

Algebraic Structures and Their Applications

Algebraic Structures and Their Applications Vol. 8 No. 2 (2021), pp 177-194.

Research Paper

HOMODERIVATIONS AND SEMIGROUP IDEALS IN 3-PRIME NEAR-RINGS

SAMIR MOUHSSINE AND ABDELKARIM BOUA*

ABSTRACT. This paper studies homoderivations satisfying certain conditions on semigroup ideals of near-rings. In addition, we include some examples of the necessity of the hypotheses used in our results.

1. INTRODUCTION

An additively written group $(\mathcal{N}, +)$ equipped with a binary operation $\cdot : \mathcal{N} \times \mathcal{N} \to \mathcal{N}$, $(x, y) \mapsto xy$, such that (xy)z = x(yz) and x(y+z) = xy + xz for all $z, y, z \in \mathcal{N}$ is called a left near-ring. The results obtained in near-rings can be used in various fields inside and outside of pure mathematics. The best known is to balanced incomplete block designs using planar near-rings. Precisely, we can construct efficient codes and block designs with the help of finite near-rings. Also, there are other applications in cryptography, digital computing, automata theory, sequential mechanics, and combinatorics. For the basic results of near-ring theory and

Keywords: Commutativity theorems, Homoderivation, 3-prime Near-ring, Semigroup ideal, Zero-power valued mappings. Received: 16 April 2020, Accepted: 19 May 2021.

*Corresponding author

 $\ensuremath{\textcircled{O}}$ 2021 Yazd University.

DOI: 10.22034/as.2021.2110

MSC(2010): 16N60, 16W25, 16Y30.

its applications, we recommend the references of Clay [7], Meldrum [11], Pilz [12], and Lakehal [9].

Throughout this paper, by a near-ring we mean that left near-ring \mathcal{N} with center $Z(\mathcal{N})$. A non empty subset U of \mathcal{N} is said to be a semigroup left (resp. right) ideal of \mathcal{N} if $\mathcal{N}U \subseteq U$ (resp. $U\mathcal{N} \subseteq U$) and if U is both a semigroup left ideal and a semigroup right ideal, it is called a semigroup ideal of \mathcal{N} . Recall that \mathcal{N} is 3-prime, that is, for all $a, b \in \mathcal{N}$, $a\mathcal{N}b = \{0\}$ implies that a = 0 or b = 0. \mathcal{N} is said to be 2-torsion free if whenever 2x = 0, with $x \in \mathcal{N}$, then x = 0. A near-ring \mathcal{N} is called zero-symmetric if 0x = 0 for all $x \in \mathcal{N}$ (recall that right distributivity yields x0 = 0). As usual for all $x, y \in \mathcal{N}$, the symbol [x, y] stands for Lie product (commutator) xy - yx and $x \circ y$ stands for Jordan product (anticommutator) xy + yx. We note that for a near-ring, -(x + y) = -y - x. For $S \subseteq \mathcal{N}$, a mapping $f : \mathcal{N} \longrightarrow \mathcal{N}$ is called zero-power valued on S if for each $x \in S$, there exists a positive integer k(x) > 1 such that $f^{k(x)}(x) = 0$. A mapping $f : \mathcal{N} \longrightarrow \mathcal{N}$ preserves S if $f(S) \subseteq S$. An additive mapping $d : \mathcal{N} \to \mathcal{N}$ is said to be a derivation if d(xy) = xd(y) + d(x)y for all $x, y \in \mathcal{N}$, or equivalently, as noted in [13], that d(xy) = d(x)y + xd(y) for all $x, y \in \mathcal{N}$. According to [6], an additive mapping h from \mathcal{N} into itself is said to be a homoderivation if h(xy) = h(x)h(y) + h(x)y + xh(y) for all $x, y \in \mathcal{N}$.

Many results on commutativity in prime and semi-prime rings admitting suitably constrained derivations, generalized derivations, and homoderivations have been published in the literature (see [1], [2], [3], [4], [5], [8], and [10]). Recently, A. Boua has proved comparable results on 3-prime near-rings in [6].

Our aim in this paper is to investigate 3-prime near-rings admitting homoderivations satisfying certain identities, in the case where the constraints are initially assumed to hold on semigroup ideal of near-rings.

