Algebraic Structures and Their Applications

Algebraic Structures and Their Applications Vol． 9 No． 1 （2022）pp 53－67．

Research Paper

DEDUCTIVE SYSTEMS OF GE－ALGEBRAS

YOUNG BAE JUN AND RAVIKUMAR BANDARU＊

Abstract

A new sub－structure called（vivid）deductive system is introduced and their prop－ erties are examined．Conditions for a subset to be a deductive system are provided．The notion of upper GE－set is also introduced，and an example to show that any upper GE－set may not be a deductive system are supplied．Conditions for an upper GE－set to be a deductive system are provided．An upper GE－set is used to consider conditions for a subset to be a deductive system．The characterization of deductive system is established，and relationship between de－ ductive system and vivid deductive system are created．Conditions for a deductive system to be a vivid deductive system are given，and the extension property for vivid deductive system is constructed．

1．Introduction

Following the introduction of Hilbert algebras by L．Henkin in early 50－ties and A．Diego［6］， the algebra and related concepts were developed by D．Busneag［3，4，5］．Y．B．Jun gave

[^0]MSC（2010）：Primary：03G25；Secondary：06F35．
Keywords：Deductive system，Vivid deductive system，Upper GE－set．
Received： 17 August 2021，Accepted： 20 September 2021.
＊Corresponding author
characterizations of deductive systems in Hilbert algebras (see [7, 8]), introduced the notion of commutative Hilbert algebras and gave some characterizations of a commutative Hilbert algebra (see [8]). In mathematics, Hilbert algebras occur in the theory of von Neumann algebras in: Commutation theorem and Tomita-Takesaki theory, and it is an important tool for certain investigations in algebraic logic since they can be considered as fragments of any propositional logic containing a logical connective implication (\rightarrow) and the constant 1 which is considered as the logical value "true". The study of generalization of one known algebraic structure is also an important research task. As a generalization of a Hilbert algebra, Bandaru, Borumand Saeid and Jun[?] introduced the notion of a GE-algebra, and investigated several properties. Different new substructures have been introduced in a GE-algebra such as voluntary GE-filters, belligerent GE-filters, imploring GE-filters and prominent GE-filters and studied their properties(see [1, 2, 9]).

In this manuscript, we introduce a new sub-structure called (vivid) deductive system and examine their properties. We provide conditions for a subset to be a deductive system. We also introduce the notion of upper GE-set, and give example to show that any upper GE-set may not be a deductive system. We provide conditions for an upper GE-set to be a deductive system. Using an upper GE-set, we consider conditions for a subset to be a deductive system. We establish characterization of deductive system. We discuss relationship between deductive system and vivid deductive system. We provide conditions for a deductive system to be a vivid deductive system. We build the extension property for vivid deductive system.

2. Preliminaries

Definition 2.1 ([?]). By a GE-algebra we mean a non-empty set X with a constant 1 and a binary operation "*" satisfying the following axioms:
(GE1) $u * u=1$,
(GE2) $1 * u=u$,
$(\mathrm{GE} 3) u *(v * w)=u *(v *(u * w))$
for all $u, v, w \in X$.

In a GE-algebra X, a binary relation " \leq " is defined by

$$
\begin{equation*}
(\forall x, y \in X)(x \leq y \Leftrightarrow x * y=1) . \tag{1}
\end{equation*}
$$

Definition 2.2 ($[$?, 1$]$. A GE-algebra X is said to be

- transitive if it satisfies:

$$
\begin{equation*}
(\forall x, y, z \in X)(x * y \leq(z * x) *(z * y)) . \tag{2}
\end{equation*}
$$

- left exchangeable if it satisfies:

$$
\begin{equation*}
(\forall x, y, z \in X)(x *(y * z)=y *(x * z)) . \tag{3}
\end{equation*}
$$

- belligerent if it satisfies:

$$
\begin{equation*}
(\forall x, y, z \in X)(x *(y * z)=(x * y) *(x * z)) . \tag{4}
\end{equation*}
$$

Proposition 2.3 ([?]). Every GE-algebra X satisfies the following items.

