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DEDUCTIVE SYSTEMS OF GE-ALGEBRAS

YOUNG BAE JUN AND RAVIKUMAR BANDARU∗

Abstract. A new sub-structure called (vivid) deductive system is introduced and their prop-

erties are examined. Conditions for a subset to be a deductive system are provided. The notion

of upper GE-set is also introduced, and an example to show that any upper GE-set may not

be a deductive system are supplied. Conditions for an upper GE-set to be a deductive system

are provided. An upper GE-set is used to consider conditions for a subset to be a deductive

system. The characterization of deductive system is established, and relationship between de-

ductive system and vivid deductive system are created. Conditions for a deductive system to

be a vivid deductive system are given, and the extension property for vivid deductive system

is constructed.

1. Introduction

Following the introduction of Hilbert algebras by L. Henkin in early 50-ties and A. Diego[6],
the algebra and related concepts were developed by D. Busneag [3, 4, 5]. Y. B. Jun gave
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characterizations of deductive systems in Hilbert algebras (see [7, 8]), introduced the notion
of commutative Hilbert algebras and gave some characterizations of a commutative Hilbert
algebra (see [8]). In mathematics, Hilbert algebras occur in the theory of von Neumann al-
gebras in: Commutation theorem and Tomita-Takesaki theory, and it is an important tool
for certain investigations in algebraic logic since they can be considered as fragments of any
propositional logic containing a logical connective implication (→) and the constant 1 which
is considered as the logical value “true”. The study of generalization of one known algebraic
structure is also an important research task. As a generalization of a Hilbert algebra, Ban-
daru, Borumand Saeid and Jun[?] introduced the notion of a GE-algebra, and investigated
several properties. Different new substructures have been introduced in a GE-algebra such as
voluntary GE-filters, belligerent GE-filters, imploring GE-filters and prominent GE-filters and
studied their properties(see [1, 2, 9]).

In this manuscript, we introduce a new sub-structure called (vivid) deductive system and
examine their properties. We provide conditions for a subset to be a deductive system. We
also introduce the notion of upper GE-set, and give example to show that any upper GE-set
may not be a deductive system. We provide conditions for an upper GE-set to be a deductive
system. Using an upper GE-set, we consider conditions for a subset to be a deductive system.
We establish characterization of deductive system. We discuss relationship between deductive
system and vivid deductive system. We provide conditions for a deductive system to be a
vivid deductive system. We build the extension property for vivid deductive system.

2. Preliminaries

Definition 2.1 ([?]). By a GE-algebra we mean a non-empty set X with a constant 1 and a
binary operation “∗” satisfying the following axioms:

(GE1) u ∗ u = 1,
(GE2) 1 ∗ u = u,
(GE3) u ∗ (v ∗ w) = u ∗ (v ∗ (u ∗ w))

for all u, v, w ∈ X.

In a GE-algebra X, a binary relation “≤” is defined by

(∀x, y ∈ X) (x ≤ y ⇔ x ∗ y = 1) .(1)

Definition 2.2 ([?, 1]). A GE-algebra X is said to be

• transitive if it satisfies:

(∀x, y, z ∈ X) (x ∗ y ≤ (z ∗ x) ∗ (z ∗ y)) .(2)
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• left exchangeable if it satisfies:

(∀x, y, z ∈ X) (x ∗ (y ∗ z) = y ∗ (x ∗ z)) .(3)

• belligerent if it satisfies:

(∀x, y, z ∈ X) (x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z)) .(4)

Proposition 2.3 ([?]). Every GE-algebra X satisfies the following items.

