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ABSTRACT. This paper studies homoderivations satisfying certain conditions on semigroup
ideals of near-rings. In addition, we include some examples of the necessity of the hypotheses

used in our results.

1. INTRODUCTION

An additively written group (N,+) equipped with a binary operation - : N' x N — N
(z,y) — zy, such that (zy)z = x(y2) and z(y+2) = zy+az for all z,y, 2 € N is called a left
near-ring. The results obtained in near-rings can be used in various fields inside and outside
of pure mathematics. The best known is to balanced incomplete block designs using planar
near-rings. Precisely, we can construct efficient codes and block designs with the help of finite
near-rings. Also, there are other applications in cryptography, digital computing, automata

theory, sequential mechanics, and combinatorics. For the basic results of near-ring theory and
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178 S. Mouhssine and A. Boua

its applications, we recommend the references of Clay [[7], Meldrum [11], Pilz [12], and Lakehal
[9].

Throughout this paper, by a near-ring we mean that left near-ring N with center Z(N). A
non empty subset U of N is said to be a semigroup left (resp. right) ideal of N if NU C U
(resp. UN C U ) and if U is both a semigroup left ideal and a semigroup right ideal, it is called
a semigroup ideal of A/. Recall that N is 3-prime, that is, for all a,b € N, aN'b = {0} implies
that @ = 0 or b = 0. N is said to be 2-torsion free if whenever 2z = 0, with z € N, then z = 0.
A near-ring N is called zero-symmetric if 0z = 0 for all x € N (recall that right distributivity
yields 20 = 0). As usual for all z, y € N/, the symbol [z, y] stands for Lie product (commutator)
xy — yx and x o y stands for Jordan product (anticommutator) zy + yx. We note that for
a near-ring, —(r +y) = —y — z. For S C N, a mapping f : N — N is called zero-power
valued on S if for each x € S, there exists a positive integer k(z) > 1 such that f*®)(z) = 0.
A mapping f : N — N preserves S if f(S) C S. An additive mapping d : N — N is said to
be a derivation if d(xy) = zd(y) + d(x)y for all z,y € N, or equivalently, as noted in [13], that
d(zy) = d(x)y + zd(y) for all x,y € N. According to [6], an additive mapping h from N into
itself is said to be a homoderivation if h(zy) = h(x)h(y) + h(z)y + zh(y) for all z,y € N.

Many results on commutativity in prime and semi-prime rings admitting suitably con-
strained derivations, generalized derivations, and homoderivations have been published in the
literature (see [1], [2], [B], [4], [5], [8], and [L0]). Recently, A. Boua has proved comparable
results on 3-prime near-rings in [6].

Our aim in this paper is to investigate 3-prime near-rings admitting homoderivations sat-
isfying certain identities, in the case where the constraints are initially assumed to hold on

semigroup ideal of near-rings.

2. Preliminaries

In the following, we give some well-known results of near-rings in the literature, which will

be used extensively in the proof of our results.

Lemma 2.1. [3, Lemmas 1.2 (i), 1.2 (iii), and 1.3 (iii)] Let N be a 3-prime near-ring.
(i) If z € Z(N') . {0}, then z is not a zero divisor.

(11) If Z(N') contains a nonzero element z for which z + z € Z(N'), then N is abelian.
(i13) If z € Z(N) N~ {0} and x € N such that xz € Z(N) or za € Z(N'), then x € Z(N).

Lemma 2.2. [3, Lemmas 1.3 (i), 1.4 (i), and 1.3 (iii)] Let N be a 3-prime near-ring.

(1) If U is a nonzero semigroup right (resp. semigroup left ) ideal of N and x € N such that
Uz = {0} (resp. zU ={0}), then x = 0.

(it) If U is a nonzero semigroup ideal of N and x,y € N such that xUy = {0}, then x =0 or
y=0.
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(#3t) If U is a nonzero semigroup right ideal of N and x € N" which centralizes U, then
xz € Z(N).

Lemma 2.3. [3, Lemmas 1.5] If N is a 3-prime near-ring and Z(N') contains a nonzero

semigroup left ideal or semigroup right ideal, then N is a commutative ring.

