

Algebraic Structures and Their Applications

Algebraic Structures and Their Applications Vol. 9 No. 1 (2022) pp 53-67.

Research Paper

DEDUCTIVE SYSTEMS OF GE-ALGEBRAS

YOUNG BAE JUN AND RAVIKUMAR BANDARU*

ABSTRACT. A new sub-structure called (vivid) deductive system is introduced and their properties are examined. Conditions for a subset to be a deductive system are provided. The notion of upper GE-set is also introduced, and an example to show that any upper GE-set may not be a deductive system are supplied. Conditions for an upper GE-set to be a deductive system are provided. An upper GE-set is used to consider conditions for a subset to be a deductive system. The characterization of deductive system is established, and relationship between deductive system and vivid deductive system are created. Conditions for a deductive system to be a vivid deductive system are given, and the extension property for vivid deductive system is constructed.

1. INTRODUCTION

Following the introduction of Hilbert algebras by L. Henkin in early 50-ties and A. Diego[6], the algebra and related concepts were developed by D. Busneag [3, 4, 5]. Y. B. Jun gave

DOI: 10.22034/as.2021.2319

MSC(2010): Primary: 03G25; Secondary: 06F35.

Keywords: Deductive system, Vivid deductive system, Upper GE-set.

Received: 17 August 2021, Accepted: 20 September 2021.

 $\ensuremath{\textcircled{O}}$ 2022 Yazd University.

^{*}Corresponding author

characterizations of deductive systems in Hilbert algebras (see [7, 8]), introduced the notion of commutative Hilbert algebras and gave some characterizations of a commutative Hilbert algebra (see [8]). In mathematics, Hilbert algebras occur in the theory of von Neumann algebras in: Commutation theorem and Tomita-Takesaki theory, and it is an important tool for certain investigations in algebraic logic since they can be considered as fragments of any propositional logic containing a logical connective implication (\rightarrow) and the constant 1 which is considered as the logical value "true". The study of generalization of one known algebraic structure is also an important research task. As a generalization of a Hilbert algebra, Bandaru, Borumand Saeid and Jun[?] introduced the notion of a GE-algebra, and investigated several properties. Different new substructures have been introduced in a GE-algebra such as voluntary GE-filters, belligerent GE-filters, imploring GE-filters and prominent GE-filters and studied their properties(see [1, 2, 9]).

In this manuscript, we introduce a new sub-structure called (vivid) deductive system and examine their properties. We provide conditions for a subset to be a deductive system. We also introduce the notion of upper GE-set, and give example to show that any upper GE-set may not be a deductive system. We provide conditions for an upper GE-set to be a deductive system. Using an upper GE-set, we consider conditions for a subset to be a deductive system. We establish characterization of deductive system. We discuss relationship between deductive system and vivid deductive system. We provide conditions for a deductive system to be a vivid deductive system. We build the extension property for vivid deductive system.

2. Preliminaries

Definition 2.1 ([?]). By a *GE-algebra* we mean a non-empty set X with a constant 1 and a binary operation "*" satisfying the following axioms:

(GE1) u * u = 1, (GE2) 1 * u = u, (GE3) u * (v * w) = u * (v * (u * w))for all $u, v, w \in X$.

In a GE-algebra X, a binary relation " \leq " is defined by

(1)
$$(\forall x, y \in X) (x \le y \Leftrightarrow x * y = 1).$$

Definition 2.2 ([?, 1]). A GE-algebra X is said to be

• *transitive* if it satisfies:

(2)
$$(\forall x, y, z \in X) (x * y \le (z * x) * (z * y)).$$

Alg. Struc. Appl. Vol. 9 No. 1 (2022) 53-67.

• *left exchangeable* if it satisfies:

(3)
$$(\forall x, y, z \in X) (x * (y * z) = y * (x * z))$$

• *belligerent* if it satisfies:

(4)
$$(\forall x, y, z \in X) (x * (y * z) = (x * y) * (x * z)).$$

Proposition 2.3 ([?]). Every GE-algebra X satisfies the following items.