(∀u ∈ X) (u ∗ 1 = 1) .(5)

(∀u, v ∈ X) (u ∗ (u ∗ v) = u ∗ v) .(6)

(∀u, v ∈ X) (u ≤ v ∗ u) .(7)

(∀u, v, w ∈ X) (u ∗ (v ∗ w) ≤ v ∗ (u ∗ w)) .(8)

(∀u ∈ X) (1 ≤ u ⇒ u = 1) .(9)

(∀u, v ∈ X) (u ≤ (v ∗ u) ∗ u) .(10)

(∀u, v ∈ X) (u ≤ (u ∗ v) ∗ v) .(11)

(∀u, v, w ∈ X) (u ≤ v ∗ w ⇔ v ≤ u ∗ w) .(12)

If X is transitive, then

(∀u, v, w ∈ X) (u ≤ v ⇒ w ∗ u ≤ w ∗ v, v ∗ w ≤ u ∗ w) .(13)

(∀u, v, w ∈ X) (u ∗ v ≤ (v ∗ w) ∗ (u ∗ w)) .(14)

Lemma 2.4 ([?]). In a GE-algebra X, the following facts are equivalent each other.

(∀x, y, z ∈ X) (x ∗ y ≤ (z ∗ x) ∗ (z ∗ y)) .(15)

(∀x, y, z ∈ X) (x ∗ y ≤ (y ∗ z) ∗ (x ∗ z)) .(16)

Definition 2.5 ([?]). A subset D of a GE-algebra X is called a GE-filter of X if it satisfies:

1 ∈ D,(17)

(∀x, y ∈ X)(x ∗ y ∈ D, x ∈ D ⇒ y ∈ D).(18)

3. Deductive systems

In what follows let X denote a GE-algebra unless otherwise specified.

Definition 3.1. A nonempty subset D of X is called a deductive system of X if it satisfies:

(D1) X ∗D := {x ∗ a | x ∈ X, a ∈ D} ⊆ D.
(D2) (∀x, y, z ∈ X) (y, z ∈ D ⇒ (y ∗ (z ∗ x)) ∗ x ∈ D).



56 Y. B. Jun and R. K. Bandaru

Example 3.2. Let X = {0, 1, 2, 3, 4} be a set with the Cayley table which is given in Table
1.

Table 1. Cayley table for the binary operation “∗”

∗ 0 1 2 3 4

0 1 1 2 3 3

1 0 1 2 3 4

2 0 1 1 4 4

3 0 1 1 1 1

4 0 1 1 1 1

Then (X, ∗, 1) is a GE-algebra, and it is routine to verify that D := {0, 1} is a deductive
system of X.

Lemma 3.3. Every deductive system contains the constant 1.

Proof. Let D be a deductive system of X. For every x ∈ D, we have

1 = x ∗ x ∈ D ∗D ⊆ X ∗D ⊆ D

by (GE1). This completes the proof.

Lemma 3.4. Every deductive system of X satisfies:

(∀x, y ∈ X)(y ∈ D ⇒ (y ∗ x) ∗ x ∈ D).(19)

Proof. If we take z = 1 in (D2) and use (GE2), then (y ∗ x) ∗ x = (y ∗ (1 ∗ x)) ∗ x ∈ D.

Corollary 3.5. Every deductive system of X satisfies:

(∀x, y ∈ X)(y ∈ D, y ≤ x ⇒ x ∈ D).(20)

Proof. Let x, y ∈ X be such that y ∈ D and y ≤ x. Then y ∗ x = 1, and so x = 1 ∗ x =

(y ∗ x) ∗ x ∈ D.

We consider a subset D of X that satisfies:

(∀x, y, z ∈ X)(x ∗ (y ∗ z) ∈ D, y ∈ D ⇒ x ∗ z ∈ D).(21)

Lemma 3.6. If a subset D of X satisfies two conditions (17) and (21), then D satisfies (20).
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Proof. Assume that a subset D of X satisfies two conditions (17) and (21). Let x, y ∈ X be
such that y ∈ D and y ≤ x. Then 1 ∗ (y ∗ x) = 1 ∗ 1 = 1 ∈ D, and so x = 1 ∗ x ∈ D. Hence D

satisfies (20).

Theorem 3.7. Every deductive system D of X satisfies two conditions (17) and (21).

