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A VARIATION OF δ-LIFTING AND δ-SUPPLEMENTED MODULES WITH
RESPECT TO AN EQUIVALENCE RELATION

ESRA ÖZTÜRK SÖZEN∗

Abstract. In this paper we introduce Goldie∗-δ-supplemented modules as follows. A module

M is called Goldie∗-δ-supplemented (briefly, G∗
δ -supplemented) if there exists a δ-supplement

T of M for every submodule A of M such that Aβ∗
δT . We say that a module M is called

Goldie∗-δ-lifting (briefly, G∗
δ -lifting) if there exists a direct summand D of M for every sub-

module A of M such that Aβ∗
δD. Note that the last concept given in [4] as a δ-H-supplemented

module. We present fundamental properties of these modules. We indicate that these modules

lie between δ-lifting and δ-supplemented modules. Also we prove that our modules coincide

with some variations of δ-supplemented modules for δ-semiperfect modules.

1. Introduction

Throughout this study, R denotes an associative ring with identity and M denotes a unitary
left R-module. The notations A ≤ M and A ≤⊕ M point that A is a submodule of M and

DOI: 10.22034/as.2021.2334

MSC(2010): 16D10, 16D70, 16D80

Keywords: Goldie∗-δ-lifting module, Goldie∗-δ-supplemented module.

Received: 09 March 2021, Accepted: 24 September 2021.

∗Corresponding author

© 2022 Yazd University.
69



70 E. Ö. Sözen

A is a direct summand of M , respectively. A submodule A is called small in M (denoted by
A ≪ M), if A +X ̸= M for any proper submodule X of M . A supplement submodule T of
A in M provides that A + T = M and A ∩ T ≪ T . A module M is called supplemented if
every submodule of M has a supplement in M . M is called an amply supplemented module
if for every submodule A of M with M = A + B there exists a supplement submodule T of
A contained in B. A module M is called lifting if, for any submodule A of M there exists
a decomposition M = X ⊕ Y such that X ≤ A and A ∩ Y ≪ Y [3]. And, M is called a
⊕-supplemented module if every submodule of M has a supplement which is a direct summand
in M [10]. Also, in [10], a module M is called H-supplemented if for any A ≤ M , there exists
a submodule D ≤⊕ M such that M = A+X if and only if M = D +X for any X ≤ M .

An essential submodule A of M provides that {0} is the only submodule of M whose
intersection with A is zero. A module M is called singular (non-singular) Z(M) = M (Z(M) =

0) where Z(M) = {m ∈ M | Ann(m) ⊴ R}. In [22] and in [9] new generalizations of
small submodules, lifting modules and supplemented modules are introduced via singularity
as follows. A δ-small submodule A of M is a submodule satisfying A + X ̸= M for every
proper submodule X of M where M

X is singular. We use the notation δ(M) for the sum of all
δ-small submodules of M . Let ϕ be the class of all singular simple modules. For a module
M, δ(M) = ∩{N ≤ M | M

N ∈ ϕ}. A submodule T of M is called a δ-supplement of A in M

if A + T = M and A ∩ T ≪δ T . M is called δ-supplemented if every submodule of M has a
δ-supplement in M. A module M is called δ-lifting, if for any submodule A of M there exists
a decomposition M = X + Y such that X ≤ A and A ∩ Y ≪δ Y . If every submodule of M
has a δ-supplement which is a direct summand of M , then M is called a ⊕-δ-supplemented
module [18]. In [6], a module M is called δ-H-supplemented, if for any A ≤ M there exists a
submodule D ≤⊕ M such that M = A+X if and only if M = D +X for every X ≤ M with
M
X is singular.