(5) $(\forall u \in X) (u * 1 = 1).$

(6)
$$(\forall u, v \in X) (u * (u * v) = u * v)$$

- (7) $(\forall u, v \in X) (u \le v * u).$
- (8) $(\forall u, v, w \in X) (u * (v * w) \le v * (u * w)).$

(9)
$$(\forall u \in X) (1 \le u \implies u = 1).$$

(10)
$$(\forall u, v \in X) (u \le (v * u) * u)$$

(11)
$$(\forall u, v \in X) (u \le (u * v) * v)$$

(12) $(\forall u, v, w \in X) (u \le v * w \Leftrightarrow v \le u * w).$

If X is transitive, then

(13)
$$(\forall u, v, w \in X) (u \le v \implies w * u \le w * v, v * w \le u * w).$$

(14)
$$(\forall u, v, w \in X) (u * v \le (v * w) * (u * w)).$$

Lemma 2.4 ([?]). In a GE-algebra X, the following facts are equivalent each other.

(15)
$$(\forall x, y, z \in X) (x * y \le (z * x) * (z * y)).$$

(16)
$$(\forall x, y, z \in X) (x * y \le (y * z) * (x * z)).$$

Definition 2.5 ([?]). A subset D of a GE-algebra X is called a *GE-filter* of X if it satisfies:

$$(17) 1 \in D,$$

(18)
$$(\forall x, y \in X)(x * y \in D, x \in D \Rightarrow y \in D).$$

3. Deductive systems

In what follows let X denote a GE-algebra unless otherwise specified.

Definition 3.1. A nonempty subset D of X is called a *deductive system* of X if it satisfies:

 $\begin{aligned} & (\mathrm{D1}) \ X*D := \{x*a \mid x \in X, a \in D\} \subseteq D. \\ & (\mathrm{D2}) \ (\forall x,y,z \in X) \ (y,z \in D \ \Rightarrow \ (y*(z*x))*x \in D). \end{aligned}$

Example 3.2. Let $X = \{0, 1, 2, 3, 4\}$ be a set with the Cayley table which is given in Table 1.

*	0	1	2	3	4
0	1	1	2	3	3
1	0	1	2	3	4
2	0	1	1	4	4
3	0	1	1	1	1
4	0	1	1	1	1

TABLE 1. Cayley table for the binary operation "*"

Then (X, *, 1) is a GE-algebra, and it is routine to verify that $D := \{0, 1\}$ is a deductive system of X.

Lemma 3.3. Every deductive system contains the constant 1.

Proof. Let D be a deductive system of X. For every $x \in D$, we have

$$1 = x * x \in D * D \subseteq X * D \subseteq D$$

by (GE1). This completes the proof. \Box

Lemma 3.4. Every deductive system of X satisfies:

(19)
$$(\forall x, y \in X)(y \in D \Rightarrow (y * x) * x \in D).$$

Proof. If we take z = 1 in (D2) and use (GE2), then $(y * x) * x = (y * (1 * x)) * x \in D$.

Corollary 3.5. Every deductive system of X satisfies:

(20)
$$(\forall x, y \in X)(y \in D, y \le x \Rightarrow x \in D).$$

Proof. Let $x, y \in X$ be such that $y \in D$ and $y \leq x$. Then y * x = 1, and so $x = 1 * x = (y * x) * x \in D$. \Box

We consider a subset D of X that satisfies:

(21)
$$(\forall x, y, z \in X)(x * (y * z) \in D, y \in D \implies x * z \in D).$$

Lemma 3.6. If a subset D of X satisfies two conditions (17) and (21), then D satisfies (20).

Proof. Assume that a subset D of X satisfies two conditions (17) and (21). Let $x, y \in X$ be such that $y \in D$ and $y \leq x$. Then $1 * (y * x) = 1 * 1 = 1 \in D$, and so $x = 1 * x \in D$. Hence D satisfies (20). \Box

Theorem 3.7. Every deductive system D of X satisfies two conditions (17) and (21).