Lemma 2.4. [, Lemma 2.4 (ii)] Let N be a 2-torsion free 3-prime near-ring. If N admits a
homoderivation h such that h*(N') = {0}, then h = 0.

Lemma 2.5. [6, Lemma 2.4] Let N be a prime 3-near-ring. If N admits a nonzero homod-

erivation h, then for all x,y,a € N we have
h(zy)(h(a) + a) = h(z)h(y)(h(a) + a) + h(z)y(h(a) + a) + zh(y)(h(a) + a).
3. Some results for homoderivation and semigroup ideal in 3-prime near-ring

We begin this paragraph with a crucial result, which is necessary for developing the proof of

our main results.

Lemma 3.1. Let N be a 3-prime near-ring. If N admits a nonzero additive map f on N
which is zero-power valued on N'. Then the following assertions are equivalent:

(i) f(x)+ 2z € ZN) forallz € N.

(it) v+ f(x) € ZN) for allx € N.

(i31) N is a commutative ring.

Proof. 1t is clear that the implications (iii) = (i) and (¢i7) = (éi) are trivial.
(7) = (7it) Suppose that

(1) f(x)+xe€ Z(WN) for all z € N.

If f(xz) # 0 for all z € N\ {0}. By recurrence we have f™(z) # 0 for all x € N~ {0} and
n € N*. Since f is zero-power valued on N, for each x € N, there exists a positive integer
k(x) > 1 such that f*(®)(z) = 0, it follows that for z = fF@)=1(z) £ 0, f(2) = f*@)(z) = 0
which is a contradiction. Hence there exists y € A ~ {0} such that f(y) = 0, so we get
y=fy)+ye ZW)~{0tandy+y = fly+vy)+y+y € ZWN), which forces that N is
abelian.

Now by replacing by = — f(z) 4+ f2(z) + ... + (=1)F@=1 fE@)=1(g) in @) and using N\ is
abelian we get z € Z(N) for all € N, thus N' C Z(N). Hence N is commutative ring by

Lemma @ O

Lemma 3.2. Let N be a 2-torsion free near-ring. If N admits a nonzero homoderivation h

which is zero-power valued on N, then N is zero symmetric near-ring.
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Proof. We have for all z € N/

h(0z) = h(0)h(z) + h(0)z + Oh(z)
= 0h(z) 4+ 0z + 0h(2).

On the other hand

h(0z) = h(0(0z))
= h(0)h(0z) 4+ h(0)0z + 0h(0z)
= 0h(0z) 4 0z + 0h(02)

= 0h(z) 4+ 0z + Oh(z) + 0z 4+ Oh(z) + 0z + Oh(z).

Comparing the last two expressions, we find 2(0h(z) + 0z) = 0 for all z € N. Using 2-torsion

freeness of N we obtain 0h(z) + 0z = 0 for all 2 € N. By recurrence, we obtain
(2) 0h™(2) + (=1)"T102z =0 for all z€ N' and n € N*.

Since h is zero-power valued on A, there exists an integer k(z) > 1 such that h*(*)(z) = 0.
Replacing n by k(z) in (E), we get (—1)¥#)+102 = 0 for all z € N'. Thus N is zero symmetric

near-ring.

Lemma 3.3. Let N be a 3-prime near-ring and h be a nonzero homoderivation of N.

(i) If N is zero symmetric and U is a nonzero semigroup right ideal of N, then h(U) # {0}.
(i1) If U is a nonzero semigroup left ideal of N, then h(U) # {0} .

Proof. (i) Let U be a nonzero semigroup right ideal. Suppose that h(U) = {0}. Then for all
uw e U and € N we have 0 = h(uz) = h(u)h(z) + h(u)z + uh(xz) = uh(z), that is uh(z) =0
for all uw € U,z € N. This implies that Uh(z) = {0} for all z € N. Hence h = 0 by Lemma
2d ).

(7i) The argument for semigroup left ideal is similar.

Lemma 3.4. Let N be a 3-prime near-ring admiting a nonzero homoderivation h and U a

nonzero semigroup right ideal of N .

(i) If x € N and h(U)(h(z) + z) = {0}, then h(xz)+ 2 = 0.
(it) If x € N and xh(U) = {0}, then z = 0.

