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GENUS OF COMMUTING CONJUGACY CLASS GRAPH OF CERTAIN
FINITE GROUPS

PARTHAJIT BHOWAL AND RAJAT KANTI NATH∗

Abstract. For a non-abelian group G, its commuting conjugacy class graph CCC(G) is a

simple undirected graph whose vertex set is the set of conjugacy classes of the non-central

elements of G and two distinct vertices xG and yG are adjacent if there exists some elements

x′ ∈ xG and y′ ∈ yG such that x′y′ = y′x′. In this paper we compute the genus of CCC(G) for

six well-known classes of non-abelian two-generated groups (viz. D2n, SD8n, Q4m, V8n, U(n,m)

and G(p,m, n)) and determine whether CCC(G) for these groups are planar, toroidal, double-

toroidal or triple-toroidal.

1. Introduction

The commuting conjugacy class graph of a non-abelian group G is a simple undirected
graph, denoted by CCC(G), whose vertex set is the set of conjugacy classes of the non-central
elements of G and two distinct vertices xG and yG are adjacent if there exist some elements
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x′ ∈ xG and y′ ∈ yG such that x′y′ = y′x′. This graph extends the notion of commuting
graph of a finite group introduced by Brauer and Fowler [5], in 1955. Commuting graphs of
finite algebraic structures, its extensions, generalizations and their complements remain active
topic of research over the years. In 2009, Herzog, Longobardi and Maj [8] initiated the study
of commuting conjugacy class graph of groups. In 2016, finite groups having triangle-free
commuting conjugacy class graph were characterized by Mohammadian et al. [9]. Ashrafi
and Salahshour have also considered commuting conjugacy class graph of finite groups in their
recent work [10], where they obtain structures of CCC(G) for the following groups:

D2n = ⟨α, β : αn = β2 = 1, βαβ = α−1⟩ for n ≥ 3,

SD8n = ⟨α, β : α4n = β2 = 1, βαβ = α2n−1⟩ for n ≥ 2,

Q4m = ⟨α, β : α2m = 1, αm = β2, β−1αβ = α−1⟩ for m ≥ 2,

V8n = ⟨α, β : α2n = β4 = 1, βα = α−1β−1, β−1α = α−1β⟩ for n ≥ 2,

U(n,m) = ⟨α, β : α2n = βm = 1, α−1βα = β−1⟩ for m ≥ 2 and n ≥ 2 and

G(p,m, n) = ⟨α, β : αpm = βpn = [α, β]p = 1, [α, [α, β]] = [β, [α, β]] = 1⟩,

where p is any prime, m ≥ 1 and n ≥ 1.
Continuing the works of Ashrafi and Salahshour [10], in [2, 3] Bhowal and Nath have ob-

tained various spectra and energies of commuting conjugacy class graphs of finite groups. In
this paper we compute genus of commuting conjugacy class graph of the above mentioned
groups and determine whether CCC(G) for those groups are planar, toroidal, double-toroidal
or triple-toroidal. The genus γ(G) of a graph G is the smallest integer k ≥ 0 such that G
can be embedded on the surface obtained by attaching k handles to a sphere. A graph G is
called planar, toroidal, double-toroidal or triple-toroidal if G has genus 0, 1, 2 or 3 respectively.
Results on genus of commuting graphs of finite groups, including its various extensions, can
be found in [1, 4, 6, 7]. However, genus of commuting conjugacy class graph of finite groups
are not yet studied.

2. Genus of CCC(G)

Let Kn be the complete graph on n vertices and mKn the disjoint union of m copies of Kn.
It is well known that γ(Kn) = 0 if n = 1, 2. If n ≥ 3 then, by [12, Theorem 6-38], we have

(1) γ(Kn) =

⌈
(n− 3)(n− 4)

12

⌉
,
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where ⌈x⌉ denotes the smallest integer greater than or equal to x for any real number x. By
[11, Corollary 2], we also have the following lemma.

Lemma 2.1. If G = m1Kn1 ⊔m2Kn2 then γ(G) = m1γ(Kn1) +m2γ(Kn2).

Now we compute genus of commuting conjugacy class graph of the groups
D2n, SD8n, Q4m, V8n, U(n,m) and G(p,m, n) one by one and check their planarity, toroidal-
ity etc.

Theorem 2.2. Let G = D2n. Then

(1) CCC(G) is planar if and only if 3 ≤ n ≤ 10.
(2) CCC(G) is toroidal if and only if 11 ≤ n ≤ 16.
(3) CCC(G) is double-toroidal if and only if n = 17, 18.
(4) CCC(G) is triple-toroidal if and only if n = 19, 20.

(5) γ(CCC(G)) =


⌈
(n−7)(n−9)

48

⌉
, if n is odd and n ≥ 21⌈

(n−8)(n−10)
48

⌉
, if n is even and n ≥ 22.