$$
\begin{align*}
& (\forall u \in X)(u * 1=1) . \tag{5}\\
& (\forall u, v \in X)(u *(u * v)=u * v) . \tag{6}\\
& (\forall u, v \in X)(u \leq v * u) . \tag{7}\\
& (\forall u, v, w \in X)(u *(v * w) \leq v *(u * w)) . \tag{8}\\
& (\forall u \in X)(1 \leq u \Rightarrow u=1) . \tag{9}\\
& (\forall u, v \in X)(u \leq(v * u) * u) . \tag{10}\\
& (\forall u, v \in X)(u \leq(u * v) * v) . \tag{11}\\
& (\forall u, v, w \in X)(u \leq v * w \Leftrightarrow v \leq u * w) . \tag{12}
\end{align*}
$$

If X is transitive, then

$$
\begin{align*}
& (\forall u, v, w \in X)(u \leq v \Rightarrow w * u \leq w * v, v * w \leq u * w) . \tag{13}\\
& (\forall u, v, w \in X)(u * v \leq(v * w) *(u * w)) \tag{14}
\end{align*}
$$

Lemma 2.4 ([?]). In a GE-algebra X, the following facts are equivalent each other.

$$
\begin{align*}
& (\forall x, y, z \in X)(x * y \leq(z * x) *(z * y)) . \tag{15}\\
& (\forall x, y, z \in X)(x * y \leq(y * z) *(x * z)) . \tag{16}
\end{align*}
$$

Definition 2.5 ([?]). A subset D of a GE-algebra X is called a $G E$-filter of X if it satisfies:

$$
\begin{align*}
& 1 \in D \tag{17}\\
& (\forall x, y \in X)(x * y \in D, x \in D \Rightarrow y \in D) \tag{18}
\end{align*}
$$

3. Deductive systems

In what follows let X denote a GE-algebra unless otherwise specified.
Definition 3.1. A nonempty subset D of X is called a deductive system of X if it satisfies:
(D1) $X * D:=\{x * a \mid x \in X, a \in D\} \subseteq D$.
(D2) $(\forall x, y, z \in X)(y, z \in D \Rightarrow(y *(z * x)) * x \in D)$.

Example 3.2. Let $X=\{0,1,2,3,4\}$ be a set with the Cayley table which is given in Table 1.

Table 1. Cayley table for the binary operation "*"

$*$	0	1	2	3	4
0	1	1	2	3	3
1	0	1	2	3	4
2	0	1	1	4	4
3	0	1	1	1	1
4	0	1	1	1	1

Then $(X, *, 1)$ is a GE-algebra, and it is routine to verify that $D:=\{0,1\}$ is a deductive system of X.

Lemma 3.3. Every deductive system contains the constant 1.
Proof. Let D be a deductive system of X. For every $x \in D$, we have

$$
1=x * x \in D * D \subseteq X * D \subseteq D
$$

by (GE1). This completes the proof.

Lemma 3.4. Every deductive system of X satisfies:

$$
\begin{equation*}
(\forall x, y \in X)(y \in D \Rightarrow(y * x) * x \in D) . \tag{19}
\end{equation*}
$$

Proof. If we take $z=1$ in (D2) and use (GE2), then $(y * x) * x=(y *(1 * x)) * x \in D$.

Corollary 3.5. Every deductive system of X satisfies:

$$
\begin{equation*}
(\forall x, y \in X)(y \in D, y \leq x \Rightarrow x \in D) \tag{20}
\end{equation*}
$$

Proof. Let $x, y \in X$ be such that $y \in D$ and $y \leq x$. Then $y * x=1$, and so $x=1 * x=$ $(y * x) * x \in D$.

We consider a subset D of X that satisfies:

$$
\begin{equation*}
(\forall x, y, z \in X)(x *(y * z) \in D, y \in D \Rightarrow x * z \in D) \tag{21}
\end{equation*}
$$

Lemma 3.6. If a subset D of X satisfies two conditions (17) and (21), then D satisfies (20).

Proof. Assume that a subset D of X satisfies two conditions (17) and (21). Let $x, y \in X$ be such that $y \in D$ and $y \leq x$. Then $1 *(y * x)=1 * 1=1 \in D$, and so $x=1 * x \in D$. Hence D satisfies (20).