Proof. Let D be a deductive system of a GE-algebra X. Then D contains the constant 1 by
Lemma 3.3. Let x, y, z ∈ D be such that x∗(y∗z) ∈ D and y ∈ D. Then (x∗(y∗z))∗(y∗(x∗z)) =
1 by (8). It follows from (GE2) and (D2) that

x ∗ z = 1 ∗ (x ∗ z) = ((x ∗ (y ∗ z)) ∗ (y ∗ (x ∗ z))) ∗ (x ∗ z) ∈ D.

Hence (21) is valid.

Theorem 3.8. If a subset D of X satisfies two conditions (17) and (21), then D is a deductive
system of X.

Proof. Let D be a subset of X that satisfies (17) and (21). Let y ∈ X ∗D. Then y = x ∗ a for
some x ∈ X and a ∈ D. Then x ∗ (a ∗ a) = x ∗ 1 = 1 ∈ D by (GE1), (5) and (17). It follows
from (21) that y = x ∗ a ∈ D. Hence X ∗ D ⊆ D. Let x ∈ X and y, z ∈ D. Using (GE1),
(GE2), (GE3), (5) and (17) and we have

1 ∗ (y ∗ ((y ∗ (z ∗ x)) ∗ (z ∗ x))) = y ∗ ((y ∗ (z ∗ x)) ∗ (z ∗ x))

= y ∗ ((y ∗ (z ∗ x)) ∗ (y ∗ (z ∗ x))) = y ∗ 1 = 1 ∈ D.

It follows from (GE2) and (21) that

(y ∗ (z ∗ x)) ∗ (z ∗ x) = 1 ∗ ((y ∗ (z ∗ x)) ∗ (z ∗ x)) ∈ D.

Hence

1 ∗ (z ∗ ((y ∗ (z ∗ x)) ∗ x)) = z ∗ ((y ∗ (z ∗ x)) ∗ x)

= z ∗ ((y ∗ (z ∗ x)) ∗ (z ∗ x)) ∈ D

which implies from (GE2) and (21) that (y ∗ (z ∗ x)) ∗ x ∈ D. Therefore D is a deductive
system of X.

For any a, b ∈ X, we consider the set

Xb
a := {x ∈ X | a ≤ b ∗ x},(22)

which is called the upper GE-set of a and b in X.
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Example 3.9. Let X = {0, 1, 2, 3, 4} be a set with the Cayley table which is given in Table
2.

Table 2. Cayley table for the binary operation “∗”

∗ 0 1 2 3 4

0 1 1 1 3 3

1 0 1 2 3 4

2 0 1 1 4 4

3 1 1 2 1 1

4 0 1 1 1 1

Then (X, ∗, 1) is a GE-algebra and all upper GE-sets are calculated as follows.

X0
0 = X1

0 = X2
0 = X0

1 = X0
2 = {0, 1, 2},

X1
1 = {1},

X2
1 = X1

2 = X2
2 = {1, 2},

X3
1 = X1

3 = X3
3 = {0, 1, 3, 4},

X4
1 = X4

2 = X1
4 = X2

4 = X4
4 = {1, 2, 3, 4},

X3
0 = X4

0 = X3
2 = X0

3 = X2
3 = X4

3 = X0
4 = X3

4 = X.

Proposition 3.10. In a GE-algebra X, we have

(i) (∀a, b ∈ X) (1, a, b ∈ Xb
a).

(ii) (∀a, b ∈ X) (b ≤ x for all x ∈ X ⇒ Xb
a = X = Xa

b ).

Proof. (i) is straightforward by (GE1), (5) and (7). Let a, b ∈ X be such that b ≤ x for all
x ∈ X. For any z ∈ X, we have a ∗ (b ∗ z) = a ∗ 1 = 1, that is, a ≤ b ∗ z. Thus z ∈ Xb

a = Xa
b .

Therefore (ii) is valid.

The following example shows that the upper GE-set of a and b in X is not a deductive
system of X.

Example 3.11. In Example 3.9, we can observe that X3
1 = {0, 1, 3, 4} and it is not a deductive

system of X since 3, 4 ∈ X3
1 but (3 ∗ (4 ∗ 2)) ∗ 2 = 2 /∈ X3

1 .