In [2], the authors defined an equivalence relation β∗ and defined G∗-supplemented and
G∗-lifting modules via this relation. Therefore, two new algebraic structures are contributed
between lifting and supplemented modules. Owing to this fact, the open problem given as
’Is every H-supplemented module supplemented?’ in [10] is handled. Thus, the following
implications are obtained between some variations of supplemented modules and theirs such
that:

lifting =⇒ G∗ − lifting =⇒ H-supplemented =⇒ G∗-supplemented =⇒ supplemented

and also we have the ralation

lifting =⇒ amply supplemented =⇒ G∗-supplemented
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In [7], motivated by the equivalence relation β∗, the authors defined the relation β∗
δ as an

extended alternative to β∗. For A,B ≤ M , it is said that A equivalents to B with respect to β∗
δ

if and only if A+B
A ≪δ

M
A and A+B

B ≪δ
M
B . A module M is called principally Goldie∗-δ-lifting

(principally Goldie∗-δ-supplemented) if for any cyclic submodule Rm of M, there exists a direct
summand D (δ-supplement T ) in M such that Rmβ∗

δD (Rmβ∗
δT ). In [6], H-supplemented

modules are designed according to the singularity. A module M is called δ-H-supplemented
if every A ≤ M there exists a submodule D ≤⊕ M such that M = A + X if and only if
M = D+X for any X ≤ M with M

X is singular. Also we recommend [16] and [17] as a source
to get more information about fundamental concepts used in this study.

In this study, inspired from [6] and from the equivalence relation β∗
δ given in [7], we generalize

G∗-lifting and G∗-supplemented modules using singularity. We say that a module M is G∗
δ-

lifting ( G∗
δ-supplemented), if for any submodule A of M there exists a direct summand D

(δ-supplement T ) in M such that Aβ∗
δD (Aβ∗

δT ). By means of these concepts we obtain two
new algebraic structures between δ-lifting and δ-supplemented modules. We indicate that δ-
H-supplemented modules coincide with G∗

δ-supplemented modules. Also, we prove that our
modules coincide with some variations of δ-supplemented modules for δ-semiperfect modules.

2. Preliminaries

Definition 2.1. Given submodules A ≤ B ≤ M , the inclusion A ≤ B is called δ-cosmall in
M if B

A ≪δ
M
A , denoted by A ↪→δ-cs B [15].

Definition 2.2. Let M be a module and A, B ≤ M . The submodule A is called β∗
δ equivalent

to B (denoted by Aβ∗
δB) if A+B

A ≪δ
M
A and A+B

B ≪δ
M
B .

It can be seen from [7, Lemma 3.2] that the relation given above is an equivalence relation.

Theorem 2.3. Let A, B ≤ M . Then the following statements are equivalent:

i. Aβ∗
δB

ii. A ↪→δ-cs A+B and B ↪→δ-cs A+B.
iii. For every X ≤ M with M

X is singular, if A + B + X = M then A + X = M then
B +X = M .

iv. If X ≤ M with M
X is singular and A+X = M then B +X = M and, if X ≤ M with

M
X is singular and B +X = M then A+X = M.

Proof. (i) =⇒ (ii) Let Aβ∗
δB. Therefore, we have A+B

A ≪δ
M
A and A+B

B ≪δ
M
B , that is,

A ↪→δ-cs A+B and B ↪→δ-cs A+B.
(ii) =⇒ (iii) By assumption, it can be written that A+B

B + X+B
B = M

B . As
M
X

B+X
X

∼= M
B+X is

singular, we have B +X = M is obtained. By the same way A+X = M can be verified.
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(iii) ⇐⇒ (iv) Let A + X = M for X ≤ M with M
X is singular. By hypothesis, we get

B + X = B because A + B + X = M . Similarly, A + X = M can be shown whenever
B +X = M for X ≤ M with M

X is singular. Conversely, let A+ B +X = M such that M
X is

singular. Since A+ (B +X) = M . and M
B+X is singular, then B + (B +X) = B +X = M is

obtained from the assumption. Similarly, A+X = M is shown.

Corollary 2.4. Let A, B ≤ M such that A ≤ X + B and B ≤ Y + A, where X, Y ≪δ M .
Then Aβ∗

δB.

Proof. Let A + B + T = M for T ≤ M with M
T is singular. Since A ≤ X + B, then we have

(X + B) + B + T = X + B + T = M . It follows that B + T = M as X ≪δ M and M
B+T is

singular as a factor module of a singular module M
T . Moreover, using the fact Y ≪δ M, it can

be shown that A+ T = M and so, Aβ∗
δB is obtained from Theorem 2.3.

