearly (0)◦ = D.

Proposition 2.3. [10] Let L be a distributive lattice. For any a, b, c ∈ L, we have

(1) a ≤ b implies (a)◦ ⊆ (b)◦,

(2) (a ∧ b)◦ = (a)◦ ∩ (b)◦,

(3) (a ∨ b)◦◦ = (a)◦◦ ∩ (b)◦◦,

(4) (a)◦ = L if and only if a ∈ D.

Let F be a D-filter and P be a prime D-filter of a lattice L such that F ⊆ P . Then P

is called a minimal prime D-filter belonging to F if there is no prime D-filter Q such that
F ⊆ Q ⊂ P . A prime D-filter belonging to D is simply called minimal prime D-filter. A
prime D-filter P of a lattice L is minimal prime D-filter belonging to F [10] if and only if to
each x ∈ P , there exists y /∈ P such that x ∨ y ∈ F . Throughout this article, all lattices are
bounded distributive lattices unless otherwise mentioned.

3. ω-filters of lattices

In this section, we initially observe certain properties of prime D-filters. The notion of ω-
filters is introduced in a distributive lattice. A characterization theorem of quasi-complemented
lattices is derived. Finally, the class of all ω-filters are characterized in terms of minimal prime
D-filters.

Proposition 3.1. Let P be a prime filter of a quasi-complemented lattice L. Then the following
assertions are equivalent:
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(1) D ⊆ P ;

(2) for any x ∈ L, x ∈ P if and only if (x)◦ ⊈ P ;

(3) for any x, y ∈ L with (x)◦ = (y)◦, x ∈ P implies that y ∈ P ;

(4) D ∩ (L− P ) = ∅.

Proof. (1) ⇒ (2): Assume that D ⊆ P . Suppose x ∈ P . Since L is quasi-complemented, there
exists x′ ∈ L such that x ∧ x′ = 0 and x ∨ x′ ∈ D. Hence x′ ∈ (x)◦. Suppose x′ ∈ P . Then
0 = x ∧ x′ ∈ P , which is a contradiction. Hence x′ /∈ P . Therefore (x)◦ ⊈ P . Conversely,
suppose that (x)◦ ⊈ P . Then there exists x′ ∈ L such that x′ ∈ (x)◦ and x′ /∈ P . Clearly
x ∨ x′ ∈ D ⊆ P . Since P is prime and x′ /∈ P , we must have x ∈ P .

(2) ⇒ (3): Assume the condition (2). Let x, y ∈ L such that (x)◦ = (y)◦. Suppose x ∈ P .
Then by (2), we get y ∈ P .

(3) ⇒ (4): Assume that condition (3) holds. Let x ∈ L. Suppose x ∈ D ∩ (L − P ). Then
(x)◦ = L and x /∈ P . Hence (x)◦ = L = (d)◦ for any d ∈ D ⊆ P . Since d ∈ P , by (3), we get
x ∈ P which is a contradiction. Therefore D ∩ (L− P ) = ∅.

(4) ⇒ (1): It is obvious.

Theorem 3.2. Let L be a quasi-complemented lattice and x ∈ L. If x′ is the quasi-complement
of x, then every prime D-filter must contain exactly one of x or x′.

Proof. Let P be a prime D-filter of L. Clearly x∨x′ ∈ D ⊆ P . Since P is prime, we get x ∈ P

or x′ ∈ P . Suppose both x and x′ are in P . Then 0 = x ∧ x′ ∈ P , which is a contradiction.
Therefore P must contain exctly one of x or x′.

In the following theorem, a set of equivalent conditions is derived, with the help of prime
filters, for a quasi-complemented lattice to become a Boolean algebra.

Proposition 3.3. Let L be a quasi-complemented lattice and x ∈ L. Then the following
assertions are equivalent:

(1) L is a Boolean algebra;

(2) every prime filter contains exactly one of x or x′;

(3) every prime filter is a D-filter;

(4) every minimal prime filter is a D-filter;

where x′ is the quasi-complement of x in L.