(iii) If N is a 2-torsion free, then h?(U) # {0}.
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Proof. (i) Let z € N and h(U)(h(z) + z) = {0}. We have
0 = h(yu)(h(z) + )
= (h(y)h(u) + h(y)u+ yh(u))(h(z) + z)
= h(y)u(h(z) + ) forall ue U,y e N.

Then h(y)U(h(z)+z) = {0} for all y € N and by Lemma @ (ii) and Lemma @, we conclude
that h(x) + 2 =0.
For (ii), suppose zh(U) = {0}. For all w € U and y € N, we have

0 = xzh(uy) — z(h(wh(y) + h(w)y + uh(y))
= zuh(y).

Hence zUh(y) = {0} for all y € N and 2 = 0 by Lemma @ (ii) and Lemma @

For (i4i), assume that h?(U) = {0}, then 0 = h?(uv) = 2h(u)h(v) for all u,v € U, since N
is a 2-torsion free, we get h(u)h(v) = 0, thus h(U)(h%(v) + h(v)) = {0} for all v € U, in view
of Lemma @ (i), we obtain h?(v) + h(v) = h(v) = 0. Thus, part (i) h(U) = {0} which is a
contradiction by Lemma @ 0

Lemma 3.5. Let N be a 3-prime near-ring and U a nonzero semigroup ideal of N and h a
nonzero homoderivation on N which preserves U. If a € N and [h(a) + a, h(U)] = {0}, then
h(a) +a € Z(N).

Proof. Let a € N and [h(a) + a, h(U)] = {0} .

We set C(a) = {z € N'| [h(a) + a,z] = 0} . Note that h(U) C C(a)NU. Thus, ify € C(a)NU
and v € U, then both h(yu), h(u), h(y) and yh(u) are in C(a). Therefore, h(y)u € C(a)
for all w € U,y € C(a) NU. Hence, h(y)uv € C(a) for all u,v € U,y € C(a) N U and
so, 0 = [h(a) + a, h(y)uwv] = h(y)ul[(h(a) + a),v]. Thus, h(y)U[(h(a) + a),v] = {0} for all
v e U,y € C(a)NU. Since h(U) C C(a) NU, then h%(y)U[(h(a) + a),v] = {0} for all y,v € U.
Since, by Lemma @ (iii), R2(U) # {0}, by Lemma @ (ii) we get [h(a) + a,U] = {0}, and
h(a)+a € Z(N) by Lemma @ (iii).

Theorem 3.6. Let N be a 3-prime near-ring and let U be a nonzero semigroup left ideal of
N. If N admits a nonzero homoderivation h which is zero-power valued on N'. Then the

following assertions are equivalent:
(i) h(u) +u e Z(N) for allu e U.
(i) —u+ h(—u) € Z(N) for allu e U.

(i7i) N is a commutative ring.
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Proof. 1t is clear that the implications (iii) = (i) and (¢i7) = (éi) are trivial.
(i) = (4i1) Let U # {0} a semigroup left ideal such that h(u) +u € Z(N) for all u € U.
Since zu € U, we get h(zu) + zu € Z(N). Thus
h(zu) +zu = h(z)h(u) + h(x)u + xh(u) + zu
= (h(u) +u)(h(z) +2x) € ZN) forall uweUxeN.
Since h(u) +u € Z(N), it follows that hA(u) +u =0 for all u € U or h(z) + x € Z(N) for all

zeN.
Suppose that h(u) +u = 0 for all u € U. By recurrence, it follows that

(3) h(u) + (=1)""u =0 for all w € U and n € N*,

Since h is zero-power valued on N, there exists an integer k(u) > 1 such that h*(u) = 0.
Replacing n by k(u) in (E), we get (—1)FW+ly = 0 for all u € U, so U = {0} which is a

contradiction. Hence

h(z)+x € Z(N) for all z € N.