Proposition 2.5. If A, B, X ≤ M such that M = A + X = B + X, B ∩ X ≤ A ∩ X and
B ↪→δ-cs A+B, then A ↪→δ-cs A+B, so Aβ∗

δB.

Proof. It can be proved similar to that of [2, Proposition 2.5] using [22, Lemma 1.2].

Proposition 2.6. Let P, T ≤ M where P is maximal such that M
P ∈ ϕ.

i. Let A, B ≤ M such that A+B = M , B is proper in M with M
B is singular and Tβ∗

δA.
Then T is not contained in B.

ii. If Tβ∗
δK and T ≤ P , then K ≤ P .

iii. If Tβ∗
δP, then T ≤ P . And, if Tβ∗

δK then T ≤ δ(M) if and only if Y ≤ δ(M).

Proof. i. Assume that T ≤ B. By assumption, we have A+B + T = M. Then, B + T = M is
obtained from Theorem 2.3 since M

B is singular. Hence, we get the contradiction B = M .
ii. Suppose that K is not contained in P. By maximality of P we have K + P = M and

so, T +K + P = M . As M
P ∈ ϕ and Tβ∗

δK, we have T + P = M from Theorem 2.3. Thus,
P = M is obtained which is a contradiction.

iii. By (ii), taking P instead of K, we get T ≤ P as Tβ∗
δP and P ≤ P .

Proposition 2.7. Let A, B, C, D ≤ M such that Aβ∗
δC and Cβ∗

δD. Then, (A+C)β∗
δ (B+D)

and (A+D)β∗
δ (B + C).
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Proof. Let X ≤ M with M
X is singular and (A + C) + (B + D) + X = M . Then we have

C + B +D +X = M and A+ C +D +X = M as
M
X

C+D+X
X

∼= M
C+D+X is singular and Aβ∗

δB.
Following, B+D+X = M and A+C +X = M as M

B+X , M
A+X is singular and Cβ∗

δD. Hence,
(A+C)β∗

δ (B+D) is obtained. Similarly, (A+D)β∗
δ (B+C) can be shown from the symmetry

of β∗
δ .

Corollary 2.8. Let A, B1, B2,..., Bn ≤ M . If Aβ∗
δBi for each i = 1,.2, ..., n, then Aβ∗

δB1 +

B2 + ...+Bn.

Remark 2.9. The result given in Proposition 2.7 can not be extended to infinite sums. Let us
consider that the Z-module Q. It is a known fact that δ(Q) = Q = Σn∈Z+

1
nZ where 1

nZ ≪δ Q
for each integer n. Clearly, 1

nZ β∗
δ0 for each integer n. If the contrast of the claim would be

true, then Σn∈Z+
1
nZβ

∗
δ0 = Qβ∗

δ0 and so, Q ≪δ Q is a contradiction.

Definition 2.10. Let A ≤ M . Then β∗
δ (A) = Σ{N ≤ M | Aβ∗

δN}.

Note that β∗
δ (0) = δ(M). On the other hand, let A ≤ P where M

P ∈ ϕ which is the set of
all singular simple modules. If Aβ∗

δN , then N ≤ P from Proposition 2.6. Hence, β∗
δ (A) ≤ P .

Also, if Aβ∗
δB, then β∗

δ (A) = β∗
δ (B).

3. Goldie∗
δ-Lifting Modules and Goldie∗

δ-Supplemented Modules

Definition 3.1. A module M is called Goldie∗δ-lifting (briefly, G∗
δ-lifting) if and only if for

each A ≤ M there exists a direct summand D of M such that Aβ∗
δD.

Recall from [6] that a module M is called δ-H-supplemented if for every submodule A of
M there exists a direct summand D of M such that M = A +X if and only if M = D +X

for any X ≤ M with M
X is singular. Let us indicate that this concept is the same with the

definition given above. In view of brevity, we will use the term of G∗
δ-lifting for a this type of

module. As it is possible to see the other fundamental properties of them in [6], we will omit
them and give another ones.