Proof. Let D be a deductive system of a GE-algebra X. Then D contains the constant 1 by Lemma 3.3. Let $x, y, z \in D$ be such that $x*(y*z) \in D$ and $y \in D$. Then (x*(y*z))*(y*(x*z)) = 1 by (8). It follows from (GE2) and (D2) that

$$x * z = 1 * (x * z) = ((x * (y * z)) * (y * (x * z))) * (x * z) \in D.$$

Hence (21) is valid. \Box

Theorem 3.8. If a subset D of X satisfies two conditions (17) and (21), then D is a deductive system of X.

Proof. Let D be a subset of X that satisfies (17) and (21). Let $y \in X * D$. Then y = x * a for some $x \in X$ and $a \in D$. Then $x * (a * a) = x * 1 = 1 \in D$ by (GE1), (5) and (17). It follows from (21) that $y = x * a \in D$. Hence $X * D \subseteq D$. Let $x \in X$ and $y, z \in D$. Using (GE1), (GE2), (GE3), (5) and (17) and we have

$$1 * (y * ((y * (z * x)) * (z * x))) = y * ((y * (z * x)) * (z * x))$$
$$= y * ((y * (z * x)) * (y * (z * x))) = y * 1 = 1 \in D.$$

It follows from (GE2) and (21) that

$$(y * (z * x)) * (z * x) = 1 * ((y * (z * x)) * (z * x)) \in D.$$

Hence

$$1 * (z * ((y * (z * x)) * x)) = z * ((y * (z * x)) * x)$$
$$= z * ((y * (z * x)) * (z * x)) \in D$$

which implies from (GE2) and (21) that $(y * (z * x)) * x \in D$. Therefore D is a deductive system of X. \Box

For any $a, b \in X$, we consider the set

(22)
$$X_a^b := \{x \in X \mid a \le b * x\},\$$

which is called the *upper GE-set* of a and b in X.

Example 3.9. Let $X = \{0, 1, 2, 3, 4\}$ be a set with the Cayley table which is given in Table 2.

*	0	1	2	3	4
0	1	1	1	3	3
1	0	1	2	3	4
2	0	1	1	4	4
3	1	1	2	1	1
4	0	1	1	1	1

TABLE 2. Cayley table for the binary operation "*"

Then (X, *, 1) is a GE-algebra and all upper GE-sets are calculated as follows.

$$\begin{split} X_0^0 &= X_0^1 = X_0^2 = X_1^0 = X_2^0 = \{0, 1, 2\}, \\ X_1^1 &= \{1\}, \\ X_1^2 &= X_2^1 = X_2^2 = \{1, 2\}, \\ X_1^3 &= X_3^1 = X_3^3 = \{0, 1, 3, 4\}, \\ X_1^4 &= X_2^4 = X_4^1 = X_4^2 = X_4^4 = \{1, 2, 3, 4\}, \\ X_0^3 &= X_0^4 = X_2^3 = X_3^0 = X_3^2 = X_3^4 = X_4^0 = X_4^3 = X_4^0 \end{split}$$

Proposition 3.10. In a GE-algebra X, we have

(i) $(\forall a, b \in X) \ (1, a, b \in X_a^b).$ (ii) $(\forall a, b \in X) \ (b \le x \text{ for all } x \in X \implies X_a^b = X = X_b^a).$

Proof. (i) is straightforward by (GE1), (5) and (7). Let $a, b \in X$ be such that $b \leq x$ for all $x \in X$. For any $z \in X$, we have a * (b * z) = a * 1 = 1, that is, $a \leq b * z$. Thus $z \in X_a^b = X_b^a$. Therefore (ii) is valid. \Box

The following example shows that the upper GE-set of a and b in X is not a deductive system of X.