By Lemma @, we conclude that N is commutative ring.
(11) = (i11) Let U # {0} a semigroup left ideal such that —u+ h(—u) € Z(N) for all u € U.
Since zu € U it follows that —(h(zu) + zu) € Z(N). Thus
—(h(zu) +zu) = —(h(x)h(u)+ h(x)u + zh(u) + zu)
= —zu— zh(u) — h(z)u — h(zx)h(u)
= z(—u) + zh(—u) + h(z)(—u) + h(z)h(—u)
= z(—u—h(u)) + h(z)(—u — h(u))
= (—u—nh(u))(x+h(x) e Z(N) forall ueUxzeN.
Since —u — h(u) € Z(N), it follows that —u — h(u) =0 for all uw € U or x + h(z) € Z(N) for
all z € V.

First suppose that —u — h(u) = 0 for all w € U. Thus h(u) +u = 0 for all w € U. As above,
it follows that U = {0} which is a contradiction. So

(4) z+ h(z) € Z(N) for all x € N.

From Lemma @, we find that NV is commutative ring.

Remark 3.7. Using Theorem @ and Lemma @, we can easly find the following Theorem.
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Theorem 3.8. Let N be a 3-prime near-ring and U be a nonzero semigroup ideal of N'. If
N admits a nonzero homoderivation h which is zero-power valued on N, that preserves U and
satisfies [h(U), h(U) + U] = {0}, then N is a commutative ring.

Theorem 3.9. Let N be a 2-torsion free 3-prime near-ring and U be a nonzero semigroup
ideal of N'. If N' admits a monzero homoderivation h which is zero-power valued on N and

preserves U, then the following assertions are equivalent:

(i) h([z,y]) + [z, y] = [h(z) + z,y] for all x,y € U.

(i) N is a commutative ring.

Proof. 1t is clear that (ii1) = (4).
(1) = (7i) Assume that

(5) h(lz,y]) + [z,y] = [h(z) + z,y] forall z,yel.
Replacing y by zy in (B), and using the fact that [h(z) + z,2] =0 for all x € U, we get
h(@)h([z, y]) + h(x)[z,y] + z(h([z, y]) + [z,9]) = z[h(z) + 2,y] forall z,yecU.

By using (E), we finds

(6) h(z)[h(z) +z,y] =0 forall z,yeU.
Hence
(7) h(z)y(h(x) + ) = h(x)(h(z) + x)y for all z,y e U.

Putting yt instead of y in (B), we arrive at
h(x)ylt,h(z) + 2] =0 forall z,yeU,teN,

which leads to
h(z)U[t,h(z) + 2] = {0} forall ze€UteN.

By Lemma @ (ii), we obtain

(8) h(z) =0 or h(z)+xzeZWN) forall zeU.

If there exists xg € U such that h(xg) = 0, using (a) we get h([zo,y]) =0 for all y € U, thus
9) xoh(y) = h(y)zo for all y e U.

Which means that (h(zg) + xo)h(y) = h(y)(h(zo) + o) for all y € U. Taking h(y)t instead of
1y, then by Lemma @, we have

(10)  @oh®(y)h(t) + zoh®(y)t + zoh(y)h(t) = h*(y)h(t)zo + h* (y)tzo + h(y)h(t)zo
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for all y,t € U. Using (E), (@) becomes
(11) zoh?(y)t = h%(y)tzy for all y,t e U.

Replacing ¢ by ¢tm in (@) and using it again, we get h?(y)t[zg,m] =0 for all y,t € U,m € N,
ie. h%(y)Ulwg,m] = {0} for all y € U,m € N. By Lemma @ (iii) and Lemma @ (ii),
zo € Z(N). In this case, (E) becomes h(x) +x € Z(N) for all z € U which forces that A is a
commutative ring by Theorem @ 0

Theorem 3.10. Let N be a 2-torsion free 3-prime near-ring and U be a nonzero semigroup
ideal of N'. If N admits a nonzero homoderivation h which is zero-power valued on N and

preserves U, then the following assertions are equivalent:

(1) h(lz,y]) = [z,y] for all z,y € U.

(i1) N is a commutative ring.

Proof. Tt is obvious that (ii) implies (7).
(1) = (¢i) Assume that

(12) h(lz,y]) = [z,y] forall z,yeU
Putting 2y in place of y in (1), and using the fact that [z, zy] = z[z,y], we get
zlr,y] = h(z[z,y])
= h(z)h([z,y]) + h(@)[z,y] + zh([z,y])

= 2h(x)[x,y] + z[x,y] forall z,yeU.