Proof. (1) ⇒ (2): Assume that L is Boolean. Let P be a prime filter of L and x ∈ P . Since
L is Boolean, we get D = {1}. Hence x ∧ x′ = 0 and x ∨ x′ = 1 ∈ P . Since P is prime, we
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get x ∈ P or x′ ∈ P . If both x and x′ are in P , then 0 = x ∧ x′ ∈ P which is a contradiction.
Therefore P must contain exactly one of x or x′.

(2) ⇒ (3): Assume the condition (2). Let P be a prime filter of L. Let x ∈ D. Since L is
quasi-complemented, we get that x′ ∈ (x)∗ = {0}. Hence x′ = 0 /∈ P . By the condition (2),
we get x ∈ P . Thus D ⊆ P . Therefore P is a D-filter of L.

(3) ⇒ (4): It is clear.

(4) ⇒ (1): Assume that condition (4) holds. Let x ∈ L. Suppose x∨x′ ̸= 1. Then there exists
a maximal ideal M of L such that x ∨ x′ ∈ M . Then L − M is a minimal prime filter such
that x ∨ x′ /∈ M . Hence x /∈ M and x′ /∈ M . By the hypothesis, we get D ⊆ L−M . Since L

is quasi-complemented, by Theorem 3.2, L−M must contain exactly one of x or x′, which is
a contradiction. Hence x ∨ x′ = 1. Therefore L is a Boolean algebra.

Theorem 3.4. Let M be a proper filter of a quasi-complemented lattice L. Then M is maximal
if and only if M is prime D-filter.

Proof. Assume that M is a maximal filter of L. Clearly M is prime. Let x ∈ D. Then
(x)∗ = {0}. Suppose x /∈ M . Then M ∨ [x) = L. Hence 0 = m ∧ x for some 0 ̸= m ∈ M .
Then m ∈ (x)∗ = {0}, which is a contradiction. Hence x ∈ M . Thus D ⊆ M . Therefore M is
a prime D-filter of L.

Conversely, assume that M is a prime D-filter of L. Suppose M is not maximal. Let Q be
a proper filter of L such that M ⊂ Q. Choose x ∈ Q − M . Since L is quasi-complemented,
there exists x′ ∈ L such that x∧x′ = 0 and x∨x′ ∈ D ⊆ M . Since M is prime and x /∈ M , we
get x′ ∈ M ⊂ Q. Hence 0 = x ∧ x′ ∈ Q, which is a contradiction. Therefore M is maximal.

From Theorem 3.4, one can notice that the class of all maximal filters and the class of
all prime D-filters of a quasi-complemented lattice are the same. Since every prime D-filter
is maximal, we can conclude that every prime D-filter is minimal in a quasi-complemented
lattice. Therefore maximal filters, prime D-filter, and minimal prime D-filters are the same in
a quasi-complemented lattice.

Definition 3.5. Let I be an ideal of a lattice L. Then define ω(I) = {x ∈ L | x ∨ a ∈
D for some a ∈ I}. In other words, ω(I) =

∪
x∈I

(x)◦.

Proposition 3.6. For any ideal I of a lattice L, the set ω(I) is a D-filter in L.

Proof. Clearly D ⊆ ω(I). Let x, y ∈ ω(I). Then x ∨ a ∈ D and y ∨ b ∈ D for some a, b ∈ I.
Now (x∧ y)∨ (a∨ b) = (x∨ a∨ b)∧ (y ∨ a∨ b) ∈ D and a∨ b ∈ I. Hence x∧ y ∈ ω(I). Again,
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let x ∈ ω(I) and x ≤ y. Then x∨ a ∈ D for some a ∈ I. Since x∨ a ≤ y ∨ a, we get y ∨ a ∈ D.
Thus y ∈ ω(I). Therefore ω(I) is a D-filter of L.

Lemma 3.7. For any two ideals I, J of a lattice L, the following properties hold:

(1) I ∩ ω(I) ̸= ∅ if and only if ω(I) = L,

(2) I ⊆ J implies ω(I) ⊆ ω(J),

(3) ω(I) ∩ ω(J) = ω(I ∩ J)

Proof. (1) : Suppose I ∩ ω(I) ̸= ∅. Choose x ∈ I ∩ ω(I). Then x ∈ I and x ∨ a ∈ D for some
a ∈ I. By Proposition 2.3(4), we get (x ∨ a)◦ = L. Since x ∈ I and a ∈ I, we get x ∨ a ∈ I.
Therefore ω(I) =

∪
x∈I

(x)◦ = L. Conversely, assume that ω(I) = L. Then 0 ∈ ω(I). Hence

0 ∈ I ∩ ω(I), which means that I ∩ ω(I) ̸= ∅.