Definition 3.2. A module M is called Goldie∗δ-supplemented (briefly, G∗
δ-supplemented) if

and only if for each A ≤ M there exists a δ-supplement D of M such that Aβ∗
δD.

Note that if M is a singular module or M has no projective submodule, then the concepts of
being G∗-supplemented (G∗-lifting) and G∗

δ-supplemented (G∗
δ-lifting) coincide. In particular,

a Z-module M is G∗-supplemented (G∗-lifting) if and only if M is G∗
δ-supplemented (G∗

δ-
lifting).

Proposition 3.3. Let M be a δ-hollow module. Then, M is G∗
δ-lifting.
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Proof. Let X be any submodule of M . From the assumption, X ≪δ M . Therefore, Xβ∗
δ0 is

obtained where {0} is a direct summand of M . Hence, M is G∗
δ-lifting.

Proposition 3.4. Every semisimple module is G∗
δ-lifting.

Proof. Let A ≤ M . As M is semisimple, there exists a submodule B of M such that M = A⊕B.
From the symmetry of β∗

δ we have Aβ∗
δB. Hence, M is G∗

δ-lifting.

Proposition 3.5. Let M be a G∗
δ-lifting module and A ≤ M . If A+D

A ≤⊕
M
A for any D ≤⊕ M ,

then M
A is G∗

δ-lifting.

Proof. Let X
A ≤ M

A . Since M is G∗
δ-lifting, then there exists a decomposition M = D ⊕ D

′

such that Xβ∗
δD. Let π : M −→ M

A be the canonical epimorphism. Then, π(X)β∗
δπ(D) and

so, X
Aβ∗

δ
D+A
A is obtained. Hence, M is G∗

δ-lifting from the hypothesis.

If the sum of any two direct summands of M is a direct summand, then M has the summand
sum property.

Proposition 3.6. Let M be a G∗
δ-lifting module. If M has the summand sum property, then

any direct summand of M is G∗
δ-lifting module.

Proof. Let D ≤⊕ M . Then M = D⊕D
′ for some D

′ ≤ M . We will verify that M
D′ is G∗

δ-lifting.
With this aim, we will show that for any X ≤⊕ M , X+D

′

D′ ≤⊕
M
D′ . From the assumption, as

D
′ and X are direct summands of M, then X +D

′ ≤⊕ M . Therefore, there is a submodule
T of M such that M = (X + D

′
) ⊕ T . It follows that, M

D′ = X+D
′

D′ + T+D
′

D′ . Moreover, we
get (X + D

′
) ∩ (T + D

′
) = [(X + D

′
) ∩ T ] + D

′
= 0 + D

′
= D

′ from modularity. Thus,
M
D′ =

X+D
′

D′ ⊕ T+D
′

D′ . Hence, D ∼= M
D′ is G∗

δ-lifting from Proposition 3.5.

Proposition 3.7. Let M be a π-projective module and let us consider the following statements.

(1) M is ⊕-δ-supplemented.
(2) M is G∗

δ-lifting.

Then (1) =⇒ (2) holds. In particular, if M is singular, then the converse is provided.

Proof. (1) =⇒ (2) : Let A be any submodule of M. By (1), there exists a δ-supplement T of
M which is a direct summand of M such that

M = A+ T, A ∩ T ≪δ T and M = T ⊕ T
′



Alg. Struc. Appl. Vol. 9 No. 1 (2022) 69-80. 75

As M is π-projective, there is a submodule X ≤ A provided that M = X ⊕ T . Clearly,
X+A
A ≪δ

M
A . Moreover, as A = X ⊕ (A ∩ T ) from modularity and A ∩ T ≪δ T , we obtain

A
X = X+A

X ≪δ
M
X , that is, Aβ∗

δX where X ≤⊕ M . Hence, M is G∗
δ-lifting.