2. Preliminaries

In the following, we give some well-known results of near-rings in the literature, which will be used extensively in the proof of our results.

Lemma 2.1. [3, Lemmas 1.2 (i), 1.2 (iii), and 1.3 (iii)] Let \mathcal{N} be a 3-prime near-ring. (i) If $z \in Z(\mathcal{N}) \setminus \{0\}$, then z is not a zero divisor. (ii) If $Z(\mathcal{N})$ contains a nonzero element z for which $z + z \in Z(\mathcal{N})$, then \mathcal{N} is abelian. (iii) If $z \in Z(\mathcal{N}) \setminus \{0\}$ and $x \in \mathcal{N}$ such that $xz \in Z(\mathcal{N})$ or $zx \in Z(\mathcal{N})$, then $x \in Z(\mathcal{N})$.

Lemma 2.2. [3, Lemmas 1.3 (i), 1.4 (i), and 1.3 (iii)] Let \mathcal{N} be a 3-prime near-ring.

(i) If U is a nonzero semigroup right (resp. semigroup left) ideal of \mathcal{N} and $x \in \mathcal{N}$ such that $Ux = \{0\}$ (resp. $xU = \{0\}$), then x = 0.

(ii) If U is a nonzero semigroup ideal of \mathcal{N} and $x, y \in \mathcal{N}$ such that $xUy = \{0\}$, then x = 0 or y = 0.

(iii) If U is a nonzero semigroup right ideal of \mathcal{N} and $x \in \mathcal{N}$ which centralizes U, then $x \in Z(\mathcal{N})$.

Lemma 2.3. [3, Lemmas 1.5] If \mathcal{N} is a 3-prime near-ring and $Z(\mathcal{N})$ contains a nonzero semigroup left ideal or semigroup right ideal, then \mathcal{N} is a commutative ring.

Lemma 2.4. [6, Lemma 2.4 (ii)] Let \mathcal{N} be a 2-torsion free 3-prime near-ring. If \mathcal{N} admits a homoderivation h such that $h^2(\mathcal{N}) = \{0\}$, then h = 0.

Lemma 2.5. [6, Lemma 2.4] Let \mathcal{N} be a prime 3-near-ring. If \mathcal{N} admits a nonzero homoderivation h, then for all $x, y, a \in \mathcal{N}$ we have

h(xy)(h(a) + a) = h(x)h(y)(h(a) + a) + h(x)y(h(a) + a) + xh(y)(h(a) + a).

3. Some results for homoderivation and semigroup ideal in 3-prime near-ring

We begin this paragraph with a crucial result, which is necessary for developing the proof of our main results.

Lemma 3.1. Let \mathcal{N} be a 3-prime near-ring. If \mathcal{N} admits a nonzero additive map f on \mathcal{N} which is zero-power valued on \mathcal{N} . Then the following assertions are equivalent:

(i) f(x) + x ∈ Z(N) for all x ∈ N.
(ii) x + f(x) ∈ Z(N) for all x ∈ N.
(iii) N is a commutative ring.

Proof. It is clear that the implications $(iii) \Rightarrow (i)$ and $(iii) \Rightarrow (ii)$ are trivial. $(i) \Rightarrow (iii)$ Suppose that

(1)
$$f(x) + x \in Z(\mathcal{N}) \text{ for all } x \in \mathcal{N}.$$

If $f(x) \neq 0$ for all $x \in \mathcal{N} \setminus \{0\}$. By recurrence we have $f^n(x) \neq 0$ for all $x \in \mathcal{N} \setminus \{0\}$ and $n \in \mathbb{N}^*$. Since f is zero-power valued on \mathcal{N} , for each $x \in \mathcal{N}$, there exists a positive integer k(x) > 1 such that $f^{k(x)}(x) = 0$, it follows that for $z = f^{k(x)-1}(x) \neq 0$, $f(z) = f^{k(x)}(x) = 0$ which is a contradiction. Hence there exists $y \in \mathcal{N} \setminus \{0\}$ such that f(y) = 0, so we get $y = f(y) + y \in Z(\mathcal{N}) \setminus \{0\}$ and $y + y = f(y + y) + y + y \in Z(\mathcal{N})$, which forces that \mathcal{N} is abelian.