Example 3.11. In Example 3.9, we can observe that $X_1^3 = \{0, 1, 3, 4\}$ and it is not a deductive system of X since $3, 4 \in X_1^3$ but $(3 * (4 * 2)) * 2 = 2 \notin X_1^3$.

We provide conditions for the upper GE-set to be a deductive system.

Theorem 3.12. In a belligerent GE-algebra X, the upper GE-set of a and b in X is a deductive system of X.

Proof. Assume that X is a belligerent GE-algebra. Let $x \in X * X_a^b$. Then x = y * z for some $y \in X$ and $z \in X_a^b$. Hence $a \leq b * z$, i.e., a * (b * z) = 1. It follows from (5) and (4) that

$$a * (b * (y * z)) = a * ((b * y) * (b * z))$$
$$= (a * (b * y)) * (a * (b * z))$$
$$= (a * (b * y)) * 1 = 1.$$

Hence $x = y * z \in X_a^b$, and thus $X * X_a^b \subseteq X_a^b$. Let $x \in X$ and $y, z \in X_a^b$. Then $a \leq b * y$ and $a \leq b * z$, i.e., a * (b * y) = 1 and a * (b * z) = 1. The combination of (GE1), (GE2) and (4) induces

$$a * (b * ((y * (z * x)) * x)) = a * ((b * (y * (z * x))) * (b * x)))$$

$$= (a * (b * (y * (z * x)))) * (a * (b * x))$$

$$= ((a * (b * y)) * (a * (b * (z * x)))) * (a * (b * x)))$$

$$= (1 * (a * (b * (z * x)))) * (a * (b * x))$$

$$= (((a * (b * z)) * (a * (b * x)))) * (a * (b * x)))$$

$$= ((1 * (a * (b * x)))) * (a * (b * x)))$$

$$= (a * (b * x)) * (a * (b * x)) = 1,$$

that is, $a \leq b * ((y * (z * x)) * x)$. Hence $(y * (z * x)) * x \in X_a^b$. In conclusion, X_a^b is a deductive system of X. \Box

Theorem 3.13. Every deductive system D of X contains the upper GE-set X_a^b for all $a, b \in D$.

Proof. For every $a, b \in D$, let $x \in X_a^b$. Then $a \leq b * x$, i.e., a * (b * x) = 1. It follows from (GE2) and (D2) that $x = 1 * x = (a * (b * x)) * x \in D$. Hence $X_a^b \subseteq D$ for all $a, b \in D$. \Box

Theorem 3.14. If a subset D of X satisfies:

(23)
$$(\forall a, b \in D)(X_a^b \subseteq D),$$

then D is a deductive system of X.

Proof. Let D be a subset of a GE-algebra X that satisfies the condition (23). Then $1 \in X_a^b \subseteq D$. D. Let $x, y, z \in X$ be such that $x * (y * z) \in D$ and $y \in D$. The condition (8) induces (x * (y * z)) * (y * (x * z)) = 1. Hence $x * z \in X_a^b \subseteq D$ for a := x * (y * z) and b := y. It follows from Theorem 3.8 that D is a deductive system of X. \Box By the combination of Theorem 3.13 and Theorem 3.14, we have a characterization of a deductive system as follows.

Theorem 3.15. A subset D of X is a deductive system of X if and only if it satisfies (23).

Theorem 3.16. Every deductive system D of X is represented by the union of the upper *GE*-sets for all $a, b \in D$.

Proof. Let D be a deductive system of X. If $x \in D$, then clearly $x \in X_x^1$ and thus

$$D \subseteq \bigcup_{x \in D} X_x^1 \subseteq \bigcup_{a,b \in D} X_a^b.$$

If $y \in \bigcup_{a,b\in D} X_a^b$, then $y \in X_a^b$ for some $a, b \in D$ and so $y \in D$ by Theorem 3.13. This shows that $\bigcup_{a,b\in D} X_a^b \subseteq D$. Therefore $D = \bigcup_{a,b\in D} X_a^b$. \Box

Corollary 3.17. If D is a deductive system of X, then $D = \bigcup_{x \in D} X_x^1$.

