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Abstract. The unitary addition Cayley graph Gn[ω] of Eisenstein integers modulo n has

the vertex set En[ω], the set of Eisenstein integers modulo n. Any two vertices x = a1 + ωb1,

y = a2 + ωb2 of Gn[ω] are adjacent if and only if gcd(N(x+ y), n) = 1, where N is the norm

of any element of En[ω] given by N(a + ωb) = a2 + b2 − ab. In this paper we obtain some

basic graph invariants such as degree of the vertices, number of edges, diameter, girth, clique

number and chromatic number of unitary addition Cayley graph of Eisenstein integers modulo

n. This paper also focuses on determining the independence number of the above mentioned

graph.
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1. Introduction

Let Zn be the ring of integers modulo n, n > 1 and let Un be the set of all units of the ring
Zn. The unitary Cayley graph of Zn introduced by Dejter and Giudici [1] is an undirected
graph, whose vertex set is the set Zn and any two vertices a and b of Zn are adjacent if and
only if a−b ∈ Un, where Un is the set of all units of Zn . The various structures and properties
of unitary Cayley graphs have been studied extensively by Dejter and Giudici [1], Klotz and
Sander [2], Akhtar et. al.[3] and Boggess et. al.[4].

Let Γ be an abelean group. For a subset B of Γ the addition Cayley graph induced by B on
G denoted by G′ = Cay+(Γ, B) is an undirected graph with the vertex set Γ and the edge set
{ab | a + b ∈ B, a, b ∈ Γ}. Various properties of addition Cayley graphs have been discussed
by Grynkiewicz et. al. [5, 6].

Sinha et. al. [7] studied the unitary addition Cayley graph by taking Γ = Zn and B = Un.
Several graph theoretic properties of unitary addition Cayley graphs have been studied by
them.

Roy and Patra [8] generalised the concept of a unitary addition Cayley graph to the unitary
addition Cayley graph of Gaussian integers modulo n, Gn[i] by replacing the vertex set Zn to
Zn[i], the set of Gaussian integers modulo n, and the edge set Un to Un[i]. The norm of an
element a+ ib in Zn[i] is defined as N(a+ ib) = a2 + b2. An element c+ id in Zn[i] will be a
unit if and only if gcd(N(c+ id), n) = 1 or simply we can say that c+ id will be a unit element
in Zn if and only if N(c + id) is a unit element in Zn. In Gn[i] any two vertices a + ib and
c+ id are adjacent whenever gcd(N((a+ c) + i(b+ d)), n) = 1.

In this paper the vertex set Zn[i] of the graph Gn[i] is replaced by the set of Eisenstein
integers modulo n, En[ω]. The new graph thus obtained is denoted by Gn[ω] and named as
unitary addition Cayley graph of Eisenstein integers modulo n. Any two vertices x = a1+ωb1,
y = a2+ωb2 of Gn[ω] are adjacent if and only if gcd(N(x+ y), n) = 1, where N is the norm of
any element of En[ω] given by N(a+ωb) = a2+ b2− ab. Some basic graph invariants of Gn[ω]

are obtained along with the comparison of different properties between the graphs Gn[i] and
Gn[ω].

2. Preliminaries and Definitions

A graph G is a pair G(V,E) ,where V is a non-empty finite set, and E is a set of unordered
pairs of elements of V . The elements of V are called the vertices of G, and the elements of
E are the edges of G. The set of vertices and edges of a graph G is denoted by V (G) and
E(G) respectively. |V (G)| and |E(G)| denote the cardinality of V (G) and E(G) respectively.
The complement G of a graph G is the graph with V (G) = V (G) such that uv is an edge of
G if and only if uv is not an edge of G. The degree of a vertex v, denoted by deg(v) in G
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is the number of edges incident at v. If the degree of each vertex is equal, say r in G, then
G is called an r-regular graph. A trail of a graph is an alternating sequence of vertices and
distinct edges v0, e1, v1, e2, ..., en, vn beginning and ending with vertices, in which each edge
is incident with the two vertices immediately preceding and following it. If all the vertices
and necessarily all the edges of a trail are distinct then it is called a path. The length of a
path is the number of edges in it. A closed path(i.e., a path in which v0 = vn) is called a
cycle. An Eulerian trail is a closed trail containing all vertices and edges of a graph G. A
graph G is called an Eulerian graph if it contains an Eulerian trail. A bigraph or bipartite
graph G is a graph whose vertex set V can be partitioned in to two subsets V1 and V2 such
that every edge of G joins V1 with V2. If every vertex of V1 joins every vertex of V2, then
G is called a complete bipartite graph. For distinct vertices x and y of a graph G, let d(x, y)