(2) : Suppose I ⊆ J . Let x ∈ ω(I). Then x ∨ a ∈ D for some a ∈ I ⊆ J . Hence x ∈ ω(J).
Therefore ω(I) ⊆ ω(J).

(3) : Clearly ω(I ∩ J) ⊆ ω(I) ∩ ω(J). Conversely, let x ∈ ω(I) ∩ ω(J). Then x ∨ a ∈ D and
x∨b ∈ D for some a ∈ I and b ∈ J . Then a∧b ∈ I∩J . Hence x∨(a∧b) = (x∨a)∧(x∨b) ∈ D.
Hence x ∈ ω(I ∩ J). Therefore ω(I) ∩ ω(J) ⊆ ω(I ∩ J).

Proposition 3.8. Let I, J be two ideals of a lattice L such that ω(I)∩J = ∅, then there exists
a prime D-filter P such that ω(I) ⊆ P and P ∩ J = ∅.

Proof. Let I and J be as mentioned in the hypothesis. Then there exists a maximal ideal Q
such that J ⊆ Q and ω(I) ∩ Q = ∅. Since Q is a prime ideal, we get that L − Q is a prime
filter. Since ω(I) ∩ Q = ∅, we get that D ⊆ ω(I) ⊆ L − Q. Therefore L − Q = P is a prime
D-filter of L that is containing ω(I).

We now introduce the concept of ω-filters of lattices.

Definition 3.9. Let F be a D-filter of a lattice L. Then F is called an ω-filter of L if F = ω(I)

for some ideal I of L such that I ∩D = ∅.

From the above definition, it is an easy consequence that ω({0}) = D. Hence D is proper
and the smallest ω-filter of the lattice L.

Example 3.10. Consider the distributive lattice L = {0, a, b, c, 1} whose Hasse diagram is
given in the following figure:
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Consider the filters F1 = {a, c, 1}, F2 = {b, c, 1} and the ideals I1 = {0, b}, I2 = {0, a}. It is
easily seen that F1 = ω(I1) and F2 = ω(I2) such that I1 ∩D = I2 ∩D = ∅. Therefore F1 and
F2 are ω-filters of L.

Proposition 3.11. Let L be a lattice and x ∈ L−D. Then (x)◦ is an ω-filter of L.

Proof. Let x ∈ L − D. Clearly (x ] ∩ D = ∅. Let t ∈ (x)◦. Then t ∨ x ∈ D. Since x ∈ (x ],
we get t ∈ ω((x ]). Therefore (x)◦ ⊆ ω((x ]). Conversely, let t ∈ ω((x ]). Then t ∨ a ∈ D for
some a ∈ (x ]. Hence t ∨ x ∈ D, which implies that t ∈ (x)◦. Thus ω((x ]) ⊆ (x)◦. Hence
(x)◦ = ω((x ]). Therefore (x)◦ is an ω-filter of L.

Theorem 3.12. Every prime D-filter P of a lattice with P ◦ ̸= D is an ω-filter.

Proof. Let P be a prime D-filter of a lattice L. Suppose P ◦ ̸= D. Since D ⊂ P ◦, there exists
x /∈ D such that x ∈ P ◦. Clearly (x]∩D = ∅ and x /∈ P . Then P ⊆ P ◦◦ ⊆ (x)◦. On the other
hand, let a ∈ (x)◦. Then a ∨ x ∈ D ⊆ P . Since x /∈ P , we must have a ∈ P . Thus (x)◦ ⊆ P .
Hence P = (x)◦ = ω((x]). Therefore P is an ω-filter of L.

Theorem 3.13. Every minimal prime D-filter of a lattice is an ω-filter.