Let M be a singular G∗
δ-lifting module and A ≤ M . Then, there exists a direct summand

D of M such that M = D ⊕ D
′ for some D

′ ≤ M and Aβ∗
δD. Therefore, D+A

D ≪δ
M
D and

D+A
A ≪δ

M
A . As M

A = D+A
A + D

′
+A
A and M

D+A
∼=

M
A

D+A
A

is singular, then M = A+D
′ is obtained.

Now, it remains to show that A∩D′ ≪δ D
′ . Let (A∩D′

)+B = D
′ where D

′

B is singular. Thus,
M = (A∩D

′
)+B+D = A+B+D and so M

D = A+D
D + B+D

D is obtained. As D+A
D ≪δ

M
D and

M is singular, we have M = B+D and so D
′
= M ∩D

′
= (B+D)∩D

′
= B+ (D ∩D

′
) = B

from modularity. This completes the proof. Hence, M is a ⊕-δ-supplemented module.

Theorem 3.8. Let M be a singular G∗
δ-lifting module. Then M is δ-supplemented.

Proof. Let A ≤ M . By hypothesis, there exists a direct summand D of M such that M =

D ⊕D
′ and Aβ∗

δD. Then, A+D
D ≪δ

M
D , A+D

A ≪δ
M
A and we have M

A = A+D
A + A+D

′

A . As M is
singular, M = A+D

′ is obtained. To complete the proof it must be shown that A∩D
′ ≪δ D

′
.

Let A∩D
′
+B = D

′ with D
′

B is singular. Then, M = D
′
+D = [A∩D

′
+B]+D = A+B+D

and so, M
D = A+D

D + B+D
D is obtained. By hypothesis, we get M = B +D and so, D′

= B by
modularity. Hence, M is δ-supplemented.

Theorem 3.9. Let M be a π-projective module. If M is G∗
δ-supplemented, then it is G∗

δ-lifting.

Proof. Let A ≤ M . Then, there exists a δ-supplement T of M such that Aβ∗
δT . Assume that

T is a δ-supplement of W in M, that is W + T = M and W ∩ T ≪δ T . As M is π-projective,
there exists a direct summand T

′ of M contained in T such that M = T
′ ⊕ W . Now, we

aim to verify that Aβ∗
δT

′ . It is clear that, A+T
′

A ≤ A+T
A ≪δ

M
A by [22, Lemma 1.3]. In the

remaining part of the proof we will show that A+T
′

T ′ ≪δ
M
T ′ . Suppose that, A+T

′

T ′ + B
T ′ = M

T ′

with M
B is singular. Then M = A+ T

′
+B = A+ T +B and so M

T = A+T
T + B+T

T . As Aβ∗
δT

and
M
B

B+T
B

∼= M
B+T is singular, then M = B + T . Moreover, we have T = T

′ ⊕ (W ∩ T ) by

modularity. Thus, M = B + T = B + [T
′
+ (W ∩ T )] = (B + T

′
) +W ∩ T . As W ∩ T ≪δ M

and M
B+T is singular, M = B + T

′ and so, M = B is obtained due to the fact that T
′ ≤ B.

Hence the proof is completed.

Proposition 3.10. Let M be a Noetherian module which has the summand sum property.
Then M is principallly G∗

δ-lifting if and only if M is G∗
δ-lifting.
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Proof. The sufficiency is cleear. For the necessity, let A ≤ M . As M is Noetherian, A is
finitely generated and so A = Rx1 + Rx2 + ...+ Rxn for some x1, x2, ..., xn ∈ M . Since M is
principally G∗

δ-lifting, there exists direct summands D1, D2, ..., Dn of M such that Rx1β
∗
δD1,

Rx2β
∗
δD2, ..., Rxnβ

∗
δDn. Then, Aβ∗

δD = D1+ D2 + ... +Dn where D ≤⊕ M since M has the
summand sum property. Hence, M is G∗

δ-lifting.

Proposition 3.11. Let M be a module and A ≤ M such that A = C +S where C is cyclic in
M and S ≪δ M for any A ≤ M . Then M is principally G∗

δ-lifting and G∗
δ-lifting.