Proof. Consider the following cases.
Case 1. n is odd.

By [10, Proposition 2.1] we have CCC(G) = K1 ⊔ Kn−1
2

. Therefore, for n = 3 and 5, it
follows that CCC(G) = 2K1, K1 ⊔K2 respectively; and hence CCC(G) is planar. If n ≥ 7 then,
by Lemma 2.1 and (1), we have

γ(CCC(G)) = γ(Kn−1
2
) =

⌈
(n− 7)(n− 9)

48

⌉
.

Clearly γ(CCC(G)) = 0 if and only if n = 7 or 9. Also, γ(CCC(G)) = 1 if n = 11, 13 or 15;
γ(CCC(G)) = 2 if n = 17; γ(CCC(G)) = 3 if n = 19. For n ≥ 21 we have

(n− 7)(n− 9)

48
≥ 7

2
= 3.5,

and so

γ(CCC(G)) =

⌈
(n− 7)(n− 9)

48

⌉
≥ 4.

Thus, CCC(G) is planar if and only if n = 3, 5, 7, 9; toroidal if and only if n = 11, 13, 15;
double-toroidal if and only if n = 17 and triple-toroidal if and only if n = 19.
Case 2. n is even.

By [10, Proposition 2.1] we have

CCC(G) =

2K1 ⊔Kn
2
−1, if n and n

2 are even

K2 ⊔Kn
2
−1, if n is even and n

2 is odd.
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Therefore, for n = 4 and 6, it follows that CCC(G) = 3K1, 2K2 respectively; and hence CCC(G)

is planar. If n ≥ 8 then, by Lemma 2.1 and (1), we have

γ(CCC(G)) = γ(Kn
2
−1) =

⌈
(n− 8)(n− 10)

48

⌉
.

Clearly γ(CCC(G)) = 0 if and only if n = 8 or 10. Also, γ(CCC(G)) = 1 if n = 12, 14 or 16;
γ(CCC(G)) = 2 if n = 18; γ(CCC(G)) = 3 if n = 20. For n ≥ 22 we have

(n− 8)(n− 10)

48
≥ 7

2
= 3.5,

and so

γ(CCC(G)) =

⌈
(n− 8)(n− 10)

48

⌉
≥ 4.

Thus, CCC(G) is planar if and only if n = 4, 6, 8, 10; toroidal if and only if n = 12, 14, 16;
double-toroidal if and only if n = 18 and triple-toroidal if and only if n = 20. Hence the result
follows.

Theorem 2.3. Let G = SD8n. Then

(1) CCC(G) is planar if and only if n = 2 or 3.
(2) CCC(G) is toroidal if and only if n = 4.
(3) CCC(G) is double-toroidal if and only if n = 5.
(4) CCC(G) is not triple-toroidal.

(5) γ(CCC(G)) =


⌈
(n−3)(2n−5)

6

⌉
, if n is odd and n ≥ 7⌈

(n−2)(2n−5)
6

⌉
, if n is even and n ≥ 6.

Proof. Consider the following cases.
Case 1. n is odd.

By [10, Proposition 2.1] we have CCC(G) = K4 ⊔K2n−2. For n ≥ 3, by Lemma 2.1 and (1),
we have

γ(CCC(G)) = γ(K4) + γ(K2n−2) =

⌈
(n− 3)(2n− 5)

6

⌉
.

Clearly γ(CCC(G)) = 0 if n = 3; γ(CCC(G)) = 2 if n = 5. For n ≥ 7 we have

(n− 3)(2n− 5)

6
≥ 6,

and so

γ(CCC(G)) =

⌈
(n− 3)(2n− 5)

6

⌉
≥ 6.

Thus CCC(G) is planar if and only if n = 3; double-toroidal if and only if n = 5.
Case 2. n is even.
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By [10, Proposition 2.1] we have CCC(G) = 2K1 ⊔ K2n−1. For n ≥ 2, by Lemma 2.1 and
(1), we have

γ(CCC(G)) = γ(K2n−1) =

⌈
(n− 2)(2n− 5)

6

⌉
.

Clearly γ(CCC(G)) = 0 if n = 2; γ(CCC(G)) = 1 if n = 4. For n ≥ 6 we have
(n− 2)(2n− 5)

6
≥ 14

3
,

and so
γ(CCC(G)) =

⌈
(n− 2)(2n− 5)

6

⌉
≥ 5.

Thus CCC(G) is planar if and only if n = 2; toroidal if and only if n = 4. Hence the result
follows.

Theorem 2.4. Let G = Q4m. Then

(1) CCC(G) is planar if and only if m = 2, 3, 4 or 5.
(2) CCC(G) is toroidal if and only if m = 6, 7 or 8.
(3) CCC(G) is double-toroidal if and only if m = 9.
(4) CCC(G) is triple-toroidal if and only if m = 10.
(5) γ(CCC(G)) =

⌈
(m−4)(m−5)

12

⌉
for m ≥ 11.