Definition 3.18. A nonempty subset D of X is called a *vivid deductive system* of X if it satisfies (D1) and

$$(24) \qquad (\forall x, y, z \in X)(x \in D, x * (y * z) \in D \implies ((z * y) * y) * z \in D).$$

Example 3.19. Let $X = \{0, 1, 2, 3, 4\}$ be a set with the Cayley table which is given in Table 3. Then (X, *, 1) is a GE-algebra. It is routine to verify that $D := \{0, 1, 2\}$ is a vivid deductive

TABLE 3. Cayley table for the binary operation "*"

*	0	1	2	3	4
0	1	1	2	3	4
1	0	1	2	3	4
2	1	1	1	3	3
3	0	1	1	1	1
4	0	1	2	1	1

system of X.

It is clear that $D := \{1\}$ is a deductive system of X, but it is not a vivid deductive system of X as seen in the following example.

TABLE 4. Cayley table for the binary operation "*"

*	0	1	2	3	4
0	1	1	1	1	4
1	0	1	2	3	4
2	0	1	1	1	4
3	0	1	2	1	1
4	1	1	1	3	1

Example 3.20. Let $X = \{0, 1, 2, 3, 4\}$ be a set with the Cayley table which is given in Table 4. Then (X, *, 1) is a GE-algebra. The set $D := \{1\}$ is not a vivid deductive system of X since $1 \in D$ and $1 * (0 * 2) = 1 * 1 = 1 \in D$ but

$$((2*0)*0)*2 = (0*0)*2 = 1*2 = 2 \notin D.$$

Question 3.21. If X is a left exchangeable and transitive GE-algebra, then is the set $D := \{1\}$ a vivid deductive system of X?

The answer to Question 3.21 is negative as seen in the following example.

Example 3.22. Let $X = \{0, 1, 2, 3, 4\}$ be a set with the Cayley table which is given in Table 5. Then (X, *, 1) is a GE-algebra which is left exchangeable and transitive. We can observe

*	0	1	2	3	4
0	1	1	2	1	1
1	0	1	2	3	4
2	1	1	1	1	1
3	0	1	2	1	1
4	0	1	2	1	1

TABLE 5. Cayley table for the binary operation "*"

that $D := \{1\}$ is not a vivid deductive system of X since $1 \in D$ and $1 * (2 * 0) = 1 * 1 = 1 \in D$ but

$$((0*2)*2)*0 = (2*2)*0 = 1*0 = 0 \notin D.$$

We discuss relationship between deductive system and vivid deductive system.

Theorem 3.23. Every vivid deductive system is a deductive system.

Proof. Let D be a vivid deductive system of X. Note that $1 \in D$ by (GE1) and (D1). We first show that

(25)
$$(\forall x, y \in X)(x \in D, x * y \in D \Rightarrow y \in D).$$

Let $x, y \in X$ be such that $x \in D$ and $x * y \in D$. Then $x * (1 * y) = x * y \in D$ by (GE2), and so $y = ((y * 1) * 1) * y \in D$ by (GE2), (5) and (24). For every $x \in X$ and $y, z \in D$, we have

$$y*((y*(z*x))*(z*x)) = y*((y*(z*x))*(y*(z*x))) = y*1 = 1 \in D$$

by (GE1), (GE3) and (5). It follows from (25) that $(y * (z * x)) * (z * x) \in D$. Hence

$$z*((y*(z*x))*x) = z*((y*(z*x))*(z*x)) \in D$$

by (GE3) and (D1), and thus $(y * (z * x)) * x \in D$ by (25). Therefore D is a deductive system of X. \Box

The following example shows that any deductive system may not be a vivid deductive system.

Example 3.24. Let $X = \{0, 1, 2, 3, 4\}$ be a set with the Cayley table which is given in Table 6.