Proof. Let A = C + S for a cyclic submodule C of M and S ≪δ M . As M is principally
G∗

δ-lifting, then a direct summand D of M corresponds to C such that Cβ∗
δD. Therefore,

A = (C + S)β∗
δD by [7, Lemma 3.6] which implies M is G∗

δ-lifting. The sufficiency is clear
from implications.

Proposition 3.12. Let M be a module and A be any submodule of M . If there exists a
δ-supplement (direct summand) T and a δ-small submodule S of M such that A+ S = T + S,

then M is a G∗
δ-supplemented (G∗

δ-lifting) module.

Proof. From assumption, it remains to show that Aβ∗
δT . Since A ≤ A + S = T + S, T ≤

T + S = A+ S and S ≪δ M , then we have Aβ∗
δT from Corollary 2.4.

Corollary 3.13. Let M be a module and A be any submodule of M . If there exists a δ-
supplement T and a δ-small submodule S of M such that A = T + S, then M is a G∗

δ-
supplemented module.

Theorem 3.14. Let M be a module and consider the statements given below,

a. M is δ-lifting.
b. M is G∗

δ-lifting.
c. M is δ-H-supplemented.
d. M is G∗

δ-supplemented.

Then, (a) =⇒ (b) ⇐⇒ (c) =⇒ (d).

Proof. (a) =⇒ (b) Let M be a δ-lifting module. Then, there exists a direct summand D for
any submodule A of M satisfying A

D ≪δ
M
D . Therefore, it can be written that A+D

D ≪δ
M
D and

A+D
A = 0 ≪δ

M
A which implies Aβ∗

δD. Hence, we obtain the existence of a direct summand D

for every submodule A of M such that Aβ∗
δD, that is, M is G∗

δ-lifting.
(b) ⇐⇒ (c) This fact is clear from [6, Lemma 2.2].
(c) =⇒ (d) is clear because every direct summand is a δ-supplement.
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Proposition 3.15. Let M be a module whose submodules are of δ-supplements which are
relatively projective direct summands of M . Then, M is G∗

δ-lifting.

Proof. Let A ≤ M . Then, there is a δ-supplement T of M such that M = A+T , A∩T
′ ≪δ T

′

and M = T ⊕ T
′ where T, T

′ are relatively projective. It follows that M = B ⊕ T for some
B ≤ A since T

′ is T -projective from [10, Lemma 4.47]. Therefore, M is δ-lifting. Hence, M is
G∗

δ-lifting from Theorem 3.14.

Proposition 3.16. Let M be a π-projective and singular module. Then the following state-
ments hold equivalently.

(1) M is δ-lifting.
(2) M is G∗

δ-lifting.
(3) M is ⊕-δ-supplemented module.

Proof. (1) =⇒ (2) : is clear from Theorem 3.14.
(2) ⇐⇒ (3) : is clear from Proposition 3.7.
(3) =⇒ (1) : Let A ≤ M . From assumption, there exists a direct summand D of M such

that M = D⊕D
′
, A+D = M and A∩D ≪δ D. On the other hand, as M is π-projective and

D ≤⊕ M , then there exists a direct summand A
′ of M contained A such that M = A

′ ⊕ D

from [3, 4.14(1)]. Thus, for every A ≤ M , there exists a decomposition M = A
′ ⊕D such that

A
′ ≤ A and A ∩D ≪δ D. Hence M is δ-lifting.

Proposition 3.17. Let M be a singular π-projective module. Then, M is G∗
δ-lifting if and only

if every submodule of M is a direct sum of a direct summand of M and a δ-small submodule
of M .

Proof. (=⇒) Let M be a G∗
δ-lifting module, then M is a δ-lifting module from Proposition

3.16. Then for any A ≤ M , there exists a decomposition M = D ⊕D
′ such that D ≤ A and

A ∩D
′ ≪δ M. It follows that A = D ⊕ (A ∩D

′
) where D ≤⊕ M and S = A ∩D

′ ≪δ M.

(⇐=) For the necessity, it can be said that M is δ-lifting from [9, Lemma 2.3(b)]. Hence,
M is G∗

δ-lifting by Theorem 3.14.