We provide conditions for the upper GE-set to be a deductive system.

Theorem 3.12. In a belligerent GE-algebra X, the upper GE-set of a and b in X is a deductive
system of X.
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Proof. Assume that X is a belligerent GE-algebra. Let x ∈ X ∗Xb
a. Then x = y ∗ z for some

y ∈ X and z ∈ Xb
a. Hence a ≤ b ∗ z, i.e., a ∗ (b ∗ z) = 1. It follows from (5) and (4) that

a ∗ (b ∗ (y ∗ z)) = a ∗ ((b ∗ y) ∗ (b ∗ z))

= (a ∗ (b ∗ y)) ∗ (a ∗ (b ∗ z))

= (a ∗ (b ∗ y)) ∗ 1 = 1.

Hence x = y ∗ z ∈ Xb
a, and thus X ∗Xb

a ⊆ Xb
a. Let x ∈ X and y, z ∈ Xb

a. Then a ≤ b ∗ y and
a ≤ b ∗ z, i.e., a ∗ (b ∗ y) = 1 and a ∗ (b ∗ z) = 1. The combination of (GE1), (GE2) and (4)
induces

a ∗ (b ∗ ((y ∗ (z ∗ x)) ∗ x)) = a ∗ ((b ∗ (y ∗ (z ∗ x))) ∗ (b ∗ x))

= (a ∗ (b ∗ (y ∗ (z ∗ x)))) ∗ (a ∗ (b ∗ x))

= ((a ∗ (b ∗ y)) ∗ (a ∗ (b ∗ (z ∗ x)))) ∗ (a ∗ (b ∗ x))

= (1 ∗ (a ∗ (b ∗ (z ∗ x)))) ∗ (a ∗ (b ∗ x))

= (a ∗ (b ∗ (z ∗ x))) ∗ (a ∗ (b ∗ x))

= (((a ∗ (b ∗ z)) ∗ (a ∗ (b ∗ x)))) ∗ (a ∗ (b ∗ x))

= ((1 ∗ (a ∗ (b ∗ x)))) ∗ (a ∗ (b ∗ x))

= (a ∗ (b ∗ x)) ∗ (a ∗ (b ∗ x)) = 1,

that is, a ≤ b ∗ ((y ∗ (z ∗ x)) ∗ x). Hence (y ∗ (z ∗ x)) ∗ x ∈ Xb
a. In conclusion, Xb

a is a deductive
system of X.

Theorem 3.13. Every deductive system D of X contains the upper GE-set Xb
a for all a, b ∈ D.

Proof. For every a, b ∈ D, let x ∈ Xb
a. Then a ≤ b ∗ x, i.e., a ∗ (b ∗ x) = 1. It follows from

(GE2) and (D2) that x = 1 ∗ x = (a ∗ (b ∗ x)) ∗ x ∈ D. Hence Xb
a ⊆ D for all a, b ∈ D.

Theorem 3.14. If a subset D of X satisfies:

(∀a, b ∈ D)(Xb
a ⊆ D),(23)

then D is a deductive system of X.

Proof. Let D be a subset of a GE-algebra X that satisfies the condition (23). Then 1 ∈ Xb
a ⊆

D. Let x, y, z ∈ X be such that x ∗ (y ∗ z) ∈ D and y ∈ D. The condition (8) induces
(x ∗ (y ∗ z)) ∗ (y ∗ (x ∗ z)) = 1. Hence x ∗ z ∈ Xb

a ⊆ D for a := x ∗ (y ∗ z) and b := y. It follows
from Theorem 3.8 that D is a deductive system of X.
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By the combination of Theorem 3.13 and Theorem 3.14, we have a characterization of a
deductive system as follows.

Theorem 3.15. A subset D of X is a deductive system of X if and only if it satisfies (23).

Theorem 3.16. Every deductive system D of X is represented by the union of the upper
GE-sets for all a, b ∈ D.