Theorem 3.7. Every deductive system D of X satisfies two conditions (17) and (21).
Proof. Let D be a deductive system of a GE-algebra X. Then D contains the constant 1 by Lemma 3.3. Let $x, y, z \in D$ be such that $x *(y * z) \in D$ and $y \in D$. Then $(x *(y * z)) *(y *(x * z))=$ 1 by (8). It follows from (GE2) and (D2) that

$$
x * z=1 *(x * z)=((x *(y * z)) *(y *(x * z))) *(x * z) \in D .
$$

Hence (21) is valid.

Theorem 3.8. If a subset D of X satisfies two conditions (17) and (21), then D is a deductive system of X.

Proof. Let D be a subset of X that satisfies (17) and (21). Let $y \in X * D$. Then $y=x * a$ for some $x \in X$ and $a \in D$. Then $x *(a * a)=x * 1=1 \in D$ by (GE1), (5) and (17). It follows from (21) that $y=x * a \in D$. Hence $X * D \subseteq D$. Let $x \in X$ and $y, z \in D$. Using (GE1), (GE2), (GE3), (5) and (17) and we have

$$
\begin{aligned}
& 1 *(y *((y *(z * x)) *(z * x)))=y *((y *(z * x)) *(z * x)) \\
& =y *((y *(z * x)) *(y *(z * x)))=y * 1=1 \in D .
\end{aligned}
$$

It follows from (GE2) and (21) that

$$
(y *(z * x)) *(z * x)=1 *((y *(z * x)) *(z * x)) \in D .
$$

Hence

$$
\begin{aligned}
1 *(z *((y *(z * x)) * x)) & =z *((y *(z * x)) * x) \\
& =z *((y *(z * x)) *(z * x)) \in D
\end{aligned}
$$

which implies from (GE2) and (21) that $(y *(z * x)) * x \in D$. Therefore D is a deductive system of X.

For any $a, b \in X$, we consider the set

$$
\begin{equation*}
X_{a}^{b}:=\{x \in X \mid a \leq b * x\} \tag{22}
\end{equation*}
$$

which is called the upper $G E$-set of a and b in X.

Example 3.9. Let $X=\{0,1,2,3,4\}$ be a set with the Cayley table which is given in Table 2.

Table 2. Cayley table for the binary operation "*"

$*$	0	1	2	3	4
0	1	1	1	3	3
1	0	1	2	3	4
2	0	1	1	4	4
3	1	1	2	1	1
4	0	1	1	1	1

Then $(X, *, 1)$ is a GE-algebra and all upper GE-sets are calculated as follows.

$$
\begin{aligned}
& X_{0}^{0}=X_{0}^{1}=X_{0}^{2}=X_{1}^{0}=X_{2}^{0}=\{0,1,2\} \\
& X_{1}^{1}=\{1\} \\
& X_{1}^{2}=X_{2}^{1}=X_{2}^{2}=\{1,2\} \\
& X_{1}^{3}=X_{3}^{1}=X_{3}^{3}=\{0,1,3,4\} \\
& X_{1}^{4}=X_{2}^{4}=X_{4}^{1}=X_{4}^{2}=X_{4}^{4}=\{1,2,3,4\} \\
& X_{0}^{3}=X_{0}^{4}=X_{2}^{3}=X_{3}^{0}=X_{3}^{2}=X_{3}^{4}=X_{4}^{0}=X_{4}^{3}=X
\end{aligned}
$$

Proposition 3.10. In a GE-algebra X, we have
(i) $(\forall a, b \in X)\left(1, a, b \in X_{a}^{b}\right)$.
(ii) $(\forall a, b \in X)\left(b \leq x\right.$ for all $\left.x \in X \Rightarrow X_{a}^{b}=X=X_{b}^{a}\right)$.

Proof. (i) is straightforward by (GE1), (5) and (7). Let $a, b \in X$ be such that $b \leq x$ for all $x \in X$. For any $z \in X$, we have $a *(b * z)=a * 1=1$, that is, $a \leq b * z$. Thus $z \in X_{a}^{b}=X_{b}^{a}$. Therefore (ii) is valid.

The following example shows that the upper GE-set of a and b in X is not a deductive system of X.