Proof. Let P be a minimal prime D-filter of a lattice L. Then L−P is a prime ideal of L such
that D ∩ (L − P ) = ∅. We now show that P = ω(L − P ). Let x ∈ P . Since P is minimal,
there exists y ∈ L − P such that x ∨ y ∈ D. Hence x ∈ ω(L − P ). Therefore P ⊆ ω(L − P ).
Conversely, let x ∈ ω(L − P ). Then, we get x ∨ a ∈ D ⊆ P for some a ∈ L − P . Since P is
prime and a /∈ P , we get x ∈ P . Thus ω(L − P ) ⊆ P . Hence P = ω(L − P ). Therefore P is
an ω-filter of L.

We now turn our intension towards the converse of the above theorem. In general, every
ω-filter of a lattice need not be a minimal prime D-filter. In fact it need not even be a prime
D-filter. It can be observed in the following example:
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Example 3.14. Let X = {1, 2, 3, 4} be a set and L the sublattice of the power set of X,
which is generated by the sets {1}, {2} and {3}. That is, L =

{
∅, {1}, {2}, {3}, {1, 2},

{2, 3}, {1, 3}, {1, 2, 3}
}

. Clearly D = {{1, 2, 3}}. Consider F =
{
{1, 2}, {1, 2, 3}

}
and

I =
{
∅, {2}, {3}, {2, 3}

}
. Clearly F is a filter and I is an ideal of L such that I ∩ D = ∅.

It can be easily verified that ω(I) =
{
{1, 2}, {1, 2, 3}

}
= F . Therefore F is an ω-filter of L.

Note that the filter F is not a prime D-filter of L, because {2, 3} /∈ F and {1, 3} /∈ F but
{2, 3} ∨ {1, 3} = {1, 2, 3} ∈ F .

Though every ω-filter need not be a prime D-filter, we derive a necessary and sufficient
condition for an ω-filter of a lattice to become a prime D-filter.

Theorem 3.15. Let F be a proper ω-filter of a lattice L. Then F is a prime D-filter if and
only if F contains a prime D-filter.

Proof. The necessary part is clear. For sufficiency, assume that F contains a prime D-filter,
say P . Since D ⊆ P ⊆ F , F is a D-filter of L. Since F is an ω-filter, we get F = ω(I) for
some ideal I of L with I ∩D = ∅. Choose a, b ∈ L such that a /∈ F and b /∈ F . Since P ⊆ F ,
we get a /∈ P and b /∈ P . Since P is prime, we get a ∨ b /∈ P . Thus (a ∨ b)◦ ⊆ P ⊆ F = ω(I).
Suppose a∨ b ∈ F = ω(I). Then a∨ b∨ i ∈ D for some i ∈ I. Hence i ∈ (a∨ b)◦ ⊆ ω(I). Thus
i ∈ I ∩ ω(I). Hence I ∩ ω(I) ̸= ∅. By Lemma 3.7(1), F = ω(I) = L which is a contradiction.
Thus F is a prime D-filter of L.

We have already observed in Theorem 3.15 that every minimal prime D-filter is a prime
ω-filter of L. Now we derive, in the following theorem, the equivalency between prime ω-filters
and minimal prime D-filters of a lattices.

Theorem 3.16. Every prime ω-filter of a lattice L is a minimal prime D-filter.

Proof. Let P be a prime ω-filter of L. Then P = ω(I) for some ideal I of L with I ∩D = ∅.
Let x ∈ P = ω(I). Then x ∨ y ∈ D for some y ∈ I. Suppose y ∈ P . Then y ∈ I ∩ ω(I).
Hence I ∩ ω(I) ̸= ∅. By Lemma 3.7(1), P = ω(I) = L which is a contradiction. Hence y /∈ P .
Therefore P is a minimal prime D-filter.