be the length of a shortest path from x to y, the diameter of G, denoted by diam(G) =
sup{d(x, y) : x, y are vertices of G}. The girth of a graph G, denoted by girth(G) is the
length of a shortest cycle in G, (girth(G) = ∞ if G contains no cycles). A graph that can
be drawn in the plane so that edges intersect only at vertices is called planar. A complete
subgraph of a graph G is called a clique. A maximal clique is a clique which cannot be enlarged
by adding additional vertices to it. The cardinality of the maximal clique is called the clique
number and it is denoted by ω(G). A subset S of the vertex set of G is independent if no
two vertices of S are adjacent. The number of vertices in a maximal independent set of S is
called the independence number of G and is denoted by β(G). In another way idependence
set is the maximal clique of G denoted by ω(G). The clique covering number θ(G) or χ(G) of
a graph G is the minimum number of cliques in G needed to cover the vertex set of G. Since
θ(G) involves the minimum number of cliques, only maximal cliques need be considered (since
non-maximal cliques could not yield a clique cover of smaller size).

The unitary addition Cayley graph Gn=Cay+(Zn, Un) is an undirected graph with vertex
set Zn and two distinct vertices a and b are adjacent if and only if a + b ∈ Un, where Un =

{a ∈ Zn|gcd(a, n) = 1} is the set of all units of Zn.
The set of Eisenstein integers denoted by E is a subring of the field of complex numbers.

The elements of the set are the complex numbers of the form a + bω, where a, b are integers
and ω= (−1+i

√
3)

2 , a primitive third root of unity. Then ω = −1−ω = ω2. Since E is a subring
of the field of complex numbers, it is an integral domain. For any element a + bω, a norm
is defined on the set E, N(a + bω) = a2 + b2 − ab which makes it a Euclidean domain. The
units of E are ±ω, ±ω and ±1. It is easily seen that for any positive integer n, the factor ring
E/nE is canonically isomorphic to the ring En = {a + bω|a, b ∈ Zn}. Thus En is a principal
ideal ring. This ring will be called the ring of Eisenstein integers modulo n. Abu Osba and
Alkam[9] obtained some interesting results about the ring En. In this chapter we have tried
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to get some basic graph invariants of the unitary addition Cayley graph of Eisenstein integers
modulo n, denoted by Gn[ω] and also tried to compare the properties of both the graphs Gn[i]

and Gn[ω].

3. Basic Invariants

Lemma 3.1. The total number of elements in En is n2.

Proof. The proof is trivial.

Theorem 3.2. [9] The total number of unit elements in En is3× 22k−2, when n = 2k, k ∈ N

2× 32k−1, when n = 3k, k ∈ N.

Theorem 3.3. [9] The total number of unit elements in En isp2k−2(p2 − 1), if p ≡ 2(mod3)

(pk − pk−1)2, if p ≡ 1(mod3).

Example 3.4. The unitary addition Cayley graphs of Eisenstein integers modulo 2 and 3 are
shown below.

80, 0<80, 1<

81, 0<81, 1<

80, 0<

80, 1<

80, 2<81, 0<

81, 1<

82, 0<82, 2<

81, 2<

82, 1<

Fig 1: G2[ω] Fig 2: G3[ω]

Theorem 3.5. When n = 2k, k ∈ N, the unitary addition Cayley graph of Eisenstein integers
modulo n, Gn[ω] is a complete 4-partite graph.
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Proof. When n = 2k, k ∈ N, by Theorem 3.2 [9], the number of zero divisors will be 22k−2

which will form one partite set. Next we divide the set of unit elements in three partite sets.
Let us take a unit element a+ ωb, then
Case 1: when a is multiple of 2 and b is any odd number or its additive inverse in Zn.
Case 2: when a is an odd number or its additive inverse in Zn and b is multiple of 2.
Case 3: when a is an odd number or its additive inverse in Zn and b is an odd number or its
additive inverse.
But none of the vertices within the partitions are adjacent to each other because the sum of
the real parts of the vertices will be an even number and the sum of the imaginary parts of
the vertices will also be an even number. But all the vertices of each partition will be adjacent
to all the vertices of the other partitions. Thus we get a 4−partite graph.