TABLE 6. Cayley table for the binary operation "
--

*	0	1	2	3	4
0	1	1	1	1	1
1	0	1	2	3	4
2	0	1	1	3	3
3	0	1	1	1	1
4	0	1	1	1	1

Then (X, *, 1) is a GE-algebra and it is routine to verify that $D := \{1, 2\}$ is a deductive system of X. But it is not a vivid deductive system of X since $1 \in D$ and $1 * (0 * 3) = 1 * 1 = 1 \in D$ but

$$((3 * 0) * 0) * 3 = (0 * 0) * 3 = 1 * 3 = 3 \notin D.$$

We provide conditions for a deductive system to be a vivid deductive system.

Theorem 3.25. A deductive system D of X is vivid if and only if it satisfies:

(26)
$$(\forall y, z \in X)(y * z \in D \implies ((z * y) * y) * z \in D).$$

Proof. Assume that D is a vivid deductive system of X. Let $y, z \in X$ be such that $y * z \in D$. D. Then $1 * (y * z) = y * z \in D$ by (GE2), which implies from Lemma 3.3 and (24) that $((z * y) * y) * z \in D$.

Conversely, let D be a deductive system of X that satisfies (26). Let $x, y, z \in X$ be such that $x \in D$ and $x * (y * z) \in D$. Then

$$y * z = 1 * (y * z) = ((x * (y * z)) * (x * (y * z))) * (y * z) \in D$$

by (GE1), (GE2) and (D2). It follows from (26) that $((z * y) * y) * z \in D$. Therefore D is a vivid deductive system of X. \Box

Given a subset D of X, consider the next assertion:

(27)
$$(\forall x, y \in X)((x * y) * x \in D \implies x \in D).$$

In the following example, we can verify that any deductive system D of X does not satisfy the condition (27).

Example 3.26. In Example 3.2, we can observe that the deductive system $D = \{0, 1\}$ of X does not satisfy the condition (27) since $(2 * 4) * 2 = 4 * 2 = 1 \in D$ but $2 \notin D$.

Proof. Let $x, y \in X$ be such that $x \in D$ and x * y = 1. Then $x * y \in D$ by Lemma 3.3. It follows from (GE1), (GE2) and (D2) that $y = 1 * y = ((x * y) * (x * y)) * y \in D$. \Box

Theorem 3.27. Let X be a transitive GE-algebra. If a deductive system D of X satisfies the condition (27), then it is a vivid deductive system of X.

Proof. Assume that a deductive system D of X satisfies the condition (27). Let $x, y, z \in X$ be such that $x \in D$ and $x * ((y * z) * y) \in D$. Then

$$\begin{split} (y*z)*y &= 1*((y*z)*y) \\ &= ((x*((y*z)*y))*(x*((y*z)*y)))*((y*z)*y) \in D \end{split}$$

by (GE1), (GE2) and (D2). Thus $y \in D$ by (27). This shows that

(28)
$$(\forall x, y, z \in X)(x \in D, x * ((y * z) * y) \in D \Rightarrow y \in D).$$

Let $y, z \in X$ be such that $y * z \in D$. Since X is transitive, the combination of (7) and (13) induces $(((z * y) * y) * z) * y \leq z * y$, and so

$$\begin{aligned} y * z &\leq ((z * y) * y) * ((z * y) * z) \\ &\leq (z * y) * (((z * y) * y) * z) \\ &\leq ((((z * y) * y) * z) * y) * (((z * y) * y) * z). \end{aligned}$$

It follows from (GE2) and Corollary 3.5 that

$$1 * (((((z * y) * y) * z) * y) * (((z * y) * y) * z))$$

= ((((z * y) * y) * z) * y) * (((z * y) * y) * z) \in D.

Hence $((z * y) * y) * z \in D$ by (28). Therefore D is a vivid deductive system of X by Theorem 3.25. \Box

Theorem 3.28. The intersection of two vivid deductive systems is also a vivid deductive system.