Proof. Let D be a deductive system of X. If x ∈ D, then clearly x ∈ X1
x and thus

D ⊆
∪
x∈D

X1
x ⊆

∪
a,b∈D

Xb
a.

If y ∈
∪

a,b∈D
Xb

a, then y ∈ Xb
a for some a, b ∈ D and so y ∈ D by Theorem 3.13. This shows

that
∪

a,b∈D
Xb

a ⊆ D. Therefore D =
∪

a,b∈D
Xb

a.

Corollary 3.17. If D is a deductive system of X, then D =
∪

x∈D
X1

x.

Definition 3.18. A nonempty subset D of X is called a vivid deductive system of X if it
satisfies (D1) and

(∀x, y, z ∈ X)(x ∈ D, x ∗ (y ∗ z) ∈ D ⇒ ((z ∗ y) ∗ y) ∗ z ∈ D).(24)

Example 3.19. Let X = {0, 1, 2, 3, 4} be a set with the Cayley table which is given in Table
3. Then (X, ∗, 1) is a GE-algebra. It is routine to verify that D := {0, 1, 2} is a vivid deductive

Table 3. Cayley table for the binary operation “∗”

∗ 0 1 2 3 4

0 1 1 2 3 4

1 0 1 2 3 4

2 1 1 1 3 3

3 0 1 1 1 1

4 0 1 2 1 1

system of X.

It is clear that D := {1} is a deductive system of X, but it is not a vivid deductive system
of X as seen in the following example.
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Table 4. Cayley table for the binary operation “∗”

∗ 0 1 2 3 4

0 1 1 1 1 4

1 0 1 2 3 4

2 0 1 1 1 4

3 0 1 2 1 1

4 1 1 1 3 1

Example 3.20. Let X = {0, 1, 2, 3, 4} be a set with the Cayley table which is given in Table
4. Then (X, ∗, 1) is a GE-algebra. The set D := {1} is not a vivid deductive system of X since
1 ∈ D and 1 ∗ (0 ∗ 2) = 1 ∗ 1 = 1 ∈ D but

((2 ∗ 0) ∗ 0) ∗ 2 = (0 ∗ 0) ∗ 2 = 1 ∗ 2 = 2 /∈ D.

Question 3.21. If X is a left exchangeable and transitive GE-algebra, then is the set D := {1}
a vivid deductive system of X?

The answer to Question 3.21 is negative as seen in the following example.

Example 3.22. Let X = {0, 1, 2, 3, 4} be a set with the Cayley table which is given in Table
5. Then (X, ∗, 1) is a GE-algebra which is left exchangeable and transitive. We can observe

Table 5. Cayley table for the binary operation “∗”

∗ 0 1 2 3 4

0 1 1 2 1 1

1 0 1 2 3 4

2 1 1 1 1 1

3 0 1 2 1 1

4 0 1 2 1 1

that D := {1} is not a vivid deductive system of X since 1 ∈ D and 1 ∗ (2 ∗ 0) = 1 ∗ 1 = 1 ∈ D

but

((0 ∗ 2) ∗ 2) ∗ 0 = (2 ∗ 2) ∗ 0 = 1 ∗ 0 = 0 /∈ D.

We discuss relationship between deductive system and vivid deductive system.

Theorem 3.23. Every vivid deductive system is a deductive system.
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Proof. Let D be a vivid deductive system of X. Note that 1 ∈ D by (GE1) and (D1). We
first show that

(∀x, y ∈ X)(x ∈ D, x ∗ y ∈ D ⇒ y ∈ D).(25)

Let x, y ∈ X be such that x ∈ D and x ∗ y ∈ D. Then x ∗ (1 ∗ y) = x ∗ y ∈ D by (GE2), and
so y = ((y ∗ 1) ∗ 1) ∗ y ∈ D by (GE2), (5) and (24). For every x ∈ X and y, z ∈ D, we have

y ∗ ((y ∗ (z ∗ x)) ∗ (z ∗ x)) = y ∗ ((y ∗ (z ∗ x)) ∗ (y ∗ (z ∗ x))) = y ∗ 1 = 1 ∈ D

by (GE1), (GE3) and (5). It follows from (25) that (y ∗ (z ∗ x)) ∗ (z ∗ x) ∈ D. Hence

z ∗ ((y ∗ (z ∗ x)) ∗ x) = z ∗ ((y ∗ (z ∗ x)) ∗ (z ∗ x)) ∈ D

by (GE3) and (D1), and thus (y ∗ (z ∗ x)) ∗ x ∈ D by (25). Therefore D is a deductive system
of X.