Which implies that 2h(z)[z,y] = 0 for all x,y € U. By 2-torsion freeness of N, we finds
h(z)[z,y] = 0 for all z,y € U, which implies that

(13) h(z)zy = h(z)yx for all z,y € U.

Substituting yt for y in (@) and using it again, we obtain h(z)y[z,t] = 0forallz,y € U,t € N,
ie. h(z)Ulx,t] = {0} for all z € U,t € N. By Lemma @ (ii), we arrive at

(14) h(z) =0 or z € Z(N) for all z € U.

Suppose there is an element xg of U such that h(zg) = 0, by (@) we can easly see that

[0, h(y)] = [z0,y] for all y € U and invoking the definition of h. By recurrence we arrive at
(15) [z0, B*(y)] = [z0,y] forall y e U,k e N*,

Using the fact that h is zero-power valued on N, there exists an integer k(y) > 1 such that
R*®)(y) = 0. Replacing k by k(y) in (@), we obviously get 2o € Z(N). In this case, (@)
becomes x € Z(N) for all x € U which forces that N is a commutative ring by Lemma @ 0
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Theorem 3.11. Let N be a 2-torsion free 3-prime near-ring and U be a nonzero semigroup
ideal of N'. If N admits a non zero homoderivation h which is zero-power valued on N, then

the following assertions are equivalent:

(i) (h(x) +x)oy € Z(N) for all z,y € U.

(i1) N is a commutative ring.

Proof. 1t is obvious that (i¢) implies (7).
(1) = (i7) Assume that

(16) (h(z) + ) oy € Z(N) for all z,y € U.
Replacing y by (h(z) + 2)y in (Ld), we get

(h(z) + 2)((h(z) + z) o y) € Z(N) for all z,y € U.
By Lemma .1, it follows that
(17) (h(z) +x) oy =0 or h(z)+z € Z(N) for all z,y € U.

If there exists xg € U such that h(xzg) + zo € Z(N) ~ {0}, by (@) together with Lemma @

(iii), we may conclude that

y+ye ZN) forall yeU,
so that
(18) rly+y)=ry+rye ZWN) forall y e U,r e N.

Since N is 2-torsion free, by using (@) and Lemma @ (iii), we obtain N' C Z(N'), which
implies that A/ is a commutative ring by Lemma @
In view of (@), we may now assume that (h(z) +x)oy =0 for all z,y € U i.e.

y(h(z) + ) = —(h(z) + z)y for all z,y € U.
Taking yt instead if y, where t € N, in the last equation, we obtain

yt(h(z) +x) = —(h(z) + )yt
= (h(z) +2)y(=1)
= (=y(h(x) +x))(-1)
= y(—(h(z) + 2))(—t) forall z,yeU,teN,

which leads to

y(t(h(z) + ) — (—(h(z) + x))(—t)) =0 forall z,yecUteN,
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thereby obtaining
U(—t(—=(h(z) + x)) + (= (h(z) + x))t) = {0} forall xe€U,teN.

By Lemma @ (i), we conclude that —z + h(—z) € Z(N) for all z € U. Thus By Theorem
@, it follows that A is a commutative ring.

Theorem 3.12. Let N be a 3-prime near-ring and U be a nonzero semigroup ideal of N'. If
N admits a nonzero homoderivation on h which is zero-power valued on N, then the following

assertions are equivalent:

(i) [h(x) + z,y] € Z(N) for all z,y € U.
(i7) h(zy) + 2y € ZWN) for all x,y € U.

(i13) N is commutative ring.

Proof. 1t is clear that the implications (i7i) = (i) and (i7i) = (4i) are trivial.

(i) = (4#ii) Suppose that
(19) [h(z) + z,y] € Z(N) for all z,y € U.
Replacing y by (h(x) + x)y in (@), we get
(h(z) 4+ z)[h(x) + z,y] € Z(N) for all x,y € U.
By Lemma @(iii), we obtain
h(z)+z € Z(N) or [h(z)+ z,y] =0 for all z,y € U.

Both cases force that h(z) +xz € Z(N) for all 2 € U. Using Theorem @, we conclude that N

is a commutative ring.

