

Algebraic Structures and Their Applications Vol. 9 No. 1 (2022) pp 69-80.

Research Paper

A VARIATION OF δ -LIFTING AND δ -SUPPLEMENTED MODULES WITH RESPECT TO AN EQUIVALENCE RELATION

ESRA ÖZTÜRK SÖZEN*

ABSTRACT. In this paper we introduce Goldie^{*}- δ -supplemented modules as follows. A module M is called Goldie^{*}- δ -supplemented (briefly, G_{δ}^* -supplemented) if there exists a δ -supplement T of M for every submodule A of M such that $A\beta_{\delta}^*T$. We say that a module M is called Goldie^{*}- δ -lifting (briefly, G_{δ}^* -lifting) if there exists a direct summand D of M for every submodule A of M such that $A\beta_{\delta}^*D$. Note that the last concept given in [4] as a δ -H-supplemented module. We present fundamental properties of these modules. We indicate that these modules lie between δ -lifting and δ -supplemented modules. Also we prove that our modules coincide with some variations of δ -supplemented modules for δ -semiperfect modules.

1. INTRODUCTION

Throughout this study, R denotes an associative ring with identity and M denotes a unitary left R-module. The notations $A \leq M$ and $A \leq_{\oplus} M$ point that A is a submodule of M and

DOI: 10.22034/as.2021.2334

MSC(2010): 16D10, 16D70, 16D80

Keywords: Goldie*- δ -lifting module, Goldie*- δ -supplemented module.

Received: 09 March 2021, Accepted: 24 September 2021.

^{*}Corresponding author

 $[\]ensuremath{\textcircled{}}$ 0 2022 Yazd University.

A is a direct summand of M, respectively. A submodule A is called *small* in M (denoted by $A \ll M$), if $A + X \neq M$ for any proper submodule X of M. A supplement submodule T of A in M provides that A + T = M and $A \cap T \ll T$. A module M is called supplemented if every submodule of M has a supplement in M. M is called an *amply supplemented module* if for every submodule A of M with M = A + B there exists a supplement submodule T of A contained in B. A module M is called *lifting* if, for any submodule A of M there exists a decomposition $M = X \oplus Y$ such that $X \leq A$ and $A \cap Y \ll Y$ [3]. And, M is called a \oplus -supplemented module if every submodule of M has a supplemented if M has a supplemented module of M has a supplemented module $X \oplus Y$ such that $X \leq A$ and $A \cap Y \ll Y$ [3]. And, M is called a \oplus -supplemented module if every submodule of M has a supplemented if for any $A \leq M$, there exists a submodule $D \leq_{\oplus} M$ such that M = A + X if and only if M = D + X for any $X \leq M$.

An essential submodule A of M provides that $\{0\}$ is the only submodule of M whose intersection with A is zero. A module M is called singular (non-singular) Z(M) = M (Z(M) = 0) where $Z(M) = \{m \in M \mid Ann(m) \leq R\}$. In [22] and in [9] new generalizations of small submodules, lifting modules and supplemented modules are introduced via singularity as follows. A δ -small submodule A of M is a submodule satisfying $A + X \neq M$ for every proper submodules of M where $\frac{M}{X}$ is singular. We use the notation $\delta(M)$ for the sum of all δ -small submodules of M. Let φ be the class of all singular simple modules. For a module $M, \delta(M) = \bigcap\{N \leq M \mid \frac{M}{N} \in \varphi\}$. A submodule T of M is called a δ -supplement of A in M if A + T = M and $A \cap T \ll_{\delta} T$. M is called δ -supplemented if every submodule of M has a δ -supplement in M. A module M is called δ -lifting, if for any submodule A of M there exists a decomposition M = X + Y such that $X \leq A$ and $A \cap Y \ll_{\delta} Y$. If every submodule of M has a δ -supplement which is a direct summand of M, then M is called a \oplus - δ -supplemented module [18]. In [6], a module M is called δ -H-supplemented, if for any $A \leq M$ there exists a submodule $D \leq_{\oplus} M$ such that M = A + X if and only if M = D + X for every $X \leq M$ with $\frac{M}{X}$ is singular.