Proof. Let Let D_1 and D_2 be vivid deductive systems of X. Then

$$X * (D_1 \cap D_2) = \{x * a \mid x \in X, a \in D_1 \cap D_2\}$$
$$= \{x * a \mid x \in X, a \in D_1\} \cap \{x * a \mid x \in X, a \in D_2\}$$
$$\subseteq D_1 \cap D_2.$$

Let $x, y, z \in X$ be such that $y, z \in D_1 \cap D_2$. Then $y, z \in D_1$ and $y, z \in D_2$. It follows from (D2) that $(y * (z * x)) * x \in D_1$ and $(y * (z * x)) * x \in D_2$. Hence $(y * (z * x)) * x \in D_1 \cap D_2$, and therefore $D_1 \cap D_2$ is a vivid deductive system of X. \Box

The following example shows that the union of vivid deductive systems may not be a vivid deductive system.

Example 3.29. Let $X = \{0, 1, 2, 3, 4, 5\}$ be a set with the Cayley table which is given in Table 7. Then (X, *, 1) is a GE-algebra. Let $D_1 := \{1, 3\}$ and $D_2 := \{1, 4\}$. Then we can observe that D_1 and D_2 are vivid deductive systems of X. But $D_1 \cup D_2 := \{1, 3, 4\}$ is not a vivid deductive system of X since $3 \in D_1 \cup D_2$ and $3 * (0 * 2) = 3 * 2 = 4 \in D_1 \cup D_2$ but

$$((2*0)*0)*2 = (0*0)*2 = 1*2 = 2 \notin D_1 \cup D_2.$$

Question 3.30. Consider deductive systems D_1 and D_2 of X with $D_1 \subseteq D_2$. If D_1 is a vivid deductive system of X, is D_2 also a vivid deductive system of X?

TABLE 7. Cayley table for the binary operation	"*"
--	-----

*	0	1	2	3	4	5
0	1	1	2	3	4	2
1	0	1	2	3	4	5
2	0	1	1	1	1	1
3	0	1	4	1	4	4
4	0	1	3	3	1	3
5	0	1	1	1	1	1

The answer to Question 3.30 is negative as seen in the following example.

Example 3.31. Let $X = \{0, 1, 2, 3, 4, 5\}$ be a set with the Cayley table which is given in Table 8.

TABLE 8.	Cayley	table	for the	e binary	operation	"*"
----------	--------	-------	---------	----------	-----------	-----

*	0	1	2	3	4	5
0	1	1	2	3	2	1
1	0	1	2	3	4	5
2	5	1	1	1	5	5
3	0	1	1	1	0	0
4	1	1	1	3	1	1
5	1	1	2	3	2	1

Then (X, *, 1) is a GE-algebra. Clearly $D_1 = \{1\}$ and $D_2 = \{0, 1, 5\}$ are deductive systems of X and $D_1 \subseteq D_2$. We can observe that D_1 is a vivid deductive system of X. But D_2 is not a vivid deductive system of X since $5 \in D_2$ and $5 * (3 * 4) = 5 * 0 = 1 \in D_2$ but $((4 * 3) * 3) * 4 = (3 * 3) * 4 = 1 * 4 = 4 \notin D_2$.

We explore conditions in which the answer to Question 3.30 can be positive.

Theorem 3.32. (Extension property) Assume that X is a transitive GE-algebra. Let D_1 and D_2 be deductive systems of X with $D_1 \subseteq D_2$. If D_1 is a vivid deductive system of X, then so is D_2 .