Example 3.11. In Example 3.9, we can observe that $X_{1}^{3}=\{0,1,3,4\}$ and it is not a deductive system of X since $3,4 \in X_{1}^{3}$ but $(3 *(4 * 2)) * 2=2 \notin X_{1}^{3}$.

We provide conditions for the upper GE-set to be a deductive system.
Theorem 3.12. In a belligerent GE-algebra X, the upper $G E$-set of a and b in X is a deductive system of X.

Proof. Assume that X is a belligerent GE-algebra. Let $x \in X * X_{a}^{b}$. Then $x=y * z$ for some $y \in X$ and $z \in X_{a}^{b}$. Hence $a \leq b * z$, i.e., $a *(b * z)=1$. It follows from (5) and (4) that

$$
\begin{aligned}
a *(b *(y * z)) & =a *((b * y) *(b * z)) \\
& =(a *(b * y)) *(a *(b * z)) \\
& =(a *(b * y)) * 1=1 .
\end{aligned}
$$

Hence $x=y * z \in X_{a}^{b}$, and thus $X * X_{a}^{b} \subseteq X_{a}^{b}$. Let $x \in X$ and $y, z \in X_{a}^{b}$. Then $a \leq b * y$ and $a \leq b * z$, i.e., $a *(b * y)=1$ and $a *(b * z)=1$. The combination of (GE1), (GE2) and (4) induces

$$
\begin{aligned}
& a *(b *((y *(z * x)) * x))=a *((b *(y *(z * x))) *(b * x)) \\
& =(a *(b *(y *(z * x)))) *(a *(b * x)) \\
& =((a *(b * y)) *(a *(b *(z * x)))) *(a *(b * x)) \\
& =(1 *(a *(b *(z * x)))) *(a *(b * x)) \\
& =(a *(b *(z * x))) *(a *(b * x)) \\
& =(((a *(b * z)) *(a *(b * x)))) *(a *(b * x)) \\
& =((1 *(a *(b * x)))) *(a *(b * x)) \\
& =(a *(b * x)) *(a *(b * x))=1,
\end{aligned}
$$

that is, $a \leq b *((y *(z * x)) * x)$. Hence $(y *(z * x)) * x \in X_{a}^{b}$. In conclusion, X_{a}^{b} is a deductive system of X.

Theorem 3.13. Every deductive system D of X contains the upper $G E$-set X_{a}^{b} for all $a, b \in D$.
Proof. For every $a, b \in D$, let $x \in X_{a}^{b}$. Then $a \leq b * x$, i.e., $a *(b * x)=1$. It follows from (GE2) and (D2) that $x=1 * x=(a *(b * x)) * x \in D$. Hence $X_{a}^{b} \subseteq D$ for all $a, b \in D$.

Theorem 3.14. If a subset D of X satisfies:

$$
\begin{equation*}
(\forall a, b \in D)\left(X_{a}^{b} \subseteq D\right) \tag{23}
\end{equation*}
$$

then D is a deductive system of X.
Proof. Let D be a subset of a GE-algebra X that satisfies the condition (23). Then $1 \in X_{a}^{b} \subseteq$ D. Let $x, y, z \in X$ be such that $x *(y * z) \in D$ and $y \in D$. The condition (8) induces $(x *(y * z)) *(y *(x * z))=1$. Hence $x * z \in X_{a}^{b} \subseteq D$ for $a:=x *(y * z)$ and $b:=y$. It follows from Theorem 3.8 that D is a deductive system of X.

By the combination of Theorem 3.13 and Theorem 3.14, we have a characterization of a deductive system as follows.

Theorem 3.15. A subset D of X is a deductive system of X if and only if it satisfies (23).

Theorem 3.16. Every deductive system D of X is represented by the union of the upper $G E$-sets for all $a, b \in D$.