(it) => (4i7) Now assume that h (zy) + zy € Z(N) for all z,y € U. We have
h(zxy) + zzy = h(z)h(zy) + h(z)zy + zh(zy) + 22y
= h(z)(h(zy) + zy) + 2(h(zy) + zy)
= (h(zy) +zy)(h(z) + 2) € Z(N) for all z,y,z € U.
Using Lemma @ (iii) implies
(20) h(zy) + 2y =0 forall z,y €U or h(z)+z€ Z(N) forall z € U.

If h(zy) + 2y = 0 for all z,y € U, by recurrence we have h*(xy) + (—1)*1zy = 0 for all
x,y € Uk € N*. Since h is zero-power valued on N, there exists an integer k(xy) > 1 such
that h*@¥)(zy) = 0. Replacing k by k(zy) in the above expression we get zy = 0 for all
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x,y € U. Thus by the 3-primeness of " we get U = {0}; a contradiction. Hence (@) becomes
h(z) +z € Z(N) for all z € U, and by Theorem @ we proves that A is commutative ring.

Theorem 3.13. Let N be a 2-torsion 3-prime near-ring and U be a nonzero semigroup ideal
of N. There is no nonzero homoderivation h which is zero-power valued on N such that

hMzoy)+zoy=x,y] for all xz,y € U.
Proof. Suppose that h # 0 and
(21) h(zoy)+xzoy=|x,y] forall zyeU.
Thus
yla,yl = [y, y]
= h(yzoy)+tyzoy
= h(y(zoy)) +ylroy)

= hyh(zoy) +h(y)roy+yh(zoy) +y(roy)

(y(
(y)
= hy)(Wzoy)+zoy)+y(h(zoy)+zoy)
(y)

= h(y)z,y] +y[x,y] forall z,yelU.
This expression gives us h(y)[z,y] = 0 for all z,y € U, that is
h(y)xy = h(y)yx for all z,y € U.

Substituting zm in place of x in the last expression, we get
h(y)zmy = h(y)yzm
= h(y)zym for all z,y e UmeN.

Which can be rewritten as h(y)U[m,y] = {0} for all y € U;m € N. By Lemma @ (ii), we

obtain
(22) h(y)=0 or ye Z(WN)forall yeUl.

Suppose there is an element yo € U such that yo € Z(N'). Then (@) becomes h(2xyp)+2xyo =
0, for all x € U. By recurrence, it follows that

(23) R*(2xy0) + (=1 1 22y0 = 0 for all z € U, k € N*.

Since h is zero-power valued on AN, there exists an integer k(2zyp) > 1 such that

RF(2¥0) (22y0) = 0. Replacing k by k(2zy0) in (@), we get 2zyg = 0 for all x € U, and
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using 2-torsion freeness of N, it follows that Uyy = {0}. Hence yo = 0 by Lemma @ (i)
this case, (@) implies that h(U) = {0} which gives a contradiction by Lemma @ 0

Theorem 3.14. Let N be a 2-torsion 3-prime near-ring and U be a nonzero semigroup ideal

of N'. There is no nonzero homoderivation h satisfying h([z,y])+ [z, y] = xoy for allz,y € U.
Proof. Suppose that h # 0 and
(24) h([z,y]) + [z,y] =z oy forall z,yel.
Thus
y(woy) = yzoy

= h(lyz,y)) + [yz,y]
ylz, y]) + ylz, vl
yh([z,y]) + h(y)lz, y] + yh((z, y]) + ylz, y]

)
)(A([z,y]) + [, 9]) + y(h([z, y]) + [z, 9])
= h(y)(zoy)+y(xoy) forall z,yecU.

= h

(
(
_—
= h(y
(

This expression gives us h(y)(x oy) =0 for all x,y € U, it follows that

(25) h(y)xy = —h(y)yx for all z,y e U.

Substituting xm in place of z in (@), we get

h(y)xmy = —h(y)yzm
= h(y)yz(-m)
= h(y)x(—y)(—m) forall z,y € UmeN.

Which can be rewritten as h(y)U(—m(—y) + (—y)m) = {0} for all y € U and m € N. By
Lemma @, we have

(26) h(y)=0 or —ye Z(N) forall yeU.