Theorem 3.17. The following assertions are equivalent in a lattice L:

(1) L is quasi-complemented;

(2) every prime D-filter is an ω-filter;

(3) every prime D-filter is minimal;

(4) every maximal filter is a minimal prime D-filter;

(5) every maximal filter is an ω-filter.
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Proof. (1) ⇒ (2): Assume that L is quasi-complemented. Let P be a prime D-filter L. Then
L−P is a prime ideal of L such that (L−P )∩D = ∅. We now prove that P = ω(L−P ). Let
x ∈ P . Since L is quasi-complemented, there exists y ∈ L such that x∧y = 0 and x∨y ∈ D. If
y ∈ P , then 0 = x∧y ∈ P , which is a contradiction. Hence y /∈ P , which gives that y ∈ L−P .
Since x ∨ y ∈ D, we get x ∈ ω(L − P ). Thus P ⊆ ω(L − P ). Conversely, let x ∈ ω(L − P ).
Then x ∨ y ∈ D for some y ∈ L − P . Since x ∨ y ∈ D ⊆ P and y /∈ P , we must have x ∈ P .
Hence ω(L− P ) ⊆ P . Therefore P is an ω-filter of L.

(2) ⇒ (3): Assume that every prime D-filter is an ω-filter. Let P be a prime D-filter of L. By
(2), P will be a prime ω-filter. By Theorem 3.16, P is minimal.

(3) ⇒ (4): Since every maximal filter is a prime D-filter, it is clear.

(4) ⇒ (5): Since every minimal prime D-filter is an ω-filter, it is clear.

(5) ⇒ (1): Assume that every maximal filter is an ω-filter. Let x ∈ L. Suppose 0 /∈ [x)∨ (x)◦.
Then there exists a maximal filter M such that [x)∨ (x)◦ ⊆ M . Hence x ∈ M and (x)◦ ⊆ M .
By the assumption, M is an ω-filter. Since M is prime, by Theorem 3.16, M is minimal prime
D-filter. Hence x /∈ M , which is a contradiction. Therefore 0 ∈ [x) ∨ (x)◦. Hence x ∧ a = 0

for some a ∈ (x)◦. Since a ∈ (x)◦, we get a ∨ x ∈ D. Therefore L is quasi-complemented.

We conclude this paper with a characterization theorem of ω-filters in terms of minimal
prime D-filters. For this, we first need the following results.

Lemma 3.18. Let I be an ideal of a lattice L such that I ∩D = ∅. If P is a minimal prime
D-filter containing ω(I), then I ∩ P = ∅.

Proof. Let P be a minimal prime D-filter containing ω(I). Suppose x ∈ I ∩ P . Then x ∈ P

and x ∈ I. Since P is minimal, there exists y /∈ P such that x∨y ∈ ω(I). Then x∨y∨i ∈ D for
some i ∈ I. Hence y ∨ (x∨ i) ∈ D and x∨ i ∈ I. Thus y ∈ ω(I) ⊆ P , which is a contradiction.
Therefore I ∩ P = ∅.

Lemma 3.19. Every minimal prime D-filter of a lattice L containing an ω-filter is a minimal
prime D-filter in L.

Proof. Let F be an ω-filter of L. Then F = ω(I) for some ideal I of L such that I ∩D = ∅.
Let P be a minimal prime D-filter containing F = ω(I). By the above lemma, I ∩P = ∅. Let
x ∈ P . Then there exists y /∈ P such that x ∨ y ∈ ω(I). Hence x ∨ y ∨ i ∈ D for some i ∈ I.
Thus x ∨ (y ∨ i) ∈ D ⊆ P and y ∨ i /∈ P (since I ∩ P = ∅, we get that i /∈ P and also y /∈ P ).
Hence P is a minimal prime D-filter of L.
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Now, ω-filters are characterized in terms of minimal prime D-filters.

Theorem 3.20. Every ω-filter of a lattice L is the intersection of all minimal prime D-filters
containing it.

Proof. Let F be an ω-filter of L. Then F = ω(I) for some ideal I of L such that I ∩D = ∅.
Let F0 =

∩
{P | P is a minimal prime D-filter containing F}. Clearly F ⊆ F0. Conversely,

let a /∈ F = ω(I). Then a ∨ t /∈ D for all t ∈ I. Then there exists a minimal prime D-filter
P such that a ∨ t /∈ P . Hence a /∈ P and t /∈ P . Since P is prime, (t)◦ ⊆ P for all t ∈ I.
Therefore F = ω(I) ⊆ P . Thus P is minimal such that F ⊆ P and a /∈ P . Hence a /∈ F0,
which yields F0 ⊆ F . Therefore F = F0.