Proof. Let D be a deductive system of X. If $x \in D$, then clearly $x \in X_{x}^{1}$ and thus

$$
D \subseteq \bigcup_{x \in D} X_{x}^{1} \subseteq \bigcup_{a, b \in D} X_{a}^{b}
$$

If $y \in \bigcup_{a, b \in D} X_{a}^{b}$, then $y \in X_{a}^{b}$ for some $a, b \in D$ and so $y \in D$ by Theorem 3.13. This shows that $\bigcup_{a, b \in D} X_{a}^{b} \subseteq D$. Therefore $D=\bigcup_{a, b \in D} X_{a}^{b}$. \square

Corollary 3.17. If D is a deductive system of X, then $D=\bigcup_{x \in D} X_{x}^{1}$.
Definition 3.18. A nonempty subset D of X is called a vivid deductive system of X if it satisfies (D1) and

$$
\begin{equation*}
(\forall x, y, z \in X)(x \in D, x *(y * z) \in D \Rightarrow((z * y) * y) * z \in D) \tag{24}
\end{equation*}
$$

Example 3.19. Let $X=\{0,1,2,3,4\}$ be a set with the Cayley table which is given in Table 3. Then $(X, *, 1)$ is a GE-algebra. It is routine to verify that $D:=\{0,1,2\}$ is a vivid deductive

TABLE 3. Cayley table for the binary operation "*"

$*$	0	1	2	3	4
0	1	1	2	3	4
1	0	1	2	3	4
2	1	1	1	3	3
3	0	1	1	1	1
4	0	1	2	1	1

system of X.

It is clear that $D:=\{1\}$ is a deductive system of X, but it is not a vivid deductive system of X as seen in the following example.

Table 4. Cayley table for the binary operation "*"

$*$	0	1	2	3	4
0	1	1	1	1	4
1	0	1	2	3	4
2	0	1	1	1	4
3	0	1	2	1	1
4	1	1	1	3	1

Example 3.20. Let $X=\{0,1,2,3,4\}$ be a set with the Cayley table which is given in Table 4. Then $(X, *, 1)$ is a GE-algebra. The set $D:=\{1\}$ is not a vivid deductive system of X since $1 \in D$ and $1 *(0 * 2)=1 * 1=1 \in D$ but

$$
((2 * 0) * 0) * 2=(0 * 0) * 2=1 * 2=2 \notin D .
$$

Question 3.21. If X is a left exchangeable and transitive $G E$-algebra, then is the set $D:=\{1\}$ a vivid deductive system of X ?

The answer to Question 3.21 is negative as seen in the following example.
Example 3.22. Let $X=\{0,1,2,3,4\}$ be a set with the Cayley table which is given in Table 5. Then $(X, *, 1)$ is a GE-algebra which is left exchangeable and transitive. We can observe

Table 5. Cayley table for the binary operation "*"

$*$	0	1	2	3	4
0	1	1	2	1	1
1	0	1	2	3	4
2	1	1	1	1	1
3	0	1	2	1	1
4	0	1	2	1	1

that $D:=\{1\}$ is not a vivid deductive system of X since $1 \in D$ and $1 *(2 * 0)=1 * 1=1 \in D$ but

$$
((0 * 2) * 2) * 0=(2 * 2) * 0=1 * 0=0 \notin D .
$$

We discuss relationship between deductive system and vivid deductive system.

Theorem 3.23. Every vivid deductive system is a deductive system.

Proof. Let D be a vivid deductive system of X. Note that $1 \in D$ by (GE1) and (D1). We first show that

$$
\begin{equation*}
(\forall x, y \in X)(x \in D, x * y \in D \Rightarrow y \in D) . \tag{25}
\end{equation*}
$$

Let $x, y \in X$ be such that $x \in D$ and $x * y \in D$. Then $x *(1 * y)=x * y \in D$ by (GE2), and so $y=((y * 1) * 1) * y \in D$ by (GE2), (5) and (24). For every $x \in X$ and $y, z \in D$, we have

$$
y *((y *(z * x)) *(z * x))=y *((y *(z * x)) *(y *(z * x)))=y * 1=1 \in D
$$

by (GE1), (GE3) and (5). It follows from (25) that $(y *(z * x)) *(z * x) \in D$. Hence

$$
z *((y *(z * x)) * x)=z *((y *(z * x)) *(z * x)) \in D
$$

by (GE3) and (D1), and thus $(y *(z * x)) * x \in D$ by (25). Therefore D is a deductive system of X.

The following example shows that any deductive system may not be a vivid deductive system.