Suppose there is an element yg € U such that —yy € Z(N). Replacing y by —yp in (@) we
get 2(—yo)z = 0 for all z € U. Using 2-torsion freeness of N, we obtain —yoU = {0} and
by Lemma @, we have ygp = 0. In this case, (@) implies that h(U) = {0} which gives a
contradiction by Lemma @ 0
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Theorem 3.15. Let N be a 3-prime near-ring and U be a nonzero semigroup ideal of N'. There
is no nonzero homoderivation h which is zero-power valued on N such that h(zy) + zy = [z, y]

forallz,y e U.
Proof. Suppose that h # 0 and
(27) h(zy) + a2y = [z,y] forall x,y e U.
Thus
ylz,yl = [yz,y

= h(yzy) +yzy

= h(y(zy)) +y(zy)

= h()h(zy) + hy)zy + yh(zy) + y(zy)

(y(
(y)

= h(y)(h(zy) + zy) + y(h(zy) + zy)
(y)

= h(y)[z,y] + ylz,y] forall z,yeU.

This expression gives us h(y)[z,y] = 0 for all x,y € U. As in proof of Theorem , it follows
that

(28) h(y)=0 or ye Z(N)forall yeU.

Suppose there is an element yg € U such that yo € Z(N). Then (@) becomes h(zyg)+xyo = 0

for all x € U. By recurrence, it follows that
(29) R*(zyo) + (=1)* teyg = 0 for all z € U, k € N*,

Since h is zero-power valued on A, there exists an integer k(zyo) > 1 such that h¥@¥0) (zyy) =
0. Replacing k by k(xyp) in (@), we get xyo = 0 for all z € U, so Uyp = {0}. Hence yg = 0.
In this case, (@) implies that h(U) = {0} which gives a contradiction by Lemma @ 0

Theorem 3.16. Let N be a 3-prime zero symmetric near-ring and U be a nonzero semigroup
ideal of N'. If N' admits a nonzero homoderivation h such that h(xy) + vy = z oy for all

x,y € U, then N is a commutative ring.
Proof. Suppose that

(30) h(zy)+xzy=xzo0y forall z,yeU.
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Thus

y(oy) = yzoy
= h(yzy) + yzy
= h(y(zy)) + y(zy)
Yh(zy) + h(y)zy + yh(zy) + y(zy)
— h(y)
)

(
(
o
() (h(zy) + zy) + y(h(zy) + zy)
(

= h(y)(zoy)+y(zoy) forall z,yel.

This expression gives us h(y)(zoy) = 0 for all z,y € U. As in proof of Theorem , it follows
that

(31) h(y)=0 or —ye€ Z(N) forall yeU.
Suppose there is an element yo € U such that h(yp) = 0. Then (@) becomes
(32) h(z)yo + zyo =z oyy forall z e U.

Replacing x by g in (@), we arrive at yp2 = 0. Substituting zyo in place of z in (@), then

for x € U, we have
YoxYo = a:y02 + YoxYo
= ZTYo ° Yo
= h(zyo)yo + Yo
= 0,

thus yoUyo = {0}. Hence yo = 0. In this case, (@) implies that —U C Z(N). Since —U is

nonzero left semigroup ideal of A/, by Lemma @ N is a commutative ring.

Theorem 3.17. Let N be a 2-torsion free 3-prime near-ring and U be a nonzero semigroup
ideal of N'. If N admits a monzero homoderivation on h which is zero-power valued on N,
then the following assertions are equivalent:
(i) h(zoy)+xzoye Z(N) forall z,y € U.

(i1) N is commutative ring.

Proof. Tt is easy to see that (ii) = (i).
(1) = (4i) Suppose that

(33) h(zoy)+axoye Z(N) for all z,y € U.
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Since z o xy = x(x oy) for all x,y € U, replacing y by zy in (@), we obtain
h(z)h(zoy) + h(z)(xoy) + zh(zoy) + x(xoy) € Z(N) forall z,ycU.

Thus
h(z)(h(zoy)+zoy)+ax(h(zoy)+xoy) € Z(N) forall z,yeU.