Proof. By [10, Proposition 2.1] we have

CCC(G) =

K2 ⊔Km−1, if m is odd

2K1 ⊔Km−1, if m is even.

Therefore, for m = 2, 3, it follows that CCC(G) = 3K1, 2K2 respectively; and hence CCC(G) is
planar. If m ≥ 4 then, by Lemma 2.1 and (1), we have

γ(CCC(G)) = γ(Km−1) =

⌈
(m− 4)(m− 5)

12

⌉
.

Clearly γ(CCC(G)) = 0 if and only if m = 4 or 5. Also, γ(CCC(G)) = 1 if m = 6, 7 or 8;
γ(CCC(G)) = 2 if m = 9; γ(CCC(G)) = 3 if m = 10. For m ≥ 11 we have

(m− 4)(m− 5)

12
≥ 7

2
= 3.5,

and so
γ(CCC(G)) =

⌈
(m− 4)(m− 5)

12

⌉
≥ 4.

Thus, CCC(G) is planar if and only if m = 2, 3, 4, 5; toroidal if and only if m = 6, 7, 8; double-
toroidal if and only if m = 9 and triple-toroidal if and only if m = 10. Hence the result follows.
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Theorem 2.5. Let G = V8n. Then

(1) CCC(G) is planar if and only if n = 2.
(2) CCC(G) is toroidal if and only if n = 3 or 4.
(3) CCC(G) is not double-toroidal.
(4) CCC(G) is triple-toroidal if and only if n = 5.

(5) γ(CCC(G)) =


⌈
(n−2)(2n−5)

6

⌉
, if n is odd and n ≥ 7⌈

(n−3)(2n−5)
6

⌉
, if n is even and n ≥ 6.

Proof. Consider the following cases.
Case 1. n is odd.

By [10, Proposition 2.1] we have CCC(G) = 2K1 ⊔ K2n−1. For n ≥ 3, by Lemma 2.1 and
(1), we have

γ(CCC(G)) = γ(K2n−1) =

⌈
(n− 2)(2n− 5)

6

⌉
.

Clearly γ(CCC(G)) = 1 if n = 3; γ(CCC(G)) = 3 if n = 5. For n ≥ 7 we have
(n− 2)(2n− 5)

6
≥ 15

2
= 7.5,

and so
γ(CCC(G)) =

⌈
(n− 2)(2n− 5)

6

⌉
≥ 8.

Case 2. n is even.
By [10, Proposition 2.1] we have CCC(G) = 2K2 ⊔ K2n−2. Therefore, for n = 2 it follows

that CCC(G) = 3K2; and hence CCC(G) is planar. If n ≥ 4 then, by Lemma 2.1 and (1), we
have

γ(CCC(G)) = γ(K2n−2) =

⌈
(n− 3)(2n− 5)

6

⌉
.

Clearly γ(CCC(G)) = 1 if n = 4. For n ≥ 6 we have
(n− 3)(2n− 5)

6
≥ 7

2
= 3.5,

and so
γ(CCC(G)) =

⌈
(n− 3)(2n− 5)

6

⌉
≥ 4.

Thus CCC(G) is planar if and only if n = 2; toroidal if and only if n = 4. Hence the result
follows.

Theorem 2.6. Let G = U(n,m). Then

(1) CCC(G) is planar if and only if n = 2 and m = 2, 3, 4, 5, 6; n = 3 and m = 2, 3, 4; or
n = 4 and m = 2, 3, 4.

(2) CCC(G) is toroidal if and only if n = 2 and m = 7, 8; or n = 3 and m = 5, 6.
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(3) CCC(G) is double-toroidal if and only if n = 2 and m = 9, 10; n = 4 and m = 5, 6;
n = 5 and m = 2, 3; n = 6 and m = 2, 3; or n = 7 and m = 2, 3.

(4) CCC(G) is triple-toroidal if and only if n = 3 and m = 7, 8; n = 5 and m = 4; n = 6

and m = 4; or n = 7 and m = 4.
(5) γ(CCC(G)) =

⌈
(mn−n−6)(mn−n−8)

48

⌉
, if n = 2, m is odd and m ≥ 11⌈

(mn−2n−6)(mn−2n−8)
48

⌉
, if n = 2, m is even and m ≥ 12⌈

(mn−n−6)(mn−n−8)
48

⌉
+
⌈
(n−3)(n−4)

12

⌉
, if n = 3, m is odd and m ≥ 9;

n = 4,m ≥ 7;n = 5,m ≥ 5;

n = 6,m ≥ 5;n = 7,m ≥ 5;

or n ≥ 8,m ≥ 3⌈
(mn−2n−6)(mn−2n−8)

48

⌉
+ 2

⌈
(n−3)(n−4)

12

⌉
, if n = 3, m is even and m ≥ 10;

n = 4,m ≥ 8;n = 5,m ≥ 6;

n = 6,m ≥ 6;n = 7,m ≥ 6;

or n ≥ 8,m ≥ 2

Proof. Consider the following cases.
Case 1. m is odd.