Now by replacing x by $x - f(x) + f^2(x) + \ldots + (-1)^{k(x)-1}f^{k(x)-1}(x)$ in (1) and using \mathcal{N} is abelian we get $x \in Z(\mathcal{N})$ for all $x \in \mathcal{N}$, thus $\mathcal{N} \subseteq Z(\mathcal{N})$. Hence \mathcal{N} is commutative ring by Lemma 2.3. \Box

Lemma 3.2. Let \mathcal{N} be a 2-torsion free near-ring. If \mathcal{N} admits a nonzero homoderivation h which is zero-power valued on \mathcal{N} , then \mathcal{N} is zero symmetric near-ring.

Proof. We have for all $z \in \mathcal{N}$

$$h(0z) = h(0)h(z) + h(0)z + 0h(z)$$

= $0h(z) + 0z + 0h(z).$

On the other hand

$$h(0z) = h(0(0z))$$

= $h(0)h(0z) + h(0)0z + 0h(0z)$
= $0h(0z) + 0z + 0h(0z)$
= $0h(z) + 0z + 0h(z) + 0z + 0h(z) + 0z + 0h(z).$

Comparing the last two expressions, we find 2(0h(z) + 0z) = 0 for all $z \in \mathcal{N}$. Using 2-torsion freeness of \mathcal{N} we obtain 0h(z) + 0z = 0 for all $z \in \mathcal{N}$. By recurrence, we obtain

(2)
$$0h^{n}(z) + (-1)^{n+1}0z = 0 \text{ for all } z \in \mathcal{N} \text{ and } n \in \mathbb{N}^{*}.$$

Since h is zero-power valued on \mathcal{N} , there exists an integer k(z) > 1 such that $h^{k(z)}(z) = 0$. Replacing n by k(z) in (2), we get $(-1)^{k(z)+1}0z = 0$ for all $z \in \mathcal{N}$. Thus \mathcal{N} is zero symmetric near-ring. \Box

Lemma 3.3. Let \mathcal{N} be a 3-prime near-ring and h be a nonzero homoderivation of \mathcal{N} .

(i) If \mathcal{N} is zero symmetric and U is a nonzero semigroup right ideal of \mathcal{N} , then $h(U) \neq \{0\}$. (ii) If U is a nonzero semigroup left ideal of \mathcal{N} , then $h(U) \neq \{0\}$.

Proof. (i) Let U be a nonzero semigroup right ideal. Suppose that $h(U) = \{0\}$. Then for all $u \in U$ and $x \in \mathcal{N}$ we have 0 = h(ux) = h(u)h(x) + h(u)x + uh(x) = uh(x), that is uh(x) = 0 for all $u \in U, x \in \mathcal{N}$. This implies that $Uh(x) = \{0\}$ for all $x \in \mathcal{N}$. Hence h = 0 by Lemma 2.2 (i).

(*ii*) The argument for semigroup left ideal is similar. \Box

Lemma 3.4. Let \mathcal{N} be a 3-prime near-ring admitting a nonzero homoderivation h and U a nonzero semigroup right ideal of \mathcal{N} .

(i) If $x \in \mathcal{N}$ and $h(U)(h(x) + x) = \{0\}$, then h(x) + x = 0.

(ii) If $x \in \mathcal{N}$ and $xh(U) = \{0\}$, then x = 0.

(iii) If \mathcal{N} is a 2-torsion free, then $h^2(U) \neq \{0\}$.

Proof. (i) Let $x \in \mathcal{N}$ and $h(U)(h(x) + x) = \{0\}$. We have

$$0 = h(yu)(h(x) + x)$$

= $(h(y)h(u) + h(y)u + yh(u))(h(x) + x)$
= $h(y)u(h(x) + x)$ for all $u \in U, y \in \mathcal{N}$.

Then $h(y)U(h(x)+x) = \{0\}$ for all $y \in \mathcal{N}$ and by Lemma 2.2 (ii) and Lemma 3.3, we conclude that h(x) + x = 0.

For (*ii*), suppose $xh(U) = \{0\}$. For all $u \in U$ and $y \in \mathcal{N}$, we have

$$0 = xh(uy) - x(h(u)h(y) + h(u)y + uh(y))$$
$$= xuh(y).$$

Hence $xUh(y) = \{0\}$ for all $y \in \mathcal{N}$ and x = 0 by Lemma 2.2 (ii) and Lemma 3.3.