Example 3.24. Let $X=\{0,1,2,3,4\}$ be a set with the Cayley table which is given in Table 6.

Table 6. Cayley table for the binary operation "*"

$*$	0	1	2	3	4
0	1	1	1	1	1
1	0	1	2	3	4
2	0	1	1	3	3
3	0	1	1	1	1
4	0	1	1	1	1

Then $(X, *, 1)$ is a GE-algebra and it is routine to verify that $D:=\{1,2\}$ is a deductive system of X. But it is not a vivid deductive system of X since $1 \in D$ and $1 *(0 * 3)=1 * 1=1 \in D$ but

$$
((3 * 0) * 0) * 3=(0 * 0) * 3=1 * 3=3 \notin D .
$$

We provide conditions for a deductive system to be a vivid deductive system.
Theorem 3.25. A deductive system D of X is vivid if and only if it satisfies:

$$
\begin{equation*}
(\forall y, z \in X)(y * z \in D \Rightarrow((z * y) * y) * z \in D) \tag{26}
\end{equation*}
$$

Proof. Assume that D is a vivid deductive system of X. Let $y, z \in X$ be such that $y * z \in$ D. Then $1 *(y * z)=y * z \in D$ by (GE2), which implies from Lemma 3.3 and (24) that $((z * y) * y) * z \in D$.

Conversely, let D be a deductive system of X that satisfies (26). Let $x, y, z \in X$ be such that $x \in D$ and $x *(y * z) \in D$. Then

$$
y * z=1 *(y * z)=((x *(y * z)) *(x *(y * z))) *(y * z) \in D
$$

by (GE1), (GE2) and (D2). It follows from (26) that $((z * y) * y) * z \in D$. Therefore D is a vivid deductive system of X.

Given a subset D of X, consider the next assertion:

$$
\begin{equation*}
(\forall x, y \in X)((x * y) * x \in D \Rightarrow x \in D) \tag{27}
\end{equation*}
$$

In the following example, we can verify that any deductive system D of X does not satisfy the condition (27).

Example 3.26. In Example 3.2, we can observe that the deductive system $D=\{0,1\}$ of X does not satisfy the condition (27) since $(2 * 4) * 2=4 * 2=1 \in D$ but $2 \notin D$.

Proof. Let $x, y \in X$ be such that $x \in D$ and $x * y=1$. Then $x * y \in D$ by Lemma 3.3. It follows from (GE1), (GE2) and (D2) that $y=1 * y=((x * y) *(x * y)) * y \in D$.

Theorem 3.27. Let X be a transitive GE-algebra. If a deductive system D of X satisfies the condition (27), then it is a vivid deductive system of X.

Proof. Assume that a deductive system D of X satisfies the condition (27). Let $x, y, z \in X$ be such that $x \in D$ and $x *((y * z) * y) \in D$. Then

$$
\begin{aligned}
(y * z) * y & =1 *((y * z) * y) \\
& =((x *((y * z) * y)) *(x *((y * z) * y))) *((y * z) * y) \in D
\end{aligned}
$$

by (GE1), (GE2) and (D2). Thus $y \in D$ by (27). This shows that

$$
\begin{equation*}
(\forall x, y, z \in X)(x \in D, x *((y * z) * y) \in D \Rightarrow y \in D) \tag{28}
\end{equation*}
$$

Let $y, z \in X$ be such that $y * z \in D$. Since X is transitive, the combination of (7) and (13) induces $(((z * y) * y) * z) * y \leq z * y$, and so

$$
\begin{aligned}
y * z & \leq((z * y) * y) *((z * y) * z) \\
& \leq(z * y) *(((z * y) * y) * z) \\
& \leq((((z * y) * y) * z) * y) *(((z * y) * y) * z) .
\end{aligned}
$$

It follows from (GE2) and Corollary 3.5 that

$$
\begin{aligned}
& 1 *(((((z * y) * y) * z) * y) *(((z * y) * y) * z)) \\
& =((((z * y) * y) * z) * y) *(((z * y) * y) * z) \in D .
\end{aligned}
$$

Hence $((z * y) * y) * z \in D$ by (28). Therefore D is a vivid deductive system of X by Theorem 3.25.