By [10, Proposition 2.3] we have CCC(G) = Kn(m−1)
2

⊔Kn.
Sub case 1.1 n = 2.

If n = 2 then we have CCC(G) = Km−1 ⊔ K2. Therefore, for m = 3 it follows that
CCC(G) = 2K2; and hence CCC(G) is planar. For m ≥ 5, by Lemma 2.1, we have

γ(CCC(G)) = γ(Km−1) =

⌈
(m− 4)(m− 5)

12

⌉
.

Clearly γ(CCC(G)) = 0 if m = 5; γ(CCC(G)) = 1 if m = 7; γ(CCC(G)) = 2 if m = 9. For
m ≥ 11 we have

(m− 4)(m− 5)

12
≥ 7

2
= 3.5,

and so

γ(CCC(G)) =

⌈
(m− 4)(m− 5)

12

⌉
≥ 4.

Thus CCC(G) is planar if and only if m = 3, 5; toroidal if and only if m = 7; double-toroidal
if and only if m = 9.
Sub case 1.2 n ≥ 3.
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If n ≥ 3 then we have CCC(G) = Kn(m−1)
2

⊔Kn. By Lemma 2.1, we have

γ(CCC(G)) = γ(Kn(m−1)
2

) + γ(Kn) =

⌈
(mn− n− 6)(mn− n− 8)

48

⌉
+

⌈
(n− 3)(n− 4)

12

⌉
.

Clearly γ(CCC(G)) = 0 if n = 3,m = 3 or n = 4,m = 3. γ(CCC(G)) = 1 if n = 3,m = 5;
γ(CCC(G)) = 2 if n = 4,m = 5 or n = 5,m = 3 or n = 6,m = 3 or n = 7,m = 3;
γ(CCC(G)) = 3 if n = 3,m = 7. If n = 3 and m ≥ 9 then

(mn− n− 6)(mn− n− 8)

48
=

(m− 3)(3m− 11)

16
≥ 6.

Therefore

γ(CCC(G)) =

⌈
(mn− n− 6)(mn− n− 8)

48

⌉
+

⌈
(n− 3)(n− 4)

12

⌉
≥ 6.

If n = 4 and m ≥ 7 then
(mn− n− 6)(mn− n− 8)

48
=

(2m− 5)(m− 3)

6
≥ 6.

Therefore

γ(CCC(G)) =

⌈
(mn− n− 6)(mn− n− 8)

48

⌉
+

⌈
(n− 3)(n− 4)

12

⌉
≥ 6.

If n = 5 and m ≥ 5 then
(mn− n− 6)(mn− n− 8)

48
=

(5m− 11)(5m− 13)

48
≥ 7

2
= 3.5 and (n− 3)(n− 4)

12
=

1

6
.

Therefore

γ(CCC(G)) =

⌈
(mn− n− 6)(mn− n− 8)

48

⌉
+

⌈
(n− 3)(n− 4)

12

⌉
≥ 5.

If n = 6 and m ≥ 5 then
(mn− n− 6)(mn− n− 8)

48
=

(m− 2)(3m− 7)

4
≥ 6 and (n− 3)(n− 4)

12
=

1

2
.

Therefore

γ(CCC(G)) =

⌈
(mn− n− 6)(mn− n− 8)

48

⌉
+

⌈
(n− 3)(n− 4)

12

⌉
≥ 7.

If n = 7 and m ≥ 5 then
(mn− n− 6)(mn− n− 8)

48
=

(7m− 13)(7m− 15)

48
≥ 55

6
and (n− 3)(n− 4)

12
= 1.

Therefore

γ(CCC(G)) =

⌈
(mn− n− 6)(mn− n− 8)

48

⌉
+

⌈
(n− 3)(n− 4)

12

⌉
≥ 11.

If n ≥ 8 and m ≥ 3 then
(mn− n− 6)(mn− n− 8)

48
≥ (8(m− 1)− 6)(8(m− 1)− 7)

48
≥ 15

8
and (n− 3)(n− 4)

12
=

5

3
.
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Therefore

γ(CCC(G)) =

⌈
(mn− n− 6)(mn− n− 8)

48

⌉
+

⌈
(n− 3)(n− 4)

12

⌉
≥ 4.