4. Lattice of ω-filters

In this section, we derive the lattice-theoretic properties of ω-filters of lattices. A set of
equivalent conditions is derived for the class of all ω-filters of a distributive lattice to become
a sublattice of the lattice of all filters.

Theorem 4.1. Let {Fα}α∈∆ be a family of ω-filters of a lattice L. Then
∩

α∈∆
Fα is again an

ω-filter of L.

Proof. For each α ∈ ∆, let Fα = ω(Iα) where Iα is an ideal of L such that Iα ∩ D = ∅.
Then {Iα}α∈∆ will be an arbitrary family of ideals in L such that Iα ∩ D = ∅ for each
α ∈ ∆. Hence

∩
α∈∆

Iα is an ideal of L such that (
∩

α∈∆
Iα) ∩D = ∅. By Lemma 3.7(3), we get∩

α∈∆
ω(Iα) = ω(

∩
α∈∆

Iα). Therefore
∩

α∈∆
Fα is an ω-filter of L.

Note that the class of all ω-filters of a lattice is closed under set-intersection. In general,
ω-filters need not be closed under finite joins. However, in the following, we prove that the
class Fω(L) of all ω-filters of a lattice L forms a complete lattice.

Theorem 4.2. Let I, J be two ideals of a lattice L such that I∩D = J∩D = ∅. Then ω(I∨J)

is the smallest ω-filter containing both ω(I) and ω(J).

Proof. Let I, J be two ideals of L such that I ∩ D = J ∩ D = ∅. Clearly (I ∨ J) ∩ D = ∅.
By Lemma 3.7(2), we get ω(I) ⊆ ω(I ∨ J) and ω(J) ⊆ ω(I ∨ J). Suppose ω(I) ⊆ ω(K) and
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ω(J) ⊆ ω(K) for some ideal K of L with K ∩D = ∅. Then

x ∈ ω(I ∨ J) = x ∨ (i ∨ j) ∈ D for some i ∈ I and j ∈ J

= x ∨ i ∈ ω(J) ⊆ ω(K)

= x ∨ i ∨ k1 ∈ D for some k1 ∈ K

= x ∨ k1 ∈ ω(I) ⊆ ω(K)

= x ∨ k1 ∨ k2 ∈ D for some k2 ∈ K

= x ∈ ω(K) since k1 ∨ k2 ∈ K

Hence ω(I ∨ J) is the supremum of ω(I) and ω(J). Denote this supremum by ω(I) ⊔ ω(J).
Then (Fω(L),∩,⊔) forms a lattice.

Corollary 4.3. Let {ω(Iα)}α∈∆ be a family of ω-filters of a lattice L where Iα ∩ D = ∅ for
each α ∈ ∆. Then

⊔
α∈∆

ω(Iα) is the smallest ω-filter containing each ω(Iα).

It can be easily observed that the class of all ω-filters of a lattice forms a complete lattice with
respect to set inclusion ⊆, in which for any {ω(Iα)}α∈∆ of ω-filters, inf {ω(Iα)}α∈∆ = ω(

∩
α∈∆

Iα)

and the sup {ω(Iα)}α∈∆ = ω(
∨

α∈∆
Iα). Since the class of all ideals of a distributive lattice forms

a complete distributive lattice, the class Fω(L) of all ω-filters of a distributive lattice L forms
a complete distributive lattice. In general, the class Fω(L) of all ω-filters of a lattice L is not
a sublattice of the filter lattice F(L). However, in the following, we derive a set of equivalent
conditions for Fω(L) to become a sublattice of F(L). For this, we first need the following
result.

Lemma 4.4. Every proper ω-filter is contained in a minimal prime D-filter.

Proof. Let F be a proper ω-filter of L. Then F = ω(I) for some ideal I of L with I ∩D = ∅.
Hence D ⊆ ω(I) = F . Clearly F ∩ I = ω(I) ∩ I = ∅. Consider, the set

Im = {J | J is an ideal of L such that I ⊆ J and F ∩ J = ∅}.