Theorem 3.28. The intersection of two vivid deductive systems is also a vivid deductive system.

Proof. Let Let D_{1} and D_{2} be vivid deductive systems of X. Then

$$
\begin{aligned}
X *\left(D_{1} \cap D_{2}\right) & =\left\{x * a \mid x \in X, a \in D_{1} \cap D_{2}\right\} \\
& =\left\{x * a \mid x \in X, a \in D_{1}\right\} \cap\left\{x * a \mid x \in X, a \in D_{2}\right\} \\
& \subseteq D_{1} \cap D_{2} .
\end{aligned}
$$

Let $x, y, z \in X$ be such that $y, z \in D_{1} \cap D_{2}$. Then $y, z \in D_{1}$ and $y, z \in D_{2}$. It follows from (D2) that $(y *(z * x)) * x \in D_{1}$ and $(y *(z * x)) * x \in D_{2}$. Hence $(y *(z * x)) * x \in D_{1} \cap D_{2}$, and therefore $D_{1} \cap D_{2}$ is a vivid deductive system of X.

The following example shows that the union of vivid deductive systems may not be a vivid deductive system.

Example 3.29. Let $X=\{0,1,2,3,4,5\}$ be a set with the Cayley table which is given in Table 7. Then $(X, *, 1)$ is a GE-algebra. Let $D_{1}:=\{1,3\}$ and $D_{2}:=\{1,4\}$. Then we can observe that D_{1} and D_{2} are vivid deductive systems of X. But $D_{1} \cup D_{2}:=\{1,3,4\}$ is not a vivid deductive system of X since $3 \in D_{1} \cup D_{2}$ and $3 *(0 * 2)=3 * 2=4 \in D_{1} \cup D_{2}$ but

$$
((2 * 0) * 0) * 2=(0 * 0) * 2=1 * 2=2 \notin D_{1} \cup D_{2} .
$$

Question 3.30. Consider deductive systems D_{1} and D_{2} of X with $D_{1} \subseteq D_{2}$. If D_{1} is a vivid deductive system of X, is D_{2} also a vivid deductive system of X ?

Table 7. Cayley table for the binary operation "*"

$*$	0	1	2	3	4	5
0	1	1	2	3	4	2
1	0	1	2	3	4	5
2	0	1	1	1	1	1
3	0	1	4	1	4	4
4	0	1	3	3	1	3
5	0	1	1	1	1	1

The answer to Question 3.30 is negative as seen in the following example.
Example 3.31. Let $X=\{0,1,2,3,4,5\}$ be a set with the Cayley table which is given in Table 8.

Table 8. Cayley table for the binary operation "*"

$*$	0	1	2	3	4	5
0	1	1	2	3	2	1
1	0	1	2	3	4	5
2	5	1	1	1	5	5
3	0	1	1	1	0	0
4	1	1	1	3	1	1
5	1	1	2	3	2	1

Then $(X, *, 1)$ is a GE-algebra. Clearly $D_{1}=\{1\}$ and $D_{2}=\{0,1,5\}$ are deductive systems of X and $D_{1} \subseteq D_{2}$. We can observe that D_{1} is a vivid deductive system of X. But D_{2} is not a vivid deductive system of X since $5 \in D_{2}$ and $5 *(3 * 4)=5 * 0=1 \in D_{2}$ but $((4 * 3) * 3) * 4=(3 * 3) * 4=1 * 4=4 \notin D_{2}$.

We explore conditions in which the answer to Question 3.30 can be positive.
Theorem 3.32. (Extension property) Assume that X is a transitive GE-algebra. Let D_{1} and D_{2} be deductive systems of X with $D_{1} \subseteq D_{2}$. If D_{1} is a vivid deductive system of X, then so is D_{2}.