By (Bd) we get

(34) (h(zoy)+xzoy)(h(z)+x) € Z(N) forall z,yelU.
By Lemma .1 we have

(35) hzoy)+zoy=0 or h(z)+xeZWN) forall z,yeU.

Suppose there is an element x¢p € U such that h(zgoy) + xpoy = 0 for all y € N/. Then by

recurrence we prove that

(36) hF(zgoy) + (—1)flzgoy =0 forall ye U ke N*.

Since h is zero-power valued on N, there exists an integer k(zgoy) > 1 such that h¥(#0°) (z 0
y) = 0. Replacing k by k(zgoy) in (@), it follows that

(37) xopoy=0 forall yeU.

Substituting zg in place of y in (@), we get 2(z0)? = 0. Using 2-torsion freeness of N we
obtain (zg)? = 0. Putting zgy in place of y in (@), we get xoyrg = 0 for all y € U, so
zoUxo = {0}. Thus x9 = 0 by Lemma P.2 (ii). In this case, (@) implies that h(z)+z € Z(N)
for all x € U. By Theorem @ it follows that N is commutative ring.

The following examples shows that h is “zero-power valued on N7 cannot be omitted in the

hypothesis of Theorems @, @, @, |3.1]J, |31j and |317|

Example 3.18. Let NV = U = My(Z), that is a 2-torsion free prime ring. We consider

h = —idys, then it is clear that h is a not ”zero-power valued homoderivation on A7 which
preserve U and satisfy the following conditions:

(i) h(z) + 2 € Z(N),

(i1) 2 + h(—z) € Z(N),

(22) [h(z), h(y) +y] =0,
(iv) [h(z) + z,y] € Z(N),
(v) (2, 3]) + [,9] = [h(z) + 2,3,
(vi) (h(x) + 7)oy € Z(N),
(vii) h (ay) + oy € Z(N),

(viii) h(zoy) +x oy € Z(N),
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for all z,y € U, but N is not commutative.

Example 3.19. Let N = U = C = {a +ib | a,b € R} be the set of all complex numbers.
Addition is the usual addition of complex numbers. Then (N, +) is a group. Define multipli-
cation x on N by u*v = |u|v. Then (N, +,*) is a 3-prime near-ring, which is not a ring. We
consider h = —id,s, then it is clear that h is not “zero-power valued homoderivation on N,”
which preserve U and satisfy the following conditions:

(i) h(z)+xz € Z(N),

(i1) —x + h(—x) € Z(N),

(iii) [h(x), h(y) +y] =0,
(iv) [h(z) + z,y] € Z(N),
(v) Az, y]) + [z, y] = [h(z) + z, 9],
(vi) (h(x) +z) oy € Z(N),

(vii) h(zy) + zy € Z(N),

(viii) h(zoy)+xzoy € Z(N),

for all z,y € U, but NV is not commutative ring.

The following example illustrates that the hypothesis ”3-primeness of A7 is essential in

Theorems @, @, |3.1d, |3.1]J, |3.lj, |3.15i, B.14I, |3.15*, |31d and |317| of our paper.

Example 3.20. Let S be a zero-symmetric 2-torsion free left near-ring and

a b 0

N:{ 00 0 \a,b,OeS}.
0 00
0O v O

Uz{ 0 00 |u,0€5’}.
0 0 0

Then N is a 2-torsion left near-ring which is not 3-prime and U is a nonzero semigroup ideal
of N. Let us defined h : N — N as follow:

a b 0 0 a O
hl 0 0 O = 0 0O
0 00 0 0O

It is clear that h is a zero-power valued homoderivation on N, which satisfy the following

conditions:
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(1) [h(z), h(y) +y] =0,
(1) [h(z) +z,y] € Z(N),

(#11) h([z,y]) + [z, y] = [A(z) + 2, 9],
(iv) (h(z) +x) oy € Z(N),
(v) b (zy) +xy € Z(N),
(vi) h(zoy) +xzoy e Z(N),
(vii) h(z oy) +x oy = [7,y],
(vidi) h([z,y]) = [z,y],

(iz) h([z,y]) + [z,y] =z 0y,
() h(zy) +zy = [z, 9],

(zi) h(zy) +ay =m0y

for all z,y € U, but N is not commutative.
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