In [2], the authors defined an equivalence relation β^* and defined G^* -supplemented and G^* -lifting modules via this relation. Therefore, two new algebraic structures are contributed between lifting and supplemented modules. Owing to this fact, the open problem given as 'Is every *H*-supplemented module supplemented?' in [10] is handled. Thus, the following implications are obtained between some variations of supplemented modules and theirs such that:

 $lifting \Longrightarrow G^* - lifting \Longrightarrow H\text{-}supplemented \Longrightarrow G^*\text{-}supplemented \Longrightarrow supplemented$

and also we have the ralation

$$lifting \Longrightarrow amply \ supplemented \Longrightarrow G^*$$
-supplemented

In [7], motivated by the equivalence relation β^* , the authors defined the relation β^*_{δ} as an extended alternative to β^* . For $A, B \leq M$, it is said that A equivalents to B with respect to β^*_{δ} if and only if $\frac{A+B}{A} \ll_{\delta} \frac{M}{A}$ and $\frac{A+B}{B} \ll_{\delta} \frac{M}{B}$. A module M is called principally Goldie*- δ -lifting (principally Goldie*- δ -supplemented) if for any cyclic submodule Rm of M, there exists a direct summand D (δ -supplement T) in M such that $Rm\beta^*_{\delta}D$ ($Rm\beta^*_{\delta}T$). In [6], H-supplemented modules are designed according to the singularity. A module M is called δ -H-supplemented if every $A \leq M$ there exists a submodule $D \leq_{\oplus} M$ such that M = A + X if and only if M = D + X for any $X \leq M$ with $\frac{M}{X}$ is singular. Also we recommend [16] and [17] as a source to get more information about fundamental concepts used in this study.

In this study, inspired from [6] and from the equivalence relation β_{δ}^* given in [7], we generalize G^* -lifting and G^* -supplemented modules using singularity. We say that a module M is G_{δ}^* -lifting (G_{δ}^* -supplemented), if for any submodule A of M there exists a direct summand D (δ -supplement T) in M such that $A\beta_{\delta}^*D$ ($A\beta_{\delta}^*T$). By means of these concepts we obtain two new algebraic structures between δ -lifting and δ -supplemented modules. We indicate that δ -H-supplemented modules coincide with G_{δ}^* -supplemented modules. Also, we prove that our modules coincide with some variations of δ -supplemented modules for δ -semiperfect modules.

2. Preliminaries

Definition 2.1. Given submodules $A \leq B \leq M$, the inclusion $A \leq B$ is called δ -cosmall in M if $\frac{B}{A} \ll_{\delta} \frac{M}{A}$, denoted by $A \hookrightarrow_{\delta-cs} B$ [15].

Definition 2.2. Let M be a module and $A, B \leq M$. The submodule A is called β_{δ}^* equivalent to B (denoted by $A\beta_{\delta}^*B$) if $\frac{A+B}{A} \ll_{\delta} \frac{M}{A}$ and $\frac{A+B}{B} \ll_{\delta} \frac{M}{B}$.

It can be seen from [7, Lemma 3.2] that the relation given above is an equivalence relation.

Theorem 2.3. Let $A, B \leq M$. Then the following statements are equivalent:

- i. $A\beta_{\delta}^*B$
- ii. $A \hookrightarrow_{\delta cs} A + B$ and $B \hookrightarrow_{\delta cs} A + B$.
- iii. For every $X \leq M$ with $\frac{M}{X}$ is singular, if A + B + X = M then A + X = M then B + X = M.
- iv. If $X \leq M$ with $\frac{M}{X}$ is singular and A + X = M then B + X = M and, if $X \leq M$ with $\frac{M}{X}$ is singular and B + X = M then A + X = M.

Proof. $(i) \implies (ii)$ Let $A\beta_{\delta}^*B$. Therefore, we have $\frac{A+B}{A} \ll_{\delta} \frac{M}{A}$ and $\frac{A+B}{B} \ll_{\delta} \frac{M}{B}$, that is, $A \hookrightarrow_{\delta-cs} A + B$ and $B \hookrightarrow_{\delta-cs} A + B$.

 $(ii) \Longrightarrow (iii)$ By assumption, it can be written that $\frac{A+B}{B} + \frac{X+B}{B} = \frac{M}{B}$. As $\frac{\frac{M}{X}}{\frac{B+X}{X}} \cong \frac{M}{B+X}$ is singular, we have B + X = M is obtained. By the same way A + X = M can be verified.

 $(iii) \iff (iv)$ Let A + X = M for $X \le M$ with $\frac{M}{X}$ is singular. By hypothesis, we get B + X = B because A + B + X = M. Similarly, A + X = M can be shown whenever B + X = M for $X \le M$ with $\frac{M}{X}$ is singular. Conversely, let A + B + X = M such that $\frac{M}{X}$ is singular. Since A + (B + X) = M. and $\frac{M}{B + X}$ is singular, then B + (B + X) = B + X = M is obtained from the assumption. Similarly, A + X = M is shown. \Box

Corollary 2.4. Let $A, B \leq M$ such that $A \leq X + B$ and $B \leq Y + A$, where $X, Y \ll_{\delta} M$. Then $A\beta^*_{\delta}B$.