Thus CCC(G) is planar if and only if n = 3,m = 3 or n = 4,m = 3; toroidal if and only if
n = 3,m = 5; double-toroidal if and only if n = 4,m = 5 or n = 5,m = 3 or n = 6,m = 3 or
n = 7,m = 3; triple-toroidal if and only if n = 3,m = 7.
Case 2. m is even.

By [10, Proposition 2.3] we have CCC(G) = Kn(m−2)
2

⊔ 2Kn.
Sub case 2.1 n = 2.

If n = 2 then we have CCC(G) = Km−2 ⊔ 2K2. Therefore, for m = 2, 4 it follows that
CCC(G) = 2K2 and 3K2; and hence CCC(G) is planar. For m ≥ 6, by Lemma 2.1, we have

γ(CCC(G)) = γ(Km−2) =

⌈
(m− 5)(m− 6)

12

⌉
.

Clearly γ(CCC(G)) = 0 if m = 6; γ(CCC(G)) = 1 if m = 8; γ(CCC(G)) = 2 if m = 10. For
m ≥ 12 we have

(m− 5)(m− 6)

12
≥ 7

2
= 3.5

and so

γ(CCC(G)) =

⌈
(m− 4)(m− 5)

12

⌉
≥ 4.

Thus CCC(G) is planar if and only if m = 2, 4, 6; toroidal if and only if m = 8; double-toroidal
if and only if m = 10.
Sub case 2.2 n ≥ 3.

If n ≥ 3 then we have CCC(G) = Kn(m−2)
2

⊔ 2Kn. By Lemma 2.1, we have

γ(CCC(G)) = γ(Kn(m−2)
2

) + γ(2Kn) =

⌈
(mn− 2n− 6)(mn− 2n− 8)

48

⌉
+ 2

⌈
(n− 3)(n− 4)

12

⌉
.

Clearly γ(CCC(G)) = 0 if n = 3,m = 2, 4 or n = 4,m = 2, 4. γ(CCC(G)) = 1 if n = 3,m = 6;
γ(CCC(G)) = 2 if n = 4,m = 6 or n = 5,m = 2 or n = 6,m = 2 or n = 7,m = 2;
γ(CCC(G)) = 3 if n = 3,m = 8 or n = 5,m = 4 or n = 6,m = 4 or n = 7,m = 4. If n = 3 and
m ≥ 10 then

(mn− 2n− 6)(mn− 2n− 8)

48
=

(m− 4)(3m− 14)

16
≥ 6.

Therefore

γ(CCC(G)) =

⌈
(mn− 2n− 6)(mn− 2n− 8)

48

⌉
+ 2

⌈
(n− 3)(n− 4)

12

⌉
≥ 6.

If n = 4 and m ≥ 8 then

(mn− 2n− 6)(mn− 2n− 8)

48
=

(m− 4)(2m− 7)

6
≥ 6.
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Therefore

γ(CCC(G)) =

⌈
(mn− 2n− 6)(mn− 2n− 8)

48

⌉
+ 2

⌈
(n− 3)(n− 4)

12

⌉
≥ 6.

If n = 5 and m ≥ 6 then
(mn− 2n− 6)(mn− 2n− 8)

48
=

(5m− 16)(5m− 18)

48
≥ 7

2
= 3.5 and (n− 3)(n− 4)

12
=

1

6
.

Therefore

γ(CCC(G)) =

⌈
(mn− 2n− 6)(mn− 2n− 8)

48

⌉
+ 2

⌈
(n− 3)(n− 4)

12

⌉
≥ 6.

If n = 6 and m ≥ 6 then
(mn− 2n− 6)(mn− 2n− 8)

48
=

(m− 3)(3m− 10)

4
≥ 6 and (n− 3)(n− 4)

12
=

1

6
.

Therefore

γ(CCC(G)) =

⌈
(mn− 2n− 6)(mn− 2n− 8)

48

⌉
+ 2

⌈
(n− 3)(n− 4)

12

⌉
≥ 8.

If n = 7 and m ≥ 6 then
(mn− 2n− 6)(mn− 2n− 8)

48
=

(7m− 20)(7m− 22)

48
≥ 55

6
and (n− 3)(n− 4)

12
= 1.

Therefore

γ(CCC(G)) =

⌈
(mn− 2n− 6)(mn− 2n− 8)

48

⌉
+ 2

⌈
(n− 3)(n− 4)

12

⌉
≥ 12.

If n ≥ 8 and m ≥ 2 then
(n− 3)(n− 4)

12
≥ 5

3
and

⌈
(mn− 2n− 6)(mn− 2n− 8)

48

⌉
≥ 0.

Therefore

γ(CCC(G)) =

⌈
(mn− 2n− 6)(mn− 2n− 8)

48

⌉
+ 2

⌈
(n− 3)(n− 4)

12

⌉
≥ 4.