The following example shows that any deductive system may not be a vivid deductive
system.

Example 3.24. Let X = {0, 1, 2, 3, 4} be a set with the Cayley table which is given in Table
6.

Table 6. Cayley table for the binary operation “∗”

∗ 0 1 2 3 4

0 1 1 1 1 1

1 0 1 2 3 4

2 0 1 1 3 3

3 0 1 1 1 1

4 0 1 1 1 1

Then (X, ∗, 1) is a GE-algebra and it is routine to verify that D := {1, 2} is a deductive system
of X. But it is not a vivid deductive system of X since 1 ∈ D and 1 ∗ (0 ∗ 3) = 1 ∗ 1 = 1 ∈ D

but
((3 ∗ 0) ∗ 0) ∗ 3 = (0 ∗ 0) ∗ 3 = 1 ∗ 3 = 3 /∈ D.

We provide conditions for a deductive system to be a vivid deductive system.

Theorem 3.25. A deductive system D of X is vivid if and only if it satisfies:

(∀y, z ∈ X)(y ∗ z ∈ D ⇒ ((z ∗ y) ∗ y) ∗ z ∈ D).(26)
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Proof. Assume that D is a vivid deductive system of X. Let y, z ∈ X be such that y ∗ z ∈
D. Then 1 ∗ (y ∗ z) = y ∗ z ∈ D by (GE2), which implies from Lemma 3.3 and (24) that
((z ∗ y) ∗ y) ∗ z ∈ D.

Conversely, let D be a deductive system of X that satisfies (26). Let x, y, z ∈ X be such
that x ∈ D and x ∗ (y ∗ z) ∈ D. Then

y ∗ z = 1 ∗ (y ∗ z) = ((x ∗ (y ∗ z)) ∗ (x ∗ (y ∗ z))) ∗ (y ∗ z) ∈ D

by (GE1), (GE2) and (D2). It follows from (26) that ((z ∗ y) ∗ y) ∗ z ∈ D. Therefore D is a
vivid deductive system of X.

Given a subset D of X, consider the next assertion:

(∀x, y ∈ X)((x ∗ y) ∗ x ∈ D ⇒ x ∈ D).(27)

In the following example, we can verify that any deductive system D of X does not satisfy
the condition (27).

Example 3.26. In Example 3.2, we can observe that the deductive system D = {0, 1} of X
does not satisfy the condition (27) since (2 ∗ 4) ∗ 2 = 4 ∗ 2 = 1 ∈ D but 2 /∈ D.

Proof. Let x, y ∈ X be such that x ∈ D and x ∗ y = 1. Then x ∗ y ∈ D by Lemma 3.3. It
follows from (GE1), (GE2) and (D2) that y = 1 ∗ y = ((x ∗ y) ∗ (x ∗ y)) ∗ y ∈ D.

Theorem 3.27. Let X be a transitive GE-algebra. If a deductive system D of X satisfies the
condition (27), then it is a vivid deductive system of X.