Proof. Let A + B + T = M for $T \leq M$ with $\frac{M}{T}$ is singular. Since $A \leq X + B$, then we have (X + B) + B + T = X + B + T = M. It follows that B + T = M as $X \ll_{\delta} M$ and $\frac{M}{B+T}$ is singular as a factor module of a singular module $\frac{M}{T}$. Moreover, using the fact $Y \ll_{\delta} M$, it can be shown that A + T = M and so, $A\beta_{\delta}^*B$ is obtained from Theorem 2.3. \Box

Proposition 2.5. If $A, B, X \leq M$ such that M = A + X = B + X, $B \cap X \leq A \cap X$ and $B \hookrightarrow_{\delta-cs} A + B$, then $A \hookrightarrow_{\delta-cs} A + B$, so $A\beta^*_{\delta}B$.

Proof. It can be proved similar to that of [2, Proposition 2.5] using [22, Lemma 1.2]. \Box

Proposition 2.6. Let $P, T \leq M$ where P is maximal such that $\frac{M}{P} \in \varphi$.

- i. Let $A, B \leq M$ such that A + B = M, B is proper in M with $\frac{M}{B}$ is singular and $T\beta_{\delta}^*A$. Then T is not contained in B.
- ii. If $T\beta_{\delta}^*K$ and $T \leq P$, then $K \leq P$.
- iii. If $T\beta_{\delta}^*P$, then $T \leq P$. And, if $T\beta_{\delta}^*K$ then $T \leq \delta(M)$ if and only if $Y \leq \delta(M)$.

Proof. i. Assume that $T \leq B$. By assumption, we have A + B + T = M. Then, B + T = M is obtained from Theorem 2.3 since $\frac{M}{B}$ is singular. Hence, we get the contradiction B = M.

ii. Suppose that K is not contained in P. By maximality of P we have K + P = M and so, T + K + P = M. As $\frac{M}{P} \in \varphi$ and $T\beta_{\delta}^*K$, we have T + P = M from Theorem 2.3. Thus, P = M is obtained which is a contradiction.

iii. By (*ii*), taking P instead of K, we get $T \leq P$ as $T\beta_{\delta}^*P$ and $P \leq P$.

Proposition 2.7. Let $A, B, C, D \leq M$ such that $A\beta_{\delta}^*C$ and $C\beta_{\delta}^*D$. Then, $(A+C)\beta_{\delta}^*(B+D)$ and $(A+D)\beta_{\delta}^*(B+C)$.

Proof. Let $X \leq M$ with $\frac{M}{X}$ is singular and (A + C) + (B + D) + X = M. Then we have C + B + D + X = M and A + C + D + X = M as $\frac{M}{C + D + X} \cong \frac{M}{C + D + X}$ is singular and $A\beta_{\delta}^*B$. Following, B + D + X = M and A + C + X = M as $\frac{M}{B + X}$, $\frac{M}{A + X}$ is singular and $C\beta_{\delta}^*D$. Hence, $(A + C)\beta_{\delta}^*(B + D)$ is obtained. Similarly, $(A + D)\beta_{\delta}^*(B + C)$ can be shown from the symmetry of β_{δ}^* . \Box

Corollary 2.8. Let A, $B_1, B_2, ..., B_n \leq M$. If $A\beta_{\delta}^*B_i$ for each i = 1, .2, ..., n, then $A\beta_{\delta}^*B_1 + B_2 + ... + B_n$.

Remark 2.9. The result given in Proposition 2.7 can not be extended to infinite sums. Let us consider that the \mathbb{Z} -module Q. It is a known fact that $\delta(\mathbb{Q}) = \mathbb{Q} = \sum_{n \in \mathbb{Z}^+} \frac{1}{n}\mathbb{Z}$ where $\frac{1}{n}\mathbb{Z} \ll_{\delta} \mathbb{Q}$ for each integer n. Clearly, $\frac{1}{n}\mathbb{Z} \ \beta_{\delta}^* 0$ for each integer n. If the contrast of the claim would be true, then $\sum_{n \in \mathbb{Z}^+} \frac{1}{n}\mathbb{Z}\beta_{\delta}^* 0 = \mathbb{Q}\beta_{\delta}^* 0$ and so, $\mathbb{Q} \ll_{\delta} \mathbb{Q}$ is a contradiction.

Definition 2.10. Let $A \leq M$. Then $\beta_{\delta}^*(A) = \Sigma \{N \leq M \mid A\beta_{\delta}^*N\}$.

Note that $\beta_{\delta}^*(0) = \delta(M)$. On the other hand, let $A \leq P$ where $\frac{M}{P} \in \varphi$ which is the set of all singular simple modules. If $A\beta_{\delta}^*N$, then $N \leq P$ from Proposition 2.6. Hence, $\beta_{\delta}^*(A) \leq P$. Also, if $A\beta_{\delta}^*B$, then $\beta_{\delta}^*(A) = \beta_{\delta}^*(B)$.