Thus CCC(G) is planar if and only if n = 3,m = 2, 4 or n = 4,m = 2, 4; toroidal if and only if
n = 3,m = 6; double-toroidal if and only if n = 4,m = 6 or n = 5,m = 2 or n = 6,m = 2 or
n = 7,m = 2; triple-toroidal if and only if n = 3,m = 8 or n = 5,m = 4 or n = 6,m = 4 or
n = 7,m = 4. Hence the result follows.

Theorem 2.7. Let G = G(p,m, n). Then

(1) CCC(G) is planar if and only if n = 1,m = 1, p = 2, 3, 5; n = 1,m = 2, p = 2;
n = 1,m = 3, p = 2; n = 2,m = 1, p = 2; n = 2,m = 2, p = 2; or n = 3,m = 1, p = 2.

(2) CCC(G) is not toroidal.
(3) CCC(G) is double-toroidal if and only if n = 2,m = 1, p = 3.
(4) CCC(G) is not triple-toroidal.
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(5) γ(CCC(G)) =

(p+ 1)
⌈
(p−4)(p−5)

12

⌉
, if n = 1,m = 1, p ≥ 7

(p+ 1)
⌈
(p2−p−3)(p2−p−4)

12

⌉
, if n = 1,m = 2, p ≥ 3

(p+ 1)
⌈
(p3−p2−3)(p3−p2−4)

12

⌉
, if n = 1,m = 3, p ≥ 3

(p+ 1)
⌈
(pm−pm−1−3)(pm−pm−1−4)

12

⌉
, if n = 1,m ≥ 3, p ≥ 2

(p2 − p)
⌈
(p−4)(p−5)

12

⌉
+ 2

⌈
(p2−p−3)(p2−p−4)

12

⌉
, if n = 2,m = 1, p ≥ 5

(p2 − p)
⌈
(p2−p−3)(p2−p−4)

12

⌉
+2

⌈
(p3−p2−3)(p3−p2−4)

12

⌉
, if n = 2,m = 2, p ≥ 3

(p2 − p)
⌈
(pm−1(p−1)−3)(pm−1(p−1)−4)

12

⌉
+2

⌈
(pm(p−1)−3)(pm(p−1)−4)

12

⌉
, if n = 2,m ≥ 3, p ≥ 2

36, if n = 3,m = 1, p = 3

p2(p− 1)
⌈
(p−4)(p−5)

12

⌉
+ 2

⌈
(p3−p2−3)(p3−p2−4)

12

⌉
, if n = 3,m = 1, p ≥ 5

4, if n = 3,m = 2, p = 2

p2(p− 1)
⌈
(pm−pm−1−3)(pm−pm−1−4)

12

⌉
+2

⌈
(pm+2−pm+1−3)(pm+2−pm+1−4)

12

⌉
, if n = 3,m = 2, p ≥ 3

or n = 3,m ≥ 3, p ≥ 2

2
⌈
(pn−1(pm−pm−1)−3)(pn−1(pm−pm−1)−4)

12

⌉
, if n ≥ 4,m ≥ 1, p ≥ 2

and pm − pm−1 ≤ 4

(pn − pn−1)
⌈
(pm−pm−1−3)(pm−pm−1−4)

12

⌉
+2

⌈
(pn−1(pm−pm−1)−3)(pn−1(pm−pm−1)−4)

12

⌉
, if n ≥ 4,m ≥ 1, p ≥ 2

and pm − pm−1 ≥ 5.

Proof. By [10, Proposition 2.6] we have

CCC(G) = (pn − pn−1)Kpm−n(pn−pn−1) ⊔Kpn−1(pm−pm−1) ⊔Kpm−1(pn−pn−1).

Consider the following cases.
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Case 1. n = 1.
We have CCC(G) = (p+1)Kpm−1(p−1). For m = 1 and p = 2, 3, it follows that CCC(G) = 2K1

or 3K2 which is planar. If m = 1 and p ≥ 5, by Lemma 2.1 and (1), we have

γ(CCC(G)) = (p+ 1)γ(Kp−1) = (p+ 1)

⌈
(p− 4)(p− 5)

12

⌉
.

Clearly γ(CCC(G)) = 0 for p = 5. If p ≥ 7 then
(p− 4)(p− 5)

12
≥ 1

2

and so
γ(CCC(G)) = (p+ 1)

⌈
(p− 4)(p− 5)

12

⌉
≥ 8.

If m = 2 and p = 2 then γ(CCC(G)) = 3γ(K2) = 0. For m = 2 and p ≥ 3, by Lemma 2.1 and
(1), we have

γ(CCC(G)) = (p+ 1)γ(Kp(p−1)) = (p+ 1)

⌈
(p2 − p− 3)(p2 − p− 4)

12

⌉
.