Proof. Assume that a deductive system D of X satisfies the condition (27). Let x, y, z ∈ X be
such that x ∈ D and x ∗ ((y ∗ z) ∗ y) ∈ D. Then

(y ∗ z) ∗ y = 1 ∗ ((y ∗ z) ∗ y)

= ((x ∗ ((y ∗ z) ∗ y)) ∗ (x ∗ ((y ∗ z) ∗ y))) ∗ ((y ∗ z) ∗ y) ∈ D

by (GE1), (GE2) and (D2). Thus y ∈ D by (27). This shows that

(∀x, y, z ∈ X)(x ∈ D, x ∗ ((y ∗ z) ∗ y) ∈ D ⇒ y ∈ D).(28)
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Let y, z ∈ X be such that y ∗ z ∈ D. Since X is transitive, the combination of (7) and (13)
induces (((z ∗ y) ∗ y) ∗ z) ∗ y ≤ z ∗ y, and so

y ∗ z ≤ ((z ∗ y) ∗ y) ∗ ((z ∗ y) ∗ z)

≤ (z ∗ y) ∗ (((z ∗ y) ∗ y) ∗ z)

≤ ((((z ∗ y) ∗ y) ∗ z) ∗ y) ∗ (((z ∗ y) ∗ y) ∗ z).

It follows from (GE2) and Corollary 3.5 that

1 ∗ (((((z ∗ y) ∗ y) ∗ z) ∗ y) ∗ (((z ∗ y) ∗ y) ∗ z))

= ((((z ∗ y) ∗ y) ∗ z) ∗ y) ∗ (((z ∗ y) ∗ y) ∗ z) ∈ D.

Hence ((z ∗ y) ∗ y) ∗ z ∈ D by (28). Therefore D is a vivid deductive system of X by Theorem
3.25.

Theorem 3.28. The intersection of two vivid deductive systems is also a vivid deductive
system.

Proof. Let Let D1 and D2 be vivid deductive systems of X. Then

X ∗ (D1 ∩D2) = {x ∗ a | x ∈ X, a ∈ D1 ∩D2}

= {x ∗ a | x ∈ X, a ∈ D1} ∩ {x ∗ a | x ∈ X, a ∈ D2}

⊆ D1 ∩D2.

Let x, y, z ∈ X be such that y, z ∈ D1 ∩ D2. Then y, z ∈ D1 and y, z ∈ D2. It follows from
(D2) that (y ∗ (z ∗ x)) ∗ x ∈ D1 and (y ∗ (z ∗ x)) ∗ x ∈ D2. Hence (y ∗ (z ∗ x)) ∗ x ∈ D1 ∩D2,
and therefore D1 ∩D2 is a vivid deductive system of X.

The following example shows that the union of vivid deductive systems may not be a vivid
deductive system.

Example 3.29. Let X = {0, 1, 2, 3, 4, 5} be a set with the Cayley table which is given in Table
7. Then (X, ∗, 1) is a GE-algebra. Let D1 := {1, 3} and D2 := {1, 4}. Then we can observe
that D1 and D2 are vivid deductive systems of X. But D1 ∪ D2 := {1, 3, 4} is not a vivid
deductive system of X since 3 ∈ D1 ∪D2 and 3 ∗ (0 ∗ 2) = 3 ∗ 2 = 4 ∈ D1 ∪D2 but

((2 ∗ 0) ∗ 0) ∗ 2 = (0 ∗ 0) ∗ 2 = 1 ∗ 2 = 2 /∈ D1 ∪D2.

Question 3.30. Consider deductive systems D1 and D2 of X with D1 ⊆ D2. If D1 is a vivid
deductive system of X, is D2 also a vivid deductive system of X?
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Table 7. Cayley table for the binary operation “∗”

∗ 0 1 2 3 4 5

0 1 1 2 3 4 2

1 0 1 2 3 4 5

2 0 1 1 1 1 1

3 0 1 4 1 4 4

4 0 1 3 3 1 3

5 0 1 1 1 1 1

The answer to Question 3.30 is negative as seen in the following example.

Example 3.31. Let X = {0, 1, 2, 3, 4, 5} be a set with the Cayley table which is given in Table
8.