Clearly I ∈ Im and Im satisfies the Zorn’s lemma. Let M be a maximal element of Im. Then
M is an ideal of L such that I ⊆ M and F ∩M = ∅. Since D ⊆ F , we get D ∩M = ∅. Hence
M is an ideal which is maximal with respect to the property that D∩M = ∅. Therefore L−M

is a minimal prime D-filter such that F ⊆ L−M .



156 M. Sambasiva Rao and Ch. Venkata Rao

Theorem 4.5. The following conditions are equivalent in a lattice L:

(1) Fω(L) is a sublattice of F(L);

(2) for a, b ∈ L, a ∨ b ∈ D implies (a)◦ ∨ (b)◦ = L;

(3) for a, b ∈ L, (a)◦ ∨ (b)◦ = (a ∨ b)◦;

(4) for I, J ∈ I(L), I ∨ J = L implies ω(I) ∨ ω(J) = L;

(5) for I, J ∈ I(L), ω(I) ∨ ω(J) = ω(I ∨ J)

Proof. (1) ⇒ (2): Assume that Fω(L) is a sublattice of F(L). Let a, b ∈ L be such that
a∨b ∈ D. Suppose (a)◦∨(b)◦ ̸= L. Since (a)◦ and (b)◦ are ω-filters of L, by hypothesis, we get
that (a)◦ ∨ (b)◦ is a proper ω-filter of L. Hence by Lemma 4.4, there exists a minimal prime
D-filter P such that (a)◦ ∨ (b)◦ ⊆ P . Hence (a)◦ ⊆ P and (b)◦ ⊆ P . Since P is a minimal
prime D-filter, we get that a /∈ P and b /∈ P . Since P is a prime filter, we get that a ∨ b /∈ P ,
which is a contradiction to that a ∨ b ∈ D ⊆ P . Hence we must have (x)◦ ∨ (y)◦ = L.

(2) ⇒ (3): Assume the condition (2). Let a, b ∈ L. Clearly (a)◦ ∨ (b)◦ ⊆ (a ∨ b)◦. Conversely,
let x ∈ (a ∨ b)◦. Then (x ∨ a) ∨ (x ∨ b) = x ∨ (a ∨ b) ∈ D. Hence by condition (2), we get
(x ∨ a)◦ ∨ (x ∨ b)◦ = L. Thus x ∈ (x ∨ a)◦ ∨ (x ∨ b)◦. Hence x = r ∧ s for some r ∈ (x ∨ a)◦

and s ∈ (x ∨ b)◦. Since r ∈ (x ∨ a)◦, we get r ∨ x ∈ (a)◦. Similarly, we can get s ∨ x ∈ (b)◦.
Now, we get

x = x ∨ x

= x ∨ (r ∧ s)

= (x ∨ r) ∧ (x ∨ s) ∈ (a)◦ ∨ (b)◦.

Hence (a ∨ b)◦ ⊆ (a)◦ ∨ (b)◦. Therefore (a)◦ ∨ (b)◦ = (a ∨ b)◦.

(3) ⇒ (4): Assume the condition (3). Let I, J be two ideals of L such that I ∨ J = L. Let
d be a dense element of L. Then d = i ∨ j for some i ∈ I and j ∈ J . Hence by (3), we get
L = (d)◦ = (i ∨ j)◦ = (i)◦ ∨ (j)◦ ⊆ ω(I) ∨ ω(J). Therefore ω(I) ∨ ω(J) = L.

(4) ⇒ (5): Let I, J be two ideals of L. We have always ω(I)∨ω(J) ⊆ ω(I∨J). Let x ∈ ω(I∨J).
Then x ∨ a ∈ D for some a ∈ I ∨ J . Now

x ∈ ω(I ∨ J) ⇒ x ∨ (i ∨ j) ∈ D where i ∈ I and j ∈ J

⇒ ((x ∨ i) ∨ (x ∨ j)] = (D]

⇒ (x ∨ i] ∨ (x ∨ j] = L

⇒ ω((x ∨ i]) ∨ ω((x ∨ j]) = L

⇒ (x ∨ i)◦ ∨ (x ∨ j)◦ = L
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Hence x ∈ (x ∨ i)◦ ∨ (x ∨ j)◦. Thus x = a ∧ b where a ∈ (x ∨ i)◦ and b ∈ (x ∨ j)◦. Since
a ∈ (x ∨ i)◦ and b ∈ (x ∨ j)◦, we get x ∨ a ∈ (i)◦ and x ∨ b ∈ (j)◦. Now

x = x ∨ x

= x ∨ (a ∧ b)