3. Goldie^{*}_{δ}-Lifting Modules and Goldie^{*}_{δ}-Supplemented Modules

Definition 3.1. A module M is called Goldie_{δ}^* -lifting (briefly, G_{δ}^* -lifting) if and only if for each $A \leq M$ there exists a direct summand D of M such that $A\beta_{\delta}^*D$.

Recall from [6] that a module M is called δ -H-supplemented if for every submodule A of M there exists a direct summand D of M such that M = A + X if and only if M = D + X for any $X \leq M$ with $\frac{M}{X}$ is singular. Let us indicate that this concept is the same with the definition given above. In view of brevity, we will use the term of G_{δ}^* -lifting for a this type of module. As it is possible to see the other fundamental properties of them in [6], we will omit them and give another ones.

Definition 3.2. A module M is called Goldie_{δ}^* -supplemented (briefly, G_{δ}^* -supplemented) if and only if for each $A \leq M$ there exists a δ -supplement D of M such that $A\beta_{\delta}^*D$.

Note that if M is a singular module or M has no projective submodule, then the concepts of being G^* -supplemented (G^* -lifting) and G^*_{δ} -supplemented (G^*_{δ} -lifting) coincide. In particular, a \mathbb{Z} -module M is G^* -supplemented (G^* -lifting) if and only if M is G^*_{δ} -supplemented (G^*_{δ} -lifting).

Proposition 3.3. Let M be a δ -hollow module. Then, M is G^*_{δ} -lifting.

Proof. Let X be any submodule of M. From the assumption, $X \ll_{\delta} M$. Therefore, $X\beta_{\delta}^*0$ is obtained where $\{0\}$ is a direct summand of M. Hence, M is G_{δ}^* -lifting. \Box

Proposition 3.4. Every semisimple module is G^*_{δ} -lifting.

Proof. Let $A \leq M$. As M is semisimple, there exists a submodule B of M such that $M = A \oplus B$. From the symmetry of β_{δ}^* we have $A\beta_{\delta}^*B$. Hence, M is G_{δ}^* -lifting. \Box

Proposition 3.5. Let M be a G^*_{δ} -lifting module and $A \leq M$. If $\frac{A+D}{A} \leq_{\oplus} \frac{M}{A}$ for any $D \leq_{\oplus} M$, then $\frac{M}{A}$ is G^*_{δ} -lifting.

Proof. Let $\frac{X}{A} \leq \frac{M}{A}$. Since M is G_{δ}^* -lifting, then there exists a decomposition $M = D \oplus D'$ such that $X\beta_{\delta}^*D$. Let $\pi : M \longrightarrow \frac{M}{A}$ be the canonical epimorphism. Then, $\pi(X)\beta_{\delta}^*\pi(D)$ and so, $\frac{X}{A}\beta_{\delta}^*\frac{D+A}{A}$ is obtained. Hence, M is G_{δ}^* -lifting from the hypothesis. \Box

If the sum of any two direct summands of M is a direct summand, then M has the summand sum property.

Proposition 3.6. Let M be a G^*_{δ} -lifting module. If M has the summand sum property, then any direct summand of M is G^*_{δ} -lifting module.

Proof. Let $D \leq_{\oplus} M$. Then $M = D \oplus D'$ for some $D' \leq M$. We will verify that $\frac{M}{D'}$ is G_{δ}^* -lifting. With this aim, we will show that for any $X \leq_{\oplus} M$, $\frac{X+D'}{D'} \leq_{\oplus} \frac{M}{D'}$. From the assumption, as D' and X are direct summands of M, then $X + D' \leq_{\oplus} M$. Therefore, there is a submodule T of M such that $M = (X + D') \oplus T$. It follows that, $\frac{M}{D'} = \frac{X+D'}{D'} + \frac{T+D'}{D'}$. Moreover, we get $(X + D') \cap (T + D') = [(X + D') \cap T] + D' = 0 + D' = D'$ from modularity. Thus, $\frac{M}{D'} = \frac{X+D'}{D'} \oplus \frac{T+D'}{D'}$. Hence, $D \cong \frac{M}{D'}$ is G_{δ}^* -lifting from Proposition 3.5. □

Proposition 3.7. Let M be a π -projective module and let us consider the following statements.

- (1) M is \oplus - δ -supplemented.
- (2) M is G^*_{δ} -lifting.

Then $(1) \Longrightarrow (2)$ holds. In particular, if M is singular, then the converse is provided.

Proof. (1) \implies (2) : Let A be any submodule of M. By (1), there exists a δ -supplement T of M which is a direct summand of M such that

$$M = A + T, \ A \cap T \ll_{\delta} T \text{ and } M = T \oplus T'$$

As M is π -projective, there is a submodule $X \leq A$ provided that $M = X \oplus T$. Clearly, $\frac{X+A}{A} \ll_{\delta} \frac{M}{A}$. Moreover, as $A = X \oplus (A \cap T)$ from modularity and $A \cap T \ll_{\delta} T$, we obtain $\frac{A}{X} = \frac{X+A}{X} \ll_{\delta} \frac{M}{X}$, that is, $A\beta^*_{\delta}X$ where $X \leq_{\oplus} M$. Hence, M is G^*_{δ} -lifting.

