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ON GRADED J,;,-CLASSICAL PRIME SUBMODULES

KHALDOUN AL-ZOUBI* AND SHATHA ALGHUEIRI

ABSTRACT. Let G be a group with identity e. Let R be a G-graded commutative ring with
identity 1 and M a graded R-module. A proper graded submodule C of M is called a graded
classical prime submodule if whenever r, s € h(R) and m € h(M) with rsm € C, then either
rm € C or sm € C. In this paper, we introduce the concept of graded Jg,-classical prime
submodule as a new generalization of graded classical submodule and we give some results
concerning such graded modules. We say that a proper graded submodule N of M is a graded
Jgr-classical prime submodule of M if whenever rsm € N where r,s € h(R) and m € h(M),
then either rm € N + Jg.(M) or sm € N + Jg(M), where Jg,-(M) is the graded Jacobson

radical.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper all rings are commutative with identity and all modules are unitary.
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The notion of graded classical prime submodules as a generalization of graded prime sub-
modules was introduced in [9] and studied in [I,3,4,6,[]. The purpose of this paper is to
introduce the concept of graded Jg-classical prime submodules as a new generalization of
graded classical prime submodules and give a number of its properties.

First, we recall some basic properties of graded rings and modules which will be used in the
sequel. We refer to [10] and [12-14] for these basic properties and more information on graded
rings and modules.

Let G be a multiplicative group and let e denote the identity element of G. A ring R is
called a graded ring (or G-graded ring) if there exist additive subgroups R, of R indexed
by the elements o € G such that R = @ .o Ra and RyRg C Rap for all a, f € G. The
elements of R, are called homogeneous of degree a and all the homogeneous elements are
denoted by h(R), i.e. h(R) = UsegRa. If r € R, then 7 can be written uniquely as > . 7as
where r,, is called a homogeneous component of r in R,. Moreover, R, is a subring of R and
1€ R.. Let R = @, Ra be a G-graded ring. An ideal I of R is said to be a graded ideal
if I = @oecc(INRy) = Poci la- Let R =P, cq Ra be a G-graded ring. A left R-module
M is said to be a graded R-module (or G-graded R-module) if there exists a family of additive
subgroups { Mg }aeq of M such that M = @, .o Mo and RoMg C Mg for all o, 3 € G. Here,
R, Mg denotes the additive subgroup of M consisting of all finite sums of elements r,mg with
Ta € Rq and mg € Mga. Also if an element of M belongs to UaegMa = h(M), then it is called
a homogeneous element. Note that M, is an R.-module for every oo € G. So, if I = P Lo
is a graded ideal of R, then I, is an R.-module for every @ € G. A submodule N of M is said
to be a graded submodule of M if N = @, cq(N N My) := Pocq Na-

Let R be a G-graded ring and M a graded R-module. A proper graded ideal P of R
is said to be a graded prime ideal if whenever rs € P, we have r € P or s € P, where
r,s € h(R) (see [15].) It is shown in [§, Lemma 2.1] that if N is a graded submodule of M,
then (N:p M)={re€ R:rN C M} is a graded ideal of R. A proper graded submodule P of
M is said to be a graded prime submodule if whenever r € h(R) and m € h(M) with rm € P,
then either r € (P :g M) or m € P (see [§].)

A proper graded submodule N of M is called a graded classical prime submodule if whenever
r,s € h(R) and m € h(M) with rsm € N, then either rm € N or sm € N (see [9].)

A graded submodule N of M is said to be a graded mazimal submodule if N # M and if
there is a graded submodule L of M such that N C L C M, then N = L or L = M (see [14].)

The graded Jacobson radical of a graded module M, denoted by Jy,. (M), is defined to be the
intersection of all graded maximal submodules of M (if M has no graded maximal submodule
then we shall take, by definition, Jg,.(M) = M) (see [14].)
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2. RESULTS

The following lemma is known, (see [11, Lemma 1.2], but we write it here for the sake of

references.

Lemma 2.1. Let R be a G-graded ring and M a graded R-module. Then the following hold:

(1) If N is a graded submodule of M, r € h(R), x € h(M) and I is a graded ideal of R,
then Rx, IN and rN are graded submodules of M.

(2) If N and K are graded submodules of M, then N + K and N N K are also graded
submodules of M.

Definition 2.2. Let R be a G-graded ring and M a graded R-module. A proper graded
submodule N of M is said to be a graded Jg--classical prime submodule of M if whenever

rsm € N where r,s € h(R) and m € h(M), then either rm € N+Jg,.(M) or sm € N+Jg.(M).