Example 3.6. The following figure is the 3-partite structure of the unit elements of the graph
G4[ω].

80, 1<

81, 0<

81, 1<

81, 2<

81, 3<

83, 0<

83, 1<

83, 2<

83, 3<

80, 3<

82, 1<

82, 3<

Fig 3: 3-partite structure of the unit elements of G4[ω]

Theorem 3.7. When n = 3k, k ∈ N, the unitary addition Cayley graph of Eisenstein integers
modulo n, Gn[ω] has two isomorphic copies of complete graphs K32k−1, whose vertices are all
the unit elements of Gn[ω].
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Proof. Let n = 3k, k ∈ N. Then 0 + 1ω will be a unit element and 0 + 2ω will be its additive
inverse. Let a+ bω be a zero divisor, where none of the real and imaginary parts are multiples
of 3. By Theorem 3.2 [9], there are 32k−1 zero divisors and adding a + bω to 0 + 1ω 32k−1

times we get 32k−1 distinct unit elements which are adjacent to each other. Similarly, adding
a+ bω to 0 + 2ω 32k−1 times we get 32k−1 distinct unit elements which are adjacent to each
other. So all the unit elements are divided into two sets and all the elements within the set
are adjacent to each other but not adjacent to any elements of the other set of unit elements
as 0 + 2ω is the additive inverse of 0 + 1ω. Thus we get two isomorphic copies of complete
graphs K32k−1 , whose vertices are all the unit elements of Gn[ω].

Theorem 3.8. Let m = a+ bω be a vertex in Gn[ω]. Then

deg(m) =


3× 22k−2, when n = 2k, k ∈ N

2× 32k−1, when n = 3k , k ∈ N and gcd(N(a+ bω), n) ̸= 1

2× 32k−1 − 1, when n = 3k , k ∈ N and gcd(N(a+ bω), n) = 1.

Proof. When n = 2k, Zn[ω] has 2(2k−2) zero divisors and these zero divisors will be adjacent to
all the 3×2(2k−2) unit elements. Thus if a+bω is a zero divisor then deg(a+bω) = 3×2(2k−2).
Let c + dω and e + fω be two unit elements such that both c and e are the multiples of 2

and d and f are the odd numbers or its additive inverse. Then c + dω and e + fω will never
adjacent to each other and there will be 2(2k−2) number of such unit elements which are not
adjacent to each other. But they will be adjacent to all the elements of the type g+hω, j+kω

and a + bω, where g is an odd number or its additive inverse, h is a multiple of 2,j and k

both are either an odd number or their additive inverse. Each type of vertices contains 2(2k−2)

elements. Thus if c+ dω is a unit element then deg(c+ dω) = 3× 2(2k−2).
When n = 3k, we consider the following two cases
Case 1: If gcd(N(a + bω), n) ̸= 1 then a + bω is a zero divisor. So by Theorem 3.2[9]
deg(a+ bω) = 2× 3(2k−1).
Case 2: If gcd(N(a+ bω), n) = 1 then a+ bω and 2(a+ bω) are both unit elements and a+ bω

will be adjacent to the vertices of type (c− a) + (d− b)ω. But it can not be adjacent to itself.
Thus, by Theorem 3.2 [9] deg(a+ bω) = 2× 3(2k−1) − 1.

Theorem 3.9. If n = pk, p is an odd prime of the form 3q + 1, k, q ∈ N. Let m = a+ bω be
a vertex in Gn[ω]. Then

deg(m) =

(pk − pk−1)2, if gcd(N(a+ bω), n) ̸= 1

(pk − pk−1)2 − 1, if gcd(N(a+ bω), n) = 1.
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Proof. When n = pk,k ∈ N and p is an odd prime of the form 3q + 1, q ∈ N. Now using the
similar argument as that of the above theorem we can prove that if a + bω is a zero divisor
and by Theorem 3.3 [9] we have deg(a+ bω) = (pk − pk−1)2. If a+ bω is a unit element then
deg(a+ bω) = (pk − pk−1)2 − 1.