Table 8. Cayley table for the binary operation “∗”

∗ 0 1 2 3 4 5

0 1 1 2 3 2 1

1 0 1 2 3 4 5

2 5 1 1 1 5 5

3 0 1 1 1 0 0

4 1 1 1 3 1 1

5 1 1 2 3 2 1

Then (X, ∗, 1) is a GE-algebra. Clearly D1 = {1} and D2 = {0, 1, 5} are deductive systems
of X and D1 ⊆ D2. We can observe that D1 is a vivid deductive system of X. But D2

is not a vivid deductive system of X since 5 ∈ D2 and 5 ∗ (3 ∗ 4) = 5 ∗ 0 = 1 ∈ D2 but
((4 ∗ 3) ∗ 3) ∗ 4 = (3 ∗ 3) ∗ 4 = 1 ∗ 4 = 4 /∈ D2.

We explore conditions in which the answer to Question 3.30 can be positive.

Theorem 3.32. (Extension property) Assume that X is a transitive GE-algebra. Let D1 and
D2 be deductive systems of X with D1 ⊆ D2. If D1 is a vivid deductive system of X, then so
is D2.

Proof. Assume that D1 is a vivid deductive system of X and let y, z ∈ X be such that
y ∗ z ∈ D2. Using (GE1), (GE3) and (5), we get

y ∗ ((y ∗ z) ∗ z) = y ∗ ((y ∗ z) ∗ (y ∗ z)) = y ∗ 1 = 1 ∈ D1,
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and so ((((y ∗ z) ∗ z) ∗ y) ∗ y) ∗ ((y ∗ z) ∗ z) ∈ D1 ⊆ D2 by Theorem 3.25. Hence

(y ∗ z) ∗ (((((y ∗ z) ∗ z) ∗ y) ∗ y) ∗ z)

= (y ∗ z) ∗ (((((y ∗ z) ∗ z) ∗ y) ∗ y) ∗ ((y ∗ z) ∗ z)) ∈ D2

by (GE3) and (D1). It follows from (GE1), (GE2) and (D2) that

a ∗ z = 1 ∗ (a ∗ z) = (((y ∗ z) ∗ (a ∗ z)) ∗ ((y ∗ z) ∗ (a ∗ z))) ∗ (a ∗ z) ∈ D2

where a := ((((y∗z)∗z)∗y)∗y). Since X is transitive, the combination of (7) and (13) induces
(a ∗ z) ∗ (((z ∗ y) ∗ y) ∗ z) = 1. Hence ((z ∗ y) ∗ y) ∗ z ∈ D2 by Corollary 3.5. Therefore D2 is a
vivid deductive system of X by Theorem 3.25.

Corollary 3.33. Let X be a transitive GE-algebra. Then {1} is a vivid deductive system of
X if and only if all deductive systems of X are vivid.

The following example describes Theorem 3.32.

Example 3.34. Let X = {0, 1, 2, 3, 4} be a set with the Cayley table which is given in Table
9.

Table 9. Cayley table for the binary operation “∗”

∗ 0 1 2 3 4

0 1 1 2 3 4

1 0 1 2 3 4

2 1 1 1 1 1

3 0 1 4 1 4

4 1 1 3 3 1

Then (X, ∗, 1) is a transitive GE-algebra in which {1} is not a vivid deductive system of X

since 2 ∗ 0 = 1 ∈ {1} but ((0 ∗ 2) ∗ 2) ∗ 0 = (2 ∗ 2) ∗ 0 = 1 ∗ 0 = 0 /∈ {1}. Let D1 = {0, 1} and
D2 = {0, 1, 4}. Then D1 and D2 are deductive systems of X with D1 ⊆ D2, and D1 is a vivid
deductive system of X. We can verify that D2 is also a deductive system of X.

4. Conclusion

We have introduced the concepts of a deductive system, a vivid deductive system of a
GE-algebra and investigated the relation between them. We have observed that every vivid
deductive system of a GE-algebra is a deductive system of a GE-algebra but not vice-versa.
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We have provided conditions for a deductive system to be a vivid deductive system of a GE-
algebra. We have introduced the notion of upper GE-set of a and b in a GE-algebra X and
characterized deductive system in terms of upper GE-set. We have established the extension
property of the vivid deductive system.
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