Proof. Assume that D_{1} is a vivid deductive system of X and let $y, z \in X$ be such that $y * z \in D_{2}$. Using (GE1), (GE3) and (5), we get

$$
y *((y * z) * z)=y *((y * z) *(y * z))=y * 1=1 \in D_{1}
$$

and so $((((y * z) * z) * y) * y) *((y * z) * z) \in D_{1} \subseteq D_{2}$ by Theorem 3.25. Hence

$$
\begin{aligned}
& (y * z) *(((((y * z) * z) * y) * y) * z) \\
& =(y * z) *(((((y * z) * z) * y) * y) *((y * z) * z)) \in D_{2}
\end{aligned}
$$

by (GE3) and (D1). It follows from (GE1), (GE2) and (D2) that

$$
a * z=1 *(a * z)=(((y * z) *(a * z)) *((y * z) *(a * z))) *(a * z) \in D_{2}
$$

where $a:=((((y * z) * z) * y) * y)$. Since X is transitive, the combination of (7) and (13) induces $(a * z) *(((z * y) * y) * z)=1$. Hence $((z * y) * y) * z \in D_{2}$ by Corollary 3.5. Therefore D_{2} is a vivid deductive system of X by Theorem 3.25.

Corollary 3.33. Let X be a transitive GE-algebra. Then $\{1\}$ is a vivid deductive system of X if and only if all deductive systems of X are vivid.

The following example describes Theorem 3.32 .
Example 3.34. Let $X=\{0,1,2,3,4\}$ be a set with the Cayley table which is given in Table 9.

Table 9. Cayley table for the binary operation "*"

$*$	0	1	2	3	4
0	1	1	2	3	4
1	0	1	2	3	4
2	1	1	1	1	1
3	0	1	4	1	4
4	1	1	3	3	1

Then $(X, *, 1)$ is a transitive GE-algebra in which $\{1\}$ is not a vivid deductive system of X since $2 * 0=1 \in\{1\}$ but $((0 * 2) * 2) * 0=(2 * 2) * 0=1 * 0=0 \notin\{1\}$. Let $D_{1}=\{0,1\}$ and $D_{2}=\{0,1,4\}$. Then D_{1} and D_{2} are deductive systems of X with $D_{1} \subseteq D_{2}$, and D_{1} is a vivid deductive system of X. We can verify that D_{2} is also a deductive system of X.

4. Conclusion

We have introduced the concepts of a deductive system, a vivid deductive system of a GE-algebra and investigated the relation between them. We have observed that every vivid deductive system of a GE-algebra is a deductive system of a GE-algebra but not vice-versa.

We have provided conditions for a deductive system to be a vivid deductive system of a GEalgebra. We have introduced the notion of upper GE-set of a and b in a GE-algebra X and characterized deductive system in terms of upper GE-set. We have established the extension property of the vivid deductive system.

5. Acknowledgments

The authors wish to thank the anonymous reviewers for their valuable suggestions.

References

[1] R. K. Bandaru, A. Borumand Saeid and Y. B. Jun, Belligerent GE-filter in GE-algebras, Thai J. Math. (submitted).
[2] A. Borumand Saeid, A. Rezaei, R.K. Bandaru and Y.B. Jun, Voluntary GE-filters and further results of $G E$-filters in GE-algebras, J. Algebr. Syst. (in press).
[3] D. Busneag, A note on deductive systems of a Hilbert algebra, Kobe J. Math., 2 (1985) 29-35.
[4] D. Busneag, Hilbert algebras of fractions and maximal Hilbert algebras of quotients, Kobe J. Math., 5 (1988) 161-172.
[5] D. Busneag, Hertz algebras of fractions and maximal Hertz algebras of quotients, Math. Japonica., 39 (1993) 461-469.
[6] A. Diego, Sur algébres de Hilbert, Collect. Logique Math. Ser. A, 21 (1967) 177-198.
[7] Y. B. Jun, Deductive systems of Hilbert algebras, Math. Japonica, 43 (1996) 51-54.
[8] Y. B. Jun, Commutative Hilbert algebras, Soochow J. Math., 22 No. 4 (1996) 477-484.
[9] A. Rezaei, R. K. Bandaru, A. Borumand Saeid and Y. B. Jun, Prominent GE-filters and GE-morphisms in GE-algebras, Afr. Mat., 32 (2021) 1121-1136.

Young Bae Jun

Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea.
skywine@gmail.com

Ravikumar Bandaru

Department of Mathematics, GITAM,

Hyderabad Campus,
Telangana-502329, India.
ravimaths83@gmail.com

[^0]: DOI：10．22034／as． 2021.2319