Theorem 3.10. If n = pk, p is an odd prime of the form 3q+2, k, q ∈ N. Let m = a+ bω be
a vertex in Gn[ω]. Then

deg(m) =

p2k−2(p2 − 1), if gcd(N(a+ bω), n) ̸= 1

p2k−2(p2 − 1)− 1, if gcd(N(a+ bω), n) = 1.

Corollary 3.11. The number of edges in Gn[ω] is

32k−1(32k − 1) when n = 3k k ∈ N

3× 24k−3 when n = 2k k ∈ N
(pk−pk−1)2(p2k−1)

2 where n = pk, k ∈ N and p is an odd prime of the form 3q + 1, q ∈ N

p4k−2p2k+p(2k−2)

2 where n = pk, k ∈ N and p is an odd prime of the form 3q + 2, q ∈ N.

Proof. We know that the sum of the degrees of the vertices of a graph is twice the number of
lines.

Case 1: when n = 2k, then 2q =
2k∑
j=1

deg(xj)

⇒ 2q = 22k × (3× 2(2k−2))

⇒ q = 3× 2(4k−3).

Case 2: when n = 3k,then 2q =
2k∑
j=1

deg(xj)

⇒ 2q = 2× 3(2k−1) × (2× 32k−1 − 1) + (2× 3(2k−1))× (32k − 2× 3(2k−1) + 1)

⇒ q = 3(2k−1)(32k − 1).
Case 3: when n = pk , k ∈ N and p is an odd prime of the form 3q + 1, q ∈ N, then

2q =
2k∑
j=1

deg(xj)

⇒ 2q = (pk − p(k−1))2 × {(pk − p(k−1))2 − 1}+ {p2k − (pk − p(k−1))
2}{(pk − p(k−1))2}

⇒ q =
(pk − p(k−1))2(p2k − 1)

2
.

Case 4: when n = n = pk , k ∈ N and p is an odd prime of the form 3q + 2, q ∈ N, then

2q =
2k∑
j=1

deg(xj)

⇒ 2q = {p(2k−2)(p2− 1)− 1}×{(p(2k−2)(p2− 1)}+ {p(2k−2)(p2− 1)}×{(p2k − p(2k−2)(p2− 1)}

⇒ q =
p4k − 2p2k + p2k−2

2
.

Corollary 3.12. Gn[ω] is a complete graph when n = 2k, and k = 1.



128 J. Roy and K. Patra

Proof. When n = 2, by Theorem 3.5, En will have three unit elements and one zero divisor
namely 0 + 0ω and thus En is a field. So the unitary addition Cayley graph of Eisenstein
integers modulo n, Gn[ω] is a complete graph.

Lemma 3.13. When n = pk, k ∈ N and p is an odd prime of the form 3q + 1, q ∈ N, the zero
divisors of En form an induced complete bipartite subgraph of Gn[ω].

Proof. When n = pk, k ∈ N p is an odd prime of the form 3q + 1, q ∈ N, by Theorem 3.3[9],
there will be two non associative primes (a+bω) and (a+bω) such that n = (a+bω)(a+bω) =

a2 + b2 − ab, Thus En
∼= E/ < a + bω > ×E/ < a + bω >. Hence, (a + bω) and (a + bω) are

the maximal ideals containing pk−1 zero divisors each and they will form a complete bipartite
graph.

Lemma 3.14. When n = pk, k ∈ N and p is an odd prime of the form 3q + 1, q ∈ N, the unit
elements of En form an induced regular subgraph of Gn[ω].

Proof. If we take the Un[ω] as the vertex set of Gn[ω], then the degree of each vertex will be
(pk − pk−1)2 − 2pk−1. Thus, the unit elements of En form an induced regular subgraph of
Gn[ω].

Theorem 3.15. For n > 2, diam(Gn[ω]) = 2.

Proof. When n = 2k, k ∈ N, by Theorem 3.5 Gn[ω] is a complete 4−partite graph. So,
diam(Gn[ω]) = 2. When n is a composite even number, Gn[ω] will be a 4−partite graph.
Hence diam(Gn[ω]) = 2. Suppose that n is an odd number and let n+ aω be a unit element.
Then n+aω and n+(n−a)ω are not adjacent. But 0+0ω will be adjacent to both n+aω and
n+(n−a)ω and there will be a path n+aω−0+0ω−n+(n−a)ω. Hence, diam(Gn[ω]) ≤ 2.
But when n is an odd number, Gn[ω] will never be a complete graph. So, diam(Gn[ω]) ≥ 2.
Therefore, diam(Gn[ω]) = 2.