Let M be a singular G_{δ}^* -lifting module and $A \leq M$. Then, there exists a direct summand D of M such that $M = D \oplus D'$ for some $D' \leq M$ and $A\beta_{\delta}^*D$. Therefore, $\frac{D+A}{D} \ll_{\delta} \frac{M}{D}$ and $\frac{D+A}{A} \ll_{\delta} \frac{M}{A}$. As $\frac{M}{A} = \frac{D+A}{A} + \frac{D'+A}{A}$ and $\frac{M}{D+A} \cong \frac{M}{\frac{D+A}{A}}$ is singular, then M = A + D' is obtained. Now, it remains to show that $A \cap D' \ll_{\delta} D'$. Let $(A \cap D') + B = D'$ where $\frac{D'}{B}$ is singular. Thus, $M = (A \cap D') + B + D = A + B + D$ and so $\frac{M}{D} = \frac{A+D}{D} + \frac{B+D}{D}$ is obtained. As $\frac{D+A}{D} \ll_{\delta} \frac{M}{D}$ and M is singular, we have M = B + D and so $D' = M \cap D' = (B + D) \cap D' = B + (D \cap D') = B$ from modularity. This completes the proof. Hence, M is a \oplus - δ -supplemented module. \square

Theorem 3.8. Let M be a singular G^*_{δ} -lifting module. Then M is δ -supplemented.

Proof. Let $A \leq M$. By hypothesis, there exists a direct summand D of M such that $M = D \oplus D'$ and $A\beta^*_{\delta}D$. Then, $\frac{A+D}{D} \ll_{\delta} \frac{M}{D}$, $\frac{A+D}{A} \ll_{\delta} \frac{M}{A}$ and we have $\frac{M}{A} = \frac{A+D}{A} + \frac{A+D'}{A}$. As M is singular, M = A + D' is obtained. To complete the proof it must be shown that $A \cap D' \ll_{\delta} D'$. Let $A \cap D' + B = D'$ with $\frac{D'}{B}$ is singular. Then, $M = D' + D = [A \cap D' + B] + D = A + B + D$ and so, $\frac{M}{D} = \frac{A+D}{D} + \frac{B+D}{D}$ is obtained. By hypothesis, we get M = B + D and so, D' = B by modularity. Hence, M is δ -supplemented. \Box

Theorem 3.9. Let M be a π -projective module. If M is G^*_{δ} -supplemented, then it is G^*_{δ} -lifting.

Proof. Let $A \leq M$. Then, there exists a δ-supplement *T* of *M* such that $A\beta_{\delta}^*T$. Assume that *T* is a δ-supplement of *W* in *M*, that is W + T = M and $W \cap T \ll_{\delta} T$. As *M* is π-projective, there exists a direct summand *T'* of *M* contained in *T* such that $M = T' \oplus W$. Now, we aim to verify that $A\beta_{\delta}^*T'$. It is clear that, $\frac{A+T'}{A} \leq \frac{A+T}{A} \ll_{\delta} \frac{M}{A}$ by [22, Lemma 1.3]. In the remaining part of the proof we will show that $\frac{A+T'}{T'} \ll_{\delta} \frac{M}{T'}$. Suppose that, $\frac{A+T'}{T'} + \frac{B}{T'} = \frac{M}{T'}$ with $\frac{M}{B}$ is singular. Then M = A + T' + B = A + T + B and so $\frac{M}{T} = \frac{A+T}{T} + \frac{B+T}{T}$. As $A\beta_{\delta}^*T$ and $\frac{\frac{M}{B}}{\frac{B+T}{B}} \cong \frac{M}{B+T}$ is singular, then M = B + T. Moreover, we have $T = T' \oplus (W \cap T)$ by modularity. Thus, $M = B + T = B + [T' + (W \cap T)] = (B + T') + W \cap T$. As $W \cap T \ll_{\delta} M$ and $\frac{M}{B+T}$ is singular, M = B + T' and so, M = B is obtained due to the fact that $T' \leq B$. Hence the proof is completed. □

Proposition 3.10. Let M be a Noetherian module which has the summand sum property. Then M is principally G^*_{δ} -lifting if and only if M is G^*_{δ} -lifting. *Proof.* The sufficiency is clear. For the necessity, let $A \leq M$. As M is Noetherian, A is finitely generated and so $A = Rx_1 + Rx_2 + ... + Rx_n$ for some $x_1, x_2, ..., x_n \in M$. Since M is principally G_{δ}^* -lifting, there exists direct summands $D_1, D_2, ..., D_n$ of M such that $Rx_1\beta_{\delta}^*D_1$, $Rx_2\beta_{\delta}^*D_2, ..., Rx_n\beta_{\delta}^*D_n$. Then, $A\beta_{\delta}^*D = D_1 + D_2 + ... + D_n$ where $D \leq_{\oplus} M$ since M has the summand sum property. Hence, M is G_{δ}^* -lifting. \Box

Proposition 3.11. Let M be a module and $A \leq M$ such that A = C + S where C is cyclic in M and $S \ll_{\delta} M$ for any $A \leq M$. Then M is principally G_{δ}^* -lifting and G_{δ}^* -lifting.