Example 2.3. Let G = Zo and R = Z. Then R is a G-graded ring with Ry = Z and R; = {0}.
Let M =7 x Z. Then M is a G-graded R-module with My = Z x Z and M; = {(0,0)}. Now,
consider the graded submodule K = 6Z x (0) of M. Then it is not a graded Jy,-classical prime
submodule of M since 2-3-(1,0) € K but 2-(1,0) ¢ K+ Jg (M) and 3-(1,0) ¢ K + Jg(M).

Theorem 2.4. Let R be a G-graded ring, M a graded R-module and N a proper graded
submodule of M. If N is a graded classical prime submodule of M, then N is a graded

Jgr-classical prime submodule of M.

Proof. Suppose that N is a graded classical prime submodule of M. Let r,s € h(R), m € h(M)
such that rsm € N, then by our assumption we get either rm € N or sm € N, hence

rm € N + Jg (M) or sm € N + Jg-(M).

The next example shows that a graded .J,-classical prime submodule is not necessarily a

graded classical prime submodule.

Example 2.5. Let G = Zg and R = Z. Then R is a G-graded ring with Ry = Z and R; = {0}.
Let M = ZxZg. Then M is a G-graded R-module with My = Z x Zg and M; = {(0,0)}. Now,
consider the graded submodule N = Z x (4) of M. Then N is a graded Jg,-classical prime
since for each m € h(M), (Z x (4) + Jgr(Z x Zg) :r (m)) = (Z x (4) + {0} x (2) :g (m)) =
(Z % (2) :r (m)) = 27Z, which is a graded prime ideal of Z. However the graded submodule N is
not a graded classical prime submodule of M, since 2-2-(0,1) = (0,4) € N, but 2-(0,1) ¢ N.

It is clear that every graded prime submodule is a graded Jg,-classical prime submodule
since every graded prime submodule is graded classical prime (see [].) But the converse is

not true in general see Example @
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Remark 2.6. Let R be a G-graded ring and M a graded R-module.

(i) If J4 (M) = 0, then every graded Jy,-classical prime submodule of M is a graded classical
prime submodule of M.
(ii) If Jgr(M) is contained in every graded submodule of M, then every graded Jg,-classical

prime submodule of M is a graded classical prime submodule of M.

Theorem 2.7. Let R be a G-graded ring, M a graded R-module and K a graded submodule of
M with Jg.(M) C Jgr(K). If N is a graded Jg,-classical prime submodule of M with N C K,

then N is a graded Jgy--classical prime submodule of K.

Proof. Let r,s € h(R) and m € K N h(M) with rsm € N. Then either rm € N + Jg.(M)
or sm € N + Jg, (M) as N is a graded Jg,-classical prime submodule of M. Since Jg,. (M) C
Jor(K), we get rm € N + Jg(K) or sm € N + Jg,(K). Therefore, N is a graded Jg,-classical

prime submodule of K.

The following results give us a characterization of a graded Jg,-classical prime submodule

of a graded module.

Theorem 2.8. Let R be a G-graded ring, M a graded R-module and N a proper graded

submodule of M. Then the following statements are equivalent:

(i) N is a graded Jg,-classical prime submodule of M.
(i) If K = ®g4ecKy is a graded submodule of M, r,s € h(R) and g € G with rsK,; C N,
then either 1Ky C N + Jg.(M) or sKg C N + Jg(M).

Proof. (i) = (i) Let K = @®4eqKy be a graded submodule of M and let r,s € h(R), g € G
such that rsK, C N. Assume that 7Ky & N + Jg (M) and sKyg € N + Jg(M). This im-
plies there are elements kg, , kg, € K, such that rky, ¢ N + Jg.(M) and skg, ¢ N + Jg(M).
rskg, € N and rkg, & N+ Jg. (M), we get skg, € N+ Jg(M) since N is a graded Jg,-classical
prime submodule of M. Similarly, by rsk,, € N and skg, ¢ N + Jg.(M), so that we get
rkg, € N + Jgr(M). Since kg, , kg, € Kg, we have kg, + kg, € K. 75(kg, + kg,) € rsKg C N.
By (i) either r(kg, + kg,) € N + Jgr(M) or s(kg, + kg,) € N + Jgr(M) as N is a graded Jg,-
classical prime. If rkq, + kg, = 1(kg, + kg,) € N + Jgr (M), we get rkg, € N + Jg (M) since
rkg, € N + Jgr(M), a contradiction. Similarly, if skg, + skg, = s(kg, + kg,) € N + Jgr (M),
then we get a contradiction. Therefore either rK, C N + Jg.(M) or sK; C N + Jgr.(M).