Theorem 3.16. For n ≥ 2, girth(Gn[ω]) = 3.

Proof. When n = 2k, k ∈ N, by Theorem 3.5 Gn[ω] is a 4−partite graph. So, girth(Gn[ω]) = 3.
When n is an odd number, the two unit elements 1 + nω and n+ ω along with a zero divisor
0 + 0ω are adjacent to each other. Thus girth(Gn[ω]) = 3.
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4. Clique Number, Chromatic Number and Independence Number

Theorem 4.1. For n = 2k, k ∈ N, χ(Gn(ω)) = ω(Gn(ω)) = 4.

Proof. When n = 2k, k ∈ N, by Theorem 3.5 Gn[ω] is a 4−partite graph. So, there will always
be a complete subgraph on four vertices. Thus, χ(Gn(ω)) = ω(Gn(ω)) = 4.

Theorem 4.2. For n = 3k, k ∈ N, χ(Gn(ω)) ≥ ω(Gn(ω)) ≥ 32k−1 + 1.

Proof. When n = 3k, k ∈ N, by Theorem 3.7 the unitary addition Cayley graph of Eisenstein
integers modulo n, Gn[ω] has two isomorphic copies of complete graphs K32k−1 , whose vertices
are all the unit elements of Gn[ω]. But all the zero divisors of Gn[ω] will be adjacent to all the
unit elements of Gn[ω]. Thus, χ(Gn(ω)) ≥ ω(Gn(ω)) ≥ 32k−1 + 1.

Theorem 4.3. When n is an odd prime of the form 3q + 1, q ∈ N, χ(Gn(ω)) ≥ ω(Gn(ω)) ≥
(pk−pk−1)2

4 + 2.

Proof. By [9] Epk is isomorphic to E/ < (a+ bω) > ×E/ < (a+ bω) >. The numbers of unit
elements in both E/ < (a+ bω) > and E/ < (a+ bω) > are pk − pk−1. Removing the additive
inverses we have (pk−pk−1)

4 unit elements in Epk and by Lemma 3.13 there will be a maximum
subgraph with (pk−pk−1)

4 + 2 vertices. Thus, χ(Gn(ω)) ≥ ω(Gn(ω)) ≥ (pk−pk−1)2

4 + 2.

Theorem 4.4. When n is an odd prime of the form 3q + 2, q ∈ N, χ(Gn(ω)) ≥ ω(Gn(ω)) ≥
n2

2 + 1.

Proof. When n is an odd prime of the form 3q + 2, q ∈ N, En is a field [9]. So there are n2

2

unit elements which are adjacent to each other and along with 0 + 0ω will form a maximal
complete subgraph. Thus, χ(Gn(ω)) ≥ ω(Gn(ω)) ≥ n2

2 + 1.

We now find the independence number of Gn[ω], which can be obtained by finding the
clique number ω(Gn[ω]) of the complement of the graph Gn[ω]. Along with this we can find
the clique covering number χ(Gn[ω]), which is the minimum number of cliques required to
cover all the vertices of Gn[ω].
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Theorem 4.5. When n > 1, n ∈ N, the independence number of unitary addition Cayley
graph of Eisenstein integers modulo n is given by

χ(Gn[ω]) ≥ ω(Gn[ω]) ≥



22k−2, when n = 2k

32k−1, when n = 3k

p, when p is an odd prime

of the form 3q + 1, q ∈ N

2, when p is an odd prime

of the form 3q + 2, q ∈ N.