Proof. Let A = C + S for a cyclic submodule C of M and $S \ll_{\delta} M$. As M is principally G_{δ}^* -lifting, then a direct summand D of M corresponds to C such that $C\beta_{\delta}^*D$. Therefore, $A = (C + S)\beta_{\delta}^*D$ by [7, Lemma 3.6] which implies M is G_{δ}^* -lifting. The sufficiency is clear from implications. \Box

Proposition 3.12. Let M be a module and A be any submodule of M. If there exists a δ -supplement (direct summand) T and a δ -small submodule S of M such that A + S = T + S, then M is a G^*_{δ} -supplemented (G^*_{δ} -lifting) module.

Proof. From assumption, it remains to show that $A\beta_{\delta}^*T$. Since $A \leq A + S = T + S$, $T \leq T + S = A + S$ and $S \ll_{\delta} M$, then we have $A\beta_{\delta}^*T$ from Corollary 2.4. \Box

Corollary 3.13. Let M be a module and A be any submodule of M. If there exists a δ -supplement T and a δ -small submodule S of M such that A = T + S, then M is a G^*_{δ} -supplemented module.

Theorem 3.14. Let M be a module and consider the statements given below,

- a. M is δ -lifting.
- b. M is G^*_{δ} -lifting.
- c. M is δ -H-supplemented.
- d. M is G^*_{δ} -supplemented.
- Then, $(a) \Longrightarrow (b) \iff (c) \Longrightarrow (d)$.

Proof. (a) \Longrightarrow (b) Let M be a δ -lifting module. Then, there exists a direct summand D for any submodule A of M satisfying $\frac{A}{D} \ll_{\delta} \frac{M}{D}$. Therefore, it can be written that $\frac{A+D}{D} \ll_{\delta} \frac{M}{D}$ and $\frac{A+D}{A} = 0 \ll_{\delta} \frac{M}{A}$ which implies $A\beta_{\delta}^*D$. Hence, we obtain the existence of a direct summand Dfor every submodule A of M such that $A\beta_{\delta}^*D$, that is, M is G_{δ}^* -lifting.

- $(b) \iff (c)$ This fact is clear from [6, Lemma 2.2].
- $(c) \Longrightarrow (d)$ is clear because every direct summand is a δ -supplement. \Box

Proposition 3.15. Let M be a module whose submodules are of δ -supplements which are relatively projective direct summands of M. Then, M is G^*_{δ} -lifting.

Proof. Let $A \leq M$. Then, there is a δ -supplement T of M such that M = A + T, $A \cap T' \ll_{\delta} T'$ and $M = T \oplus T'$ where T, T' are relatively projective. It follows that $M = B \oplus T$ for some $B \leq A$ since T' is T-projective from [10, Lemma 4.47]. Therefore, M is δ -lifting. Hence, M is G^*_{δ} -lifting from Theorem 3.14. \Box

Proposition 3.16. Let M be a π -projective and singular module. Then the following statements hold equivalently.

- (1) M is δ -lifting.
- (2) M is G^*_{δ} -lifting.
- (3) M is \oplus - δ -supplemented module.

Proof. $(1) \Longrightarrow (2)$: is clear from Theorem 3.14.

 $(2) \iff (3)$: is clear from Proposition 3.7.

(3) \Longrightarrow (1) : Let $A \leq M$. From assumption, there exists a direct summand D of M such that $M = D \oplus D'$, A + D = M and $A \cap D \ll_{\delta} D$. On the other hand, as M is π -projective and $D \leq_{\oplus} M$, then there exists a direct summand A' of M contained A such that $M = A' \oplus D$ from [3, 4.14(1)]. Thus, for every $A \leq M$, there exists a decomposition $M = A' \oplus D$ such that $A' \leq A$ and $A \cap D \ll_{\delta} D$. Hence M is δ -lifting. \Box

Proposition 3.17. Let M be a singular π -projective module. Then, M is G^*_{δ} -lifting if and only if every submodule of M is a direct sum of a direct summand of M and a δ -small submodule of M.