Proposition 3.18. LetR be a left non-singular ring, M be a left G∗
δ-supplemented R-module

and P be a maximal submodule of M with M
P is singular. If T is a δ-supplement of P with M

T

is singular, then P = S + (P ∩ T ), where S is a δ-supplement of T and T is δ-local.
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Proof. Let M be a G∗
δ-supplemented module. Then, there exists a δ-supplement submodule S

corresponding to P satisfying Pβ∗
δS. By hypothesis, T is a δ-supplement of S. Therefore, we

have P = S+(P ∩T ) from [7, Theorem 3.7]. Moreover, since T is a δ-supplement submodule of
the maximal submodule P , then T is δ-local or semisimple projective from [19, Lemma 2.22].
If T is semisimple projective, then T ≪δ T ≤ M . On the other hand, as T is a δ-supplement
of P in M, P + T = M and P ∩ T ≪δ T . Since T ≪δ M and M

P is singular, then P = M is
got which contradicts with maximality of P in M . Hence, it forces T to be δ-local.

Example 3.19. Let R = Z
8Z and M = Z

2Z ⊕ Z
4Z ⊕ Z

8Z . It is a known fact from [9, Example
2.2(2)] that M is not a δ-lifting module. On the other hand, M is a G∗

δ-lifting module as it is
G∗-lifting [2, Example 3.9(i)].

Example 3.20. Let M = F⊕F where F is a quotient field of a DV R R which is not complete.
Then it can be seen that clearly M is a δ-supplemented module which is not G∗

δ-supplemented
from [3, Example 23.7] and [2, Example 3.9(iii)].

Definition 3.21. A δ-supplemented module M is called strongly ⊕-δ-supplemented if every
δ-supplement submodule of M is a direct summand of M.

Clearly, every δ-lifting module is strongly ⊕-δ-supplemented.

Proposition 3.22. Let M be a module.

i. M is δ-lifting if and only if M is amply δ-supplemented and strongly ⊕-δ-supplemented.
ii. If M is G∗

δ-supplemented and strongly ⊕-δ-supplemented, then M is G∗
δ-lifting.

Proof. i.The implication is clear from [1, Proposition 4.2] and [12, Lemma 2.3].
ii. Let A be any submodule of M . By assumption, there is a δ-supplement submodule X of

M provided that Aβ∗
δX. As M is strongly ⊕-δ-supplemented X is a direct summand of M .

Hence, M is G∗
δ-lifting.

Proposition 3.23. Let M be a module.

i. M is amply δ-supplemented.
ii. For each A ≤ M there there is a δ-supplement T and a submodule X of M such that

M = T +X = A+X, T +X ≤ A+X and T ↪→δ-cs A+ T .
iii. M is G∗

δ-supplemented.

Then, the condition given above implies that (i) =⇒ (ii) =⇒ (iii).
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Proof. (i) =⇒ (ii) It is clear from [15, Theorem 3.7].
(ii) =⇒ (iii) By hypothesis, we have Aβ∗

δT from Proposition 2.5. Hence, M is G∗
δ-

supplemented.

Proposition 3.24. Let M be a projective module. Then the following statements are equiva-
lent:

i. M is δ-semiperfect.
ii. M is δ-lifting.
iii. M is ⊕-δ-supplemented.
iv. M is amply δ-supplemented.
v. M is δ-supplemented.
vi. M is G∗

δ-supplemented.
vii. M is G∗

δ-lifting.

Proof. It can be seen clearly via Theorem 3.14, Proposition 3.23 and [12, Lemma 2.4].

The following hierarchy is valid for given modules below.

δ-lifting =⇒ G∗
δ-lifting =⇒ principally G∗

δ-lifting

Now we will verify the converse implications given above are not provided.

Example 3.25. Let us consider Z-module Q. Since every finitely generated submodule of
Z-module Q is δ-small in Q, then ZQ is a principally G∗

δ-lifting module. On the other hand, it
is not G∗

δ-lifting as it is not δ-supplemented.

Example 3.26. Let R = Z and M = Z2 ⊕Z8. M is a G∗
δ-lifting module which is not δ-lifting

[8].
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