Proof. When n = 2k, k ∈ N, by Theorem 3.5 Gn[ω] is a complete 4− partite graph. But Gn[ω]

is a disconnected graph with four components, where each components are the partitions of
the vertex set of Gn[ω]. So, each partitions will be a complete graph with 22k−2 vertices.
Hence, χ(Gn[ω]) ≥ ω(Gn[ω]) ≥ 22k−2.
When n = 3k, k ∈ N, by Theorem 3.7 the unitary addition Cayley graph of Eisenstein
integers modulo n, Gn[ω] has two isomorphic copies of complete graphs K32k−1 and all the
zero divisors are not adjacent to each other but they are adjacent to all the units elements
of Gn[ω]. So, in Gn[ω] all the zero divisors will form a complete graph with 32k−1 elements.
χ(Gn[ω]) ≥ ω(Gn[ω]) ≥ 32k−1.
When n = p, p is an odd prime of the form 3q + 1, q ∈ N, by Lemma 3.13 we have the
zero divisios of Gn[ω] which will form a induced complete bipartite graph. In Gn[ω] both the
partite sets will form a complete subgraph with p elements. Thus, χ(Gn[ω]) ≥ ω(Gn[ω]) ≥ p.
When n = p, p is an odd prime of the form 3q + 2, q ∈ N, by Theorem 3.3 [9], Gn[ω] is a
field. So, χ(Gn[ω]) = ω(Gn[ω]) = 2.
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Below is a comparison of the graphs Gn[i] and Gn[ω]

Comparison between Gn[i] and Gn[ω]

Properties Gn[i] Gn[ω]

Diameter For n ⩾ 2, diam(Gn[i]) =
2, if n is even or odd.

3, if n = n1n2 if n1 is even

and n2 is an odd prime.

For n > 2, diam(Gn[ω]) = 2

Girth For n ⩾ 2, girth(Gn[i])= 3, if n is odd.

4, if n is even.

For n ≥ 2, girth(Gn[ω]) = 3

For n = 2 G2[i] is a complete bipartite graph G2[ω] is a complete graph

For n = 2k, k ⩾ 2 Gn[i] is a complete bipartite graph Gn[ω] is a complete 4− partite graph

Planarity Gn[i] is planar if n = 1, 2 Gn[ω] is planar if n = 1, 2

Traversability Gn[i] is Eulerian if n is even Gn[ω] is Eulerian if n is even

Reducibility Zn[i] is reducible if n ≡ 1(mod4) Zn[ω] is reducible if n ≡ 1(mod3)

Irreducibility Zn[i] is irreducible if n ≡ 3(mod4) Zn[ω] is irreducible if n ≡ 2(mod3)

5. Acknowledgments

The authors acknowledge with thanks the valuable and useful suggestions made by the
referee towards improving the paper.

References

[1] I. J. Dejter and R. E. Giudici, On unitary Cayley graphs, J. Combin. Math. Combin Comput., 18 (1995)

121-124.

[2] W. Klotz and T. Sander, Some properties of unitary Cayley graphs, Electron. J. Combin., 14 (2007) ♯ R45.

[3] R. Akhtar, M. Boggess, T. Jackson-Henderson, I. Jimenez, R. Karpman, A. Kinzel and D. Pritikin, On the

unitary Cayley graph of a finite ring, Electron. J. Combin., 16 No. 1 (2009) ♯ R117.

[4] M. Boggess, T. Jackson-Henderson, I. Jim´enez and R. Karpman, The structure of unitary Cayley graphs,

SUMSRI Journal, (2008).

[5] D. Grynkiewicz, V. F. Lev and O. Serra, Connectivity of addition Cayley graphs, J. Combin.Theory Ser.

B, 99 No. 1 (2009) 202-217.

[6] D. Grynkiewicz, V. F. Lev and O. Serra, The connectivity of addition Cayley graphs, Electron. Notes

Discret. Math., 29 (2007) 135-139.

[7] D. Sinha, P. Garg and A. Singh, Some properties of unitary addition Cayley graphs, NNTDM, 17 No. 3

(2011) 49-59.



132 J. Roy and K. Patra

[8] J. Roy and K. Patra, Some aspects of addition Cayley graph of Gaussian integers modulo n, MATEMATIKA:

MJIAM, 32 No. 1 (2016) 43-52.

[9] O. Alkam and E. Abu Osba On Eisenstein integers modulo n, Int. Math. Forum, 5 No. 22 (2010) 1075-1082.

Joy Roy

Department of mathematics

Assam Don Bosco University, Tepesia

Assam, India.

joyroy29@gmail.com

Kuntala Patra

Department of mathematics,

Gauhati University, Guwahati

Assam, India.

kuntalapatra@gmail.com


	1. Introduction
	2. Preliminaries and Definitions
	3. Basic Invariants
	4. Clique Number, Chromatic Number and Independence Number
	5. Acknowledgments
	References