If p ≥ 3 then
(p2 − p− 3)(p2 − p− 4)

12
≥ 1

2

and so
γ(CCC(G)) = (p+ 1)

⌈
(p2 − p− 3)(p2 − p− 4)

12

⌉
≥ 4.

If m = 3 then γ(CCC(G)) = (p+1)γ(Kp2(p−1)). Therefore, if m = 3 and p ≥ 2 then by Lemma
2.1 and (1), we have

γ(CCC(G)) = (p+ 1)γ(Kp2(p−1)) = (p+ 1)

⌈
(p3 − p2 − 3)(p3 − p2 − 4)

12

⌉
.

Clearly if m = 3 and p = 2 then γ(CCC(G)) = 0. If p ≥ 3 then

(p3 − p2 − 3)(p3 − p2 − 4)

12
≥ 35

2

and so
γ(CCC(G)) = (p+ 1)

⌈
(p3 − p2 − 3)(p3 − p2 − 4)

12

⌉
≥ 72.

If m ≥ 4 and p ≥ 2 then γ(CCC(G)) = (p + 1)γ(Kpm−1(p−1)). Therefore, by Lemma 2.1 and
(1), we have

γ(CCC(G)) = (p+ 1)γ(Kpm−1(p−1)) = (p+ 1)

⌈
(pm − pm−1 − 3)(pm − pm−1 − 4)

12

⌉
.

We have
(pm − pm−1 − 3)(pm − pm−1 − 4)

12
≥ 20

12

and so
γ(CCC(G)) = (p+ 1)

⌈
(pm − pm−1 − 3)(pm − pm−1 − 4)

12

⌉
≥ 6.
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Therefore, CCC(G) is planar if and only if n = 1,m = 1, p = 2, 3, 5; n = 1,m = 2, p = 2;
or n = 1,m = 3, p = 2. Also, in this case, CCC(G) is neither toroidal, double-toridal nor
triple-toroidal.
Case 2. n = 2.

We have CCC(G) = (p2 − p)Kpm−1(p−1) ⊔ 2Kpm(p−1). For m = 1 and p = 2, it follows that
CCC(G) = 2K1 ⊔ 2K2 which is planar. If m = 1 and p = 3 then, by Lemma 2.1 and (1), we
have

γ(CCC(G)) = 2γ(K6) = 2.

If m = 1 and p ≥ 5, by Lemma 2.1 and (1), we have

γ(CCC(G)) = (p2 − p)γ(Kp−1) + 2γ(Kp(p−1))

= (p2 − p)

⌈
(p− 4)(p− 5)

12

⌉
+ 2

⌈
(p2 − p− 3)(p2 − p− 4)

12

⌉
.

Since p ≥ 5 then
(p2 − p− 3)(p2 − p− 4)

12
≥ 68

3

and so
γ(CCC(G)) ≥ 2

⌈
(p2 − p− 3)(p2 − p− 4)

12

⌉
≥ 46.

If m = 2 and p ≥ 2 then CCC(G) = (p2 − p)Kp(p−1) ⊔ 2Kp2(p−1). Therefore, if p = 2 then
CCC(G) = 2K2 ⊔ 2K4 hence by (1) we have γ(CCC(G)) = 2γ(K4) = 0. If p ≥ 3, by Lemma 2.1
and (1), we have

γ(CCC(G)) = (p2 − p)γ(Kp(p−1)) + 2γ(Kp2(p−1))

= (p2 − p)

⌈
(p2 − p− 3)(p2 − p− 4)

12

⌉
+ 2

⌈
(p3 − p2 − 3)(p3 − p2 − 4)

12

⌉
.

Also, (p3−p2−3)(p3−p2−4)
12 ≥ 35

2 and so

γ(CCC(G)) ≥ 2

⌈
(p3 − p2 − 3)(p3 − p2 − 4)

12

⌉
≥ 36.

If m ≥ 3 and p ≥ 2 then

γ(CCC(G)) = (p2 − p)γ(Kpm−1(p−1)) + 2γ(Kpm(p−1))

= (p2 − p)

⌈
(pm−1(p− 1)− 3)(pm−1(p− 1)− 4)

12

⌉
+ 2

⌈
(pm(p− 1)− 3)(pm(p− 1)− 4)

12

⌉
≥ 4.