Proof. (\Longrightarrow) Let M be a G_{δ}^* -lifting module, then M is a δ -lifting module from Proposition 3.16. Then for any $A \leq M$, there exists a decomposition $M = D \oplus D'$ such that $D \leq A$ and $A \cap D' \ll_{\delta} M$. It follows that $A = D \oplus (A \cap D')$ where $D \leq_{\oplus} M$ and $S = A \cap D' \ll_{\delta} M$.

(⇐) For the necessity, it can be said that M is δ -lifting from [9, Lemma 2.3(b)]. Hence, M is G^*_{δ} -lifting by Theorem 3.14. \Box

Proposition 3.18. Let R be a left non-singular ring, M be a left G_{δ}^* -supplemented R-module and P be a maximal submodule of M with $\frac{M}{P}$ is singular. If T is a δ -supplement of P with $\frac{M}{T}$ is singular, then $P = S + (P \cap T)$, where S is a δ -supplement of T and T is δ -local. Proof. Let M be a G_{δ}^* -supplemented module. Then, there exists a δ -supplement submodule S corresponding to P satisfying $P\beta_{\delta}^*S$. By hypothesis, T is a δ -supplement of S. Therefore, we have $P = S + (P \cap T)$ from [7, Theorem 3.7]. Moreover, since T is a δ -supplement submodule of the maximal submodule P, then T is δ -local or semisimple projective from [19, Lemma 2.22]. If T is semisimple projective, then $T \ll_{\delta} T \leq M$. On the other hand, as T is a δ -supplement of P in M, P + T = M and $P \cap T \ll_{\delta} T$. Since $T \ll_{\delta} M$ and $\frac{M}{P}$ is singular, then P = M is got which contradicts with maximality of P in M. Hence, it forces T to be δ -local. \Box

Example 3.19. Let $R = \frac{\mathbb{Z}}{8\mathbb{Z}}$ and $M = \frac{\mathbb{Z}}{2\mathbb{Z}} \oplus \frac{\mathbb{Z}}{4\mathbb{Z}} \oplus \frac{\mathbb{Z}}{8\mathbb{Z}}$. It is a known fact from [9, Example 2.2(2)] that M is not a δ -lifting module. On the other hand, M is a G^*_{δ} -lifting module as it is G^* -lifting [2, Example 3.9(i)].

Example 3.20. Let $M = \mathbb{F} \oplus \mathbb{F}$ where \mathbb{F} is a quotient field of a DVR R which is not complete. Then it can be seen that clearly M is a δ -supplemented module which is not G^*_{δ} -supplemented from [3, Example 23.7] and [2, Example 3.9(iii)].

Definition 3.21. A δ -supplemented module M is called *strongly* \oplus - δ -supplemented if every δ -supplement submodule of M is a direct summand of M.

Clearly, every δ -lifting module is strongly \oplus - δ -supplemented.

Proposition 3.22. Let M be a module.

i. M is δ-lifting if and only if M is amply δ-supplemented and strongly ⊕-δ-supplemented.
ii. If M is G^{*}_δ-supplemented and strongly ⊕-δ-supplemented, then M is G^{*}_δ-lifting.

Proof. i. The implication is clear from [1, Proposition 4.2] and [12, Lemma 2.3].

ii. Let A be any submodule of M. By assumption, there is a δ -supplement submodule X of M provided that $A\beta_{\delta}^*X$. As M is strongly \oplus - δ -supplemented X is a direct summand of M. Hence, M is G_{δ}^* -lifting. \Box

Proposition 3.23. Let M be a module.

- i. M is amply δ -supplemented.
- ii. For each $A \leq M$ there there is a δ -supplement T and a submodule X of M such that M = T + X = A + X, $T + X \leq A + X$ and $T \hookrightarrow_{\delta \text{-}cs} A + T$.
- iii. M is G^*_{δ} -supplemented.

Then, the condition given above implies that $(i) \Longrightarrow (ii) \Longrightarrow (iii)$.

Proof. $(i) \Longrightarrow (ii)$ It is clear from [15, Theorem 3.7].

 $(ii) \implies (iii)$ By hypothesis, we have $A\beta_{\delta}^*T$ from Proposition 2.5. Hence, M is G_{δ}^* -supplemented. \Box

Proposition 3.24. Let M be a projective module. Then the following statements are equivalent:

- i. M is δ -semiperfect.
- ii. M is δ -lifting.
- iii. M is \oplus - δ -supplemented.
- iv. M is amply δ -supplemented.
- v. M is δ -supplemented.
- vi. M is G^*_{δ} -supplemented.
- vii. M is G^*_{δ} -lifting.

Proof. It can be seen clearly via Theorem 3.14, Proposition 3.23 and [12, Lemma 2.4]. \Box

The following hierarchy is valid for given modules below.

$$\delta$$
-lifting $\Longrightarrow G^*_{\delta}$ -lifting \Longrightarrow principally G^*_{δ} -lifting

Now we will verify the converse implications given above are not provided.