For (*iii*), assume that $h^2(U) = \{0\}$, then $0 = h^2(uv) = 2h(u)h(v)$ for all $u, v \in U$, since \mathcal{N} is a 2-torsion free, we get h(u)h(v) = 0, thus $h(U)(h^2(v) + h(v)) = \{0\}$ for all $v \in U$, in view of Lemma 3.4 (i), we obtain $h^2(v) + h(v) = h(v) = 0$. Thus, part (ii) $h(U) = \{0\}$ which is a contradiction by Lemma 3.3. \Box

Lemma 3.5. Let \mathcal{N} be a 3-prime near-ring and U a nonzero semigroup ideal of \mathcal{N} and h a nonzero homoderivation on \mathcal{N} which preserves U. If $a \in \mathcal{N}$ and $[h(a) + a, h(U)] = \{0\}$, then $h(a) + a \in Z(\mathcal{N})$.

Proof. Let $a \in \mathcal{N}$ and $[h(a) + a, h(U)] = \{0\}$.

We set $C(a) = \{x \in \mathcal{N} \mid [h(a) + a, x] = 0\}$. Note that $h(U) \subset C(a) \cap U$. Thus, if $y \in C(a) \cap U$ and $u \in U$, then both h(yu), h(u), h(y) and yh(u) are in C(a). Therefore, $h(y)u \in C(a)$ for all $u \in U, y \in C(a) \cap U$. Hence, $h(y)uv \in C(a)$ for all $u, v \in U, y \in C(a) \cap U$ and so, 0 = [h(a) + a, h(y)uv] = h(y)u[(h(a) + a), v]. Thus, $h(y)U[(h(a) + a), v] = \{0\}$ for all $v \in U, y \in C(a) \cap U$. Since $h(U) \subset C(a) \cap U$, then $h^2(y)U[(h(a) + a), v] = \{0\}$ for all $y, v \in U$. Since, by Lemma 3.4 (iii), $h^2(U) \neq \{0\}$, by Lemma 2.2 (ii) we get $[h(a) + a, U] = \{0\}$, and $h(a) + a \in Z(\mathcal{N})$ by Lemma 2.2 (iii). \Box

Theorem 3.6. Let \mathcal{N} be a 3-prime near-ring and let U be a nonzero semigroup left ideal of \mathcal{N} . If \mathcal{N} admits a nonzero homoderivation h which is zero-power valued on \mathcal{N} . Then the following assertions are equivalent:

- (i) $h(u) + u \in Z(\mathcal{N})$ for all $u \in U$.
- (ii) $-u + h(-u) \in Z(\mathcal{N})$ for all $u \in U$.
- (iii) \mathcal{N} is a commutative ring.

Proof. It is clear that the implications $(iii) \Rightarrow (i)$ and $(iii) \Rightarrow (ii)$ are trivial.

 $(i) \Rightarrow (iii)$ Let $U \neq \{0\}$ a semigroup left ideal such that $h(u) + u \in Z(\mathcal{N})$ for all $u \in U$. Since $xu \in U$, we get $h(xu) + xu \in Z(\mathcal{N})$. Thus

$$h(xu) + xu = h(x)h(u) + h(x)u + xh(u) + xu$$
$$= (h(u) + u)(h(x) + x) \in Z(\mathcal{N}) \text{ for all } u \in U, x \in \mathcal{N}.$$

Since $h(u) + u \in Z(\mathcal{N})$, it follows that h(u) + u = 0 for all $u \in U$ or $h(x) + x \in Z(\mathcal{N})$ for all $x \in \mathcal{N}$.

Suppose that h(u) + u = 0 for all $u \in U$. By recurrence, it follows that

(3)
$$h^{n}(u) + (-1)^{n+1}u = 0 \text{ for all } u \in U \text{ and } n \in \mathbb{N}^{*}.$$

Since h is zero-power valued on \mathcal{N} , there exists an integer k(u) > 1 such that $h^{k(u)}(u) = 0$. Replacing n by k(u) in (3), we get $(-1)^{k(u)+1}u = 0$ for all $u \in U$, so $U = \{0\}$ which is a contradiction. Hence

$$h(x) + x \in Z(\mathcal{N})$$
 for all $x \in \mathcal{N}$.