= (x ∨ a) ∧ (x ∨ b)

∈ (i)◦ ∨ (j)◦

⊆ ω(I) ∨ ω(J) since i ∈ I and j ∈ J

Hence we get ω(I ∨ J) ⊆ ω(I) ∨ ω(J). Therefore ω(I ∨ J) = ω(I) ∨ ω(J).

(5) ⇒ (1): It is obvious.

Theorem 4.6. Let L be a lattice that satisfies the conditions of Theorem 4.5. If {Fα}α∈∆ be
an arbitrary family of ω-filters of L, then

∨
α∈∆

Fα is again an ω-filter of L.

Proof. For each α ∈ ∆, let Fα = ω(Iα) where Iα is an ideal of L such that Iα ∩D = ∅. Then
{Iα}α∈∆ will be an arbitrary family of ideals in L such that Iα ∩ D = ∅ for each α ∈ ∆.
Clearly (

∨
Iα) ∩D = ∅. Since Fα = ω(Iα) ⊆ ω(

∨
Iα) for each α ∈ ∆, we get

∨
Fα ⊆ ω(

∨
Iα).

Conversely, let x ∈ ω(
∨
Iα). Then x ∨ a ∈ D for some a ∈

∨
Iα. Then there exists a positive

integer n such that a = a1 ∨ a2 ∨ · · · ∨ an where ai ∈ Iαi . By condition (4) of Theorem 4.5, we
get

x ∨ a ∈ D ⇒ x ∨ (a1 ∨ a2 ∨ · · · ∨ an) ∈ D

⇒ (x ∨ a1) ∨ (x ∨ a2) ∨ · · · ∨ (x ∨ an) ∈ D

⇒ (x ∨ a1] ∨ (x ∨ a2] ∨ · · · ∨ (x ∨ an] = L

⇒ ω((x ∨ a1]) ∨ ω((x ∨ a2]) ∨ · · · ∨ ω((x ∨ an]) = L

⇒ (x ∨ a1)
◦ ∨ (x ∨ a2)

◦ ∨ · · · ∨ (x ∨ an)
◦ = L
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Hence x ∈ (x∨ a1)
◦ ∨ (x∨ a2)

◦ ∨ · · · ∨ (x∨ an)
◦. Thus x = b1 ∧ b2 ∧ · · · ∧ bn where bi ∈ (x∨ ai)

◦

for i = 1, 2, . . . , n. Now

x = x ∨ x

= x ∨ (b1 ∧ b2 ∧ · · · ∧ bn)

= (x ∨ b1) ∧ (x ∨ b2) ∧ · · · ∧ (x ∨ bn)

∈ (a1)
◦ ∨ (a2)

◦ ∨ · · · ∨ (an)
◦

⊆ ω(I1) ∨ ω(I2) ∨ · · · ∨ ω(In)

= F1 ∨ F2 ∨ · · · ∨ Fn

⊆
∨

Fα

which concludes that ω(
∨
Iα) ⊆

∨
Fα. Therefore

∨
Fα is an ω-filter of L.

Theorem 4.7. Let L be lattice that satisfies any one of the conditions of Theorem 4.5. For
any D-filter F , there exists a unique ω-filter contained in F .

Proof. Let F be an arbitrary D-filter of L. Consider ImF = {H ∈ Fω(L) | H ⊆ F}. Since
D is the ω-filter and D ⊆ F , we get D ∈ ImF . Clearly ImF satisfies the hypothesis of Zorn’s
Lemma. Let M be a maximal element of ImF . It is enough to show that M is unique. Let
M1 and M2 be two maximal elements of ImF . Clearly M1 ∨ M2 ⊆ F . By Theorem 4.5,
M1 ∨ M2 ∈ ImF . Thus M1 = M1 ∨ M2 = M2. Hence ImF has a unique maximal element,
which is the required ω-filter contained in F .
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