(1) = (i) Assume that (ii) holds. Let r,s € h(R) and m € h(M) with rsm € N. Let
K be a submodule of M generated by m € M, that is, K = Rm. Then by Lemma 2.1
(1), K is a graded submodule of M and K = P, Rgm. Moreover, for every g € G,
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K, = Rym, in particular, K. = R.m. Since rsK., C N, by our assumption, we get either
rKe € N + Jg (M) or sK, € N + Jg. (M), it follows that rm = rlm € rRem = rK,
C N+ Jg (M) or sm = slm € rRem = sK, C N + Jg.(M). Thus N is a graded J,,-classical
prime submodule of M.

Theorem 2.9. Let R be a G-graded ring and M a graded R-module. If N is a graded
Jgr-classical prime submodule of M and K is any proper graded submodule of M such that
Jgr(K) = Jgr(M) and K N, then N N K is a graded Jg,-classical prime submodule of K.

Proof. By Lemma @(2) and the hypothesis that K € N, NNK is a proper graded submodule
of K. Let r,s € h(R) and m € KNh(M) such that rsm € NNK. Then either rm € N+Jy, (M)
or sm € N + Jg(M) as N is a graded Jg,-classical prime submodule of M. This yields that
either rm € (N + Jg(K)) N K or sm € (N + Jg(K)) N K. By the modular law, we get
rm € (NNK)+ Jg(K) or sm € (NNK)+ Jg(K). Therefore, NN K is a graded Jg,-classical

prime submodule of K.

Let R be a G-graded ring and M, M’ graded R-modules. Let ¢ : M — M’ be an R-module
homomorphism. Then ¢ is said to be a graded homomorphism if (M) C M for all g € G
(see [114].)

Recall that a proper graded submodule N of a graded R-module M is said to be a gr-small
submodule of M (for short N <<, M ) if for every proper graded submodule L of M, we have
N+ L # M (see [2].)

Theorem 2.10. Let R be a G-graded ring, M and M’ be two graded R-modules and f : M —
M' be a graded epimorphism.

(i) If N is a graded Jg.-classical prime submodule of M such that ker(f) C N, then f(N)
is a graded Jg,-classical prime submodule of M'.
(ii) If N' is a graded Jy.-classical prime submodule of M' with ker(f) <<, M, then f~1(N)

is a graded Jg.-classical prime submodule of M.

Proof. (i) Suppose that N is a graded Jy-classical prime submodule of M. It is easy to
see that f(N) is a proper graded submodule of M’. Now, let r,s € h(R) and m’ € h(M')
such that rsm’ € f(N). Since f is a graded epimorphism, there exists m € h(M) such that
f(m) = m/. Hence f(rsm) = rsf(m) = rsm’ € f(N), so there exists n € N N h(M) such
that f(rsm) = f(n). Thus rsm —n € ker(f) C N, and rsm € N. Hence rm € N + Jg.(M)
or sm € N + Jg.(M) as N is a graded Jg,-classical prime submodule of M. This yields that
rm’ € F(N) + F(Jop(M)) € F(N) + Jo (M) 01 s1 € F(N) + f(Jye(M)) € F(N) + Jyu(M)
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by [B, Theorem 2.12(i)]. Therefore f(IN) is a graded Jy,-classical prime submodule of M.

(i) Suppose that N’ is a graded Jg-classical prime submodule of M’. It is easy to see
that f~1(N’) is a proper graded submodule of M. Now, let 7,5 € h(R) and m € h(M) such
that rsm € f~1(N'), hence rsf(m) € N'. Then either rf(m) € N’ + Jy.(M’) or sf(m) €
N’ + Jgr(M') as N' is a graded Jy,-classical prime submodule of M’. Since ker(f) <<, M,
by [b, Theorem 2.12(ii)], we get f(Jgr(M)) = J4r(M'). This yields that either f(rm) e N’ +
f(Jgr(M)) or f(sm) € N'+f(Jg(M)). Sorm € f~HN')+Jg (M) or sm € fHN')+Jyr(M).
Therefore, f~1(N') is a graded J,,-classical prime submodule of M.

Recall that a graded R-module M is called a graded semisimple if and only if every graded

submodule of M is a direct summand of M (see [14].)

Theorem 2.11. Let R be a G-graded ring and M a graded semisimple R-module. If N is a
graded Jg.-classical prime submodule of M, then N is a graded classical prime submodule of
M.

Proof. Suppose that N is a graded .J,-classical prime submodule of M. Now, since M is a
graded semisimple, M has no graded small nonzero submodules. By [§, Theorem 2.10], we
have Jg.(M) =) {N : N <<4 M}, it follows that Jg,.(M) = 0. Thus N is a graded classical
prime submodule of M by Remark @ O
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