Proof. Assume that D_1 is a vivid deductive system of X and let $y, z \in X$ be such that $y * z \in D_2$. Using (GE1), (GE3) and (5), we get

$$y * ((y * z) * z) = y * ((y * z) * (y * z)) = y * 1 = 1 \in D_1,$$

and so $((((y * z) * z) * y) * y) * ((y * z) * z) \in D_1 \subseteq D_2$ by Theorem 3.25. Hence

$$(y * z) * (((((y * z) * z) * y) * y) * z)$$

= (y * z) * (((((y * z) * z) * y) * y) * ((y * z) * z)) \in D_2

by (GE3) and (D1). It follows from (GE1), (GE2) and (D2) that

$$a * z = 1 * (a * z) = (((y * z) * (a * z)) * ((y * z) * (a * z))) * (a * z) \in D_2$$

where a := ((((y*z)*z)*y)*y). Since X is transitive, the combination of (7) and (13) induces (a*z)*(((z*y)*y)*z) = 1. Hence $((z*y)*y)*z \in D_2$ by Corollary 3.5. Therefore D_2 is a vivid deductive system of X by Theorem 3.25. \Box

Corollary 3.33. Let X be a transitive GE-algebra. Then $\{1\}$ is a vivid deductive system of X if and only if all deductive systems of X are vivid.

The following example describes Theorem 3.32.

Example 3.34. Let $X = \{0, 1, 2, 3, 4\}$ be a set with the Cayley table which is given in Table 9.

*	0	1	2	3	4
0	1	1	2	3	4
1	0	1	2	3	4
2	1	1	1	1	1
3	0	1	4	1	4
4	1	1	3	3	1

TABLE 9. Cayley table for the binary operation "*"

Then (X, *, 1) is a transitive GE-algebra in which $\{1\}$ is not a vivid deductive system of X since $2 * 0 = 1 \in \{1\}$ but $((0 * 2) * 2) * 0 = (2 * 2) * 0 = 1 * 0 = 0 \notin \{1\}$. Let $D_1 = \{0, 1\}$ and $D_2 = \{0, 1, 4\}$. Then D_1 and D_2 are deductive systems of X with $D_1 \subseteq D_2$, and D_1 is a vivid deductive system of X. We can verify that D_2 is also a deductive system of X.

4. CONCLUSION

We have introduced the concepts of a deductive system, a vivid deductive system of a GE-algebra and investigated the relation between them. We have observed that every vivid deductive system of a GE-algebra is a deductive system of a GE-algebra but not vice-versa.

We have provided conditions for a deductive system to be a vivid deductive system of a GEalgebra. We have introduced the notion of upper GE-set of a and b in a GE-algebra X and characterized deductive system in terms of upper GE-set. We have established the extension property of the vivid deductive system.

5. Acknowledgments

The authors wish to thank the anonymous reviewers for their valuable suggestions.

References

- R. K. Bandaru, A. Borumand Saeid and Y. B. Jun, *Belligerent GE-filter in GE-algebras*, Thai J. Math. (submitted).
- [2] A. Borumand Saeid, A. Rezaei, R.K. Bandaru and Y.B. Jun, Voluntary GE-filters and further results of GE-filters in GE-algebras, J. Algebr. Syst. (in press).
- [3] D. Busneag, A note on deductive systems of a Hilbert algebra, Kobe J. Math., 2 (1985) 29-35.
- [4] D. Busneag, Hilbert algebras of fractions and maximal Hilbert algebras of quotients, Kobe J. Math., 5 (1988) 161–172.
- [5] D. Busneag, Hertz algebras of fractions and maximal Hertz algebras of quotients, Math. Japonica., 39 (1993) 461-469.
- [6] A. Diego, Sur algébres de Hilbert, Collect. Logique Math. Ser. A, 21 (1967) 177-198.
- [7] Y. B. Jun, Deductive systems of Hilbert algebras, Math. Japonica, 43 (1996) 51-54.
- [8] Y. B. Jun, Commutative Hilbert algebras, Soochow J. Math., 22 No. 4 (1996) 477-484.
- [9] A. Rezaei, R. K. Bandaru, A. Borumand Saeid and Y. B. Jun, Prominent GE-filters and GE-morphisms in GE-algebras, Afr. Mat., 32 (2021) 1121-1136.

Young Bae Jun

Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea. skywine@gmail.com

Ravikumar Bandaru

Department of Mathematics, GITAM, Hyderabad Campus, Telangana-502329, India. ravimaths830gmail.com