Example 3.25. Let us consider \mathbb{Z} -module \mathbb{Q} . Since every finitely generated submodule of \mathbb{Z} -module \mathbb{Q} is δ -small in \mathbb{Q} , then $\mathbb{Z}\mathbb{Q}$ is a principally G^*_{δ} -lifting module. On the other hand, it is not G^*_{δ} -lifting as it is not δ -supplemented.

Example 3.26. Let $R = \mathbb{Z}$ and $M = \mathbb{Z}_2 \oplus \mathbb{Z}_8$. *M* is a G^*_{δ} -lifting module which is not δ -lifting [8].

4. Acknowledgments

The authors wish to sincerely thank the referees for several useful comments.

References

- C. Abdioğlu and S. Şahinkaya, Some Results On δ-Semiperfect Rings and δ-Supplemented Modules, Kyungpook Math. J., 55 No. 2 (2015) 289-300.
- [2] G.F. Birkenmeier, F.T. Mutlu, C. Nebiyev, N. Sokmez and A. Tercan, Goldie^{*} Supplemented Modules, Glas. Math. J., 52 No. 2 (2010) 41-52.
- [3] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules: Supplements and Projectivity in Module Theory, Birkhauser Verlag-Basel, Boston-Berlin, 2006.

- [4] F. Goodearl, Ring Theory: Nonsingular Rings and Modules, Crc Press, Marcel Dekker Inc., 1976.
- [5] A.T. Guroğlu and E.T. Meric, Principally Goldie^{*} Lifting Modules, Ukr. Math. J., 70 No. 3 (2018) 1042-1051.
- [6] A.R.M. Hamzekolaee, H-supplemented Modules and Singularity, J. Alg. Str. App., 7 No. 1 (2020) 49-57.
- [7] M. Hosseinpour, B. Ungor, Y. Talebi and A. Harmancı, A Generalization of the Class of Principally Lifting Modules, Rocky Mount. J. Math., 47 No. 5 (2017) 1539-1563.
- [8] H. İnankıl, S. Halıcıoğlu and A. Harmancı, On A Class of Lifting Modules, Viet. J. Math., 38 (2010) 189-201.
- [9] M.T. Koşan, δ-Lifting and δ-Supplemented Modules, Alg. Coll., 14 No. 1 (2007) 53-60.
- [10] S.H. Mohamed and B.J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Note Ser. 147, Cambridge University Press, 1990.
- [11] M.J. Nematollahi, Quasi δ -Discrete Modules, Alg., Gr. and Geo., 28 No. 3 (2011) 259-274.
- [12] X. Nguyen, M. Koşan and Y. Zhou, On δ-Semiperfect Modules, Comm. Alg., 46 No. 11 (2018) 4965-4977.
- [13] A.C. Ozcan, The Torsion Theory Cogenerated By δ-M-small Modules and GCO-modules, Comm. Alg., 35 (2009) 623-633.
- [14] Y. Talebi and A.R.M. Hamzekolaee, Closed Weak δ-Supplemented Modules, JP J. Alg., Num. Th. and App., 13 No. 2 (2009) 193-208.
- [15] Y. Talebi and B. Talaee, On δ -Coclosed Submodules, Far East J. Math. Sci., **35** No. 1 (2009) 19-31.
- [16] Y. Talebi, R. Tribak and A.R.M. Hamzekolaee, On H-cofinitely Supplemented Modules., Bull. Iranian. Math. Soc., 39 No. 2 (2013) 325-346.
- [17] R. Tribak, Y. Talebi, A.R.M. Hamzekolaee and S. Asgari, ⊕-Supplemented Modules Relative to An Ideal, Hacettepe J. Math. Stat., 45 No. 1 (2016) 107-120.
- [18] Y. Talebi and M.H. Pour, On ⊕-δ-supplemented Modules, J. Alg. Num. Th. Adv. and App., 1 No. 2 (2009) 89-97.
- [19] R. Tribak, When Finitely Generated δ-Supplemented Modules are Supplemented, Alg. Coll., 22 No. 1 (2015) 119-130.
- [20] D.K. Tutuncu, M.J. Nematollahi and Y. Talebi, On H-Supplemented Modules, Alg. Coll., 18 No. 1 (2011) 915-924.
- [21] R. Wisbauer, Foundations of Module and Ring Theory: A handbook for study and research, Gordon and Breach Science Publishing, London-Routledge, 1991.
- [22] Y. Zhou, Generalizations of Perfect, Semiperfect and Semiregular Rings, Alg. Coll., 7 No. 3 (2000) 305-318.

Esra Öztürk Sözen

Department of mathematics, Faculty of science and arts Sinop university Sinop, Turkey. esozen@sinop.edu.tr