Therefore, CCC(G) is planar if and only if n = 2,m = 1, p = 2; n = 2,m = 2, p = 2; or
n = 3;m = 1; p = 2 and double-toroidal if and only if n = 2,m = 1, p = 3. In this case,
CCC(G) is neither toroidal nor triple-toroidal.
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Case 3. n = 3.
We have CCC(G) = p2(p− 1)Kpm−1(p−1) ⊔ 2Kpm+1(p−1). If m = 1 and p = 2 then CCC(G) =

4K1 ⊔ 2K4, and so by Lemma 2.1 and (1) γ(CCC(G)) = 2γ(K4) = 0. For p = 3 we have
CCC(G) = 18K2 ⊔ 2K18. Therefore, by 2.1 and (1) we have γ(CCC(G)) = 2γ(K18) = 36. For
p ≥ 5, by Lemma 2.1 and (1) we have

γ(CCC(G)) = p2(p− 1)γ(Kp−1) + 2γ(Kp2(p−1))

= p2(p− 1)

⌈
(p− 4)(p− 5)

12

⌉
+ 2

⌈
(p3 − p2 − 3)(p3 − p2 − 4)

12

⌉
> 36.

If m = 2 and p = 2 then we have CCC(G) = 4K2 ⊔ 2K8. By Lemma 2.1 and (1) we have

γ(CCC(G)) = 2γ(K8) = 4.

If m = 2 and p ≥ 3 or m ≥ 3 and p ≥ 2 then we have CCC(G) = p2(p − 1)Kpm−1(p−1) ⊔
2Kpm+1(p−1). By Lemma 2.1 and (1) we have

γ(CCC(G)) = p2(p− 1)γ(Kpm−1(p−1)) + 2γ(Kpm+1(p−1))

= p2(p− 1)

⌈
(pm−1(p− 1)− 3)(pm−1(p− 1)− 4)

12

⌉
+ 2

⌈
(pm+1(p− 1)− 3)(pm+1(p− 1)− 4)

12

⌉
.

We have
(pm+1(p− 1)− 3)(pm+1(p− 1)− 4)

12
≥ 5

3

and so

γ(CCC(G)) ≥ 2

⌈
(pm+1(p− 1)− 3)(pm+1(p− 1)− 4)

12

⌉
≥ 4.

Therefore, CCC(G) is planar if and only if n = 3,m = 1, p = 2. Also, in this case, CCC(G) is
neither toroidal, double-toridal nor triple-toroidal.
Case 4. n ≥ 4.

We have CCC(G) = (pn − pn−1)Kpm−pm−1 ⊔ 2Kpn−1(pm−pm−1). Therefore, by Lemma 2.1, we
have

(2) γ(CCC(G)) = (pn − pn−1)γ(Kpm−pm−1) + 2γ(Kpn−1(pm−pm−1))

For m ≥ 1 and p ≥ 2 we have

γ(Kpn−1(pm−pm−1)) ≥ γ(Kpn−1) ≥ γ(K8) = 2,

noting that K8 and Kpn−1 are subgraphs of Kpn−1 and Kpn−1(pm−pm−1) respectively. Therefore

γ(CCC(G)) ≥ 2γ(Kpn−1(pm−pm−1)) ≥ 4.
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Further, if pm − pm−1 ≤ 4 then, by (2) and (1), we have

γ(CCC(G)) = 2γ(Kpn−1(pm−pm−1))

= 2

⌈
(pn−1(pm − pm−1)− 3)(pn−1(pm − pm−1)− 4)

12

⌉
.

If pm − pm−1 ≥ 5 then, by (2) and (1), we have

γ(CCC(G)) = (pn − pn−1)

⌈
(pm − pm−1 − 3)(pm − pm−1 − 4)

12

⌉
+

2

⌈
(pn−1(pm − pm−1)− 3)(pn−1(pm − pm−1)− 4)

12

⌉
.

Hence the result follows.

We conclude this paper with the following characterization of CCC(G) for the groups listed
in Section 1.

Corollary 2.8. Let G = D2n, SD8n, Q4m, V8n, U(n,m) or G(p,m, n). Then

(1) CCC(G) is planar if and only if G = D6, D8, D10, D12, D14, D16, D18, D20, SD16, SD24,
Q8, Q12, Q16, Q20, V16, U(2,2), U(2,3), U(2,4), U(2,5), U(2,6), U(3,2), U(3,3), U(3,4), U(4,2), U(4,3),
U(4,4), G(2, 1, 1), G(3, 1, 1), G(5, 1, 1), G(2, 2, 1), G(2, 3, 1), G(2, 1, 2), G(2, 2, 2) or
G(2, 1, 3).

(2) CCC(G) is toroidal if and only if G = D22, D24, D26, D28, D30, D32, SD32, Q24, Q28,
Q32, V24, V32, U(2,7), U(2,8), U(3,5) or U(3,6).

(3) CCC(G) is double-toroidal if and only if G = D34, D36, SD40, Q36, U(2,9), U(2,10),
U(4,5), U(4,6), U(5,2), U(5,3), U(6,2), U(6,3), U(7,2), U(7,3) or G(3, 1, 2).

(4) CCC(G) is triple-toroidal if and only if G = D38, D40, Q40, V40, U(3,7), U(3,8), U(5,4), U(6,4)

or U(7,4).
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