By Lemma 3.1, we conclude that \mathcal{N} is commutative ring.

 $(ii) \Rightarrow (iii)$ Let $U \neq \{0\}$ a semigroup left ideal such that $-u + h(-u) \in Z(\mathcal{N})$ for all $u \in U$. Since $xu \in U$ it follows that $-(h(xu) + xu) \in Z(\mathcal{N})$. Thus

$$\begin{aligned} -(h(xu) + xu) &= -(h(x)h(u) + h(x)u + xh(u) + xu) \\ &= -xu - xh(u) - h(x)u - h(x)h(u) \\ &= x(-u) + xh(-u) + h(x)(-u) + h(x)h(-u) \\ &= x(-u - h(u)) + h(x)(-u - h(u)) \\ &= (-u - h(u))(x + h(x)) \in Z(\mathcal{N}) \text{ for all } u \in U, x \in \mathcal{N}. \end{aligned}$$

Since $-u - h(u) \in Z(\mathcal{N})$, it follows that -u - h(u) = 0 for all $u \in U$ or $x + h(x) \in Z(\mathcal{N})$ for all $x \in \mathcal{N}$.

First suppose that -u - h(u) = 0 for all $u \in U$. Thus h(u) + u = 0 for all $u \in U$. As above, it follows that $U = \{0\}$ which is a contradiction. So

(4)
$$x + h(x) \in Z(\mathcal{N})$$
 for all $x \in \mathcal{N}$.

From Lemma 3.1, we find that \mathcal{N} is commutative ring. \Box

Remark 3.7. Using Theorem 3.6 and Lemma 3.5, we can easly find the following Theorem.

Theorem 3.8. Let \mathcal{N} be a 3-prime near-ring and U be a nonzero semigroup ideal of \mathcal{N} . If \mathcal{N} admits a nonzero homoderivation h which is zero-power valued on \mathcal{N} , that preserves U and satisfies $[h(U), h(U) + U] = \{0\}$, then \mathcal{N} is a commutative ring.

Theorem 3.9. Let \mathcal{N} be a 2-torsion free 3-prime near-ring and U be a nonzero semigroup ideal of \mathcal{N} . If \mathcal{N} admits a nonzero homoderivation h which is zero-power valued on \mathcal{N} and preserves U, then the following assertions are equivalent:

(i) h([x,y]) + [x,y] = [h(x) + x,y] for all $x, y \in U$.

(ii) \mathcal{N} is a commutative ring.

Proof. It is clear that $(ii) \Longrightarrow (i)$. $(i) \Rightarrow (ii)$ Assume that

(5)
$$h([x,y]) + [x,y] = [h(x) + x, y]$$
 for all $x, y \in U$.

Replacing y by xy in (5), and using the fact that [h(x) + x, x] = 0 for all $x \in U$, we get

 $h(x)h([x,y]) + h(x)[x,y] + x(h([x,y]) + [x,y]) = x[h(x) + x,y] \quad \text{for all} \quad x,y \in U.$

By using (5), we finds

(6)
$$h(x)[h(x) + x, y] = 0 \text{ for all } x, y \in U.$$

Hence

(7)
$$h(x)y(h(x) + x) = h(x)(h(x) + x)y \text{ for all } x, y \in U.$$

Putting yt instead of y in (7), we arrive at

$$h(x)y[t, h(x) + x] = 0$$
 for all $x, y \in U, t \in \mathcal{N}$,

which leads to

$$h(x)U[t, h(x) + x] = \{0\}$$
 for all $x \in U, t \in \mathcal{N}$.

By Lemma 2.2 (ii), we obtain

(8)
$$h(x) = 0 \text{ or } h(x) + x \in Z(\mathcal{N}) \text{ for all } x \in U.$$

If there exists $x_0 \in U$ such that $h(x_0) = 0$, using (5) we get $h([x_0, y]) = 0$ for all $y \in U$, thus

(9)
$$x_0h(y) = h(y)x_0$$
 for all $y \in U$.

Which means that $(h(x_0) + x_0)h(y) = h(y)(h(x_0) + x_0)$ for all $y \in U$. Taking h(y)t instead of y, then by Lemma 2.5, we have

(10)
$$x_0h^2(y)h(t) + x_0h^2(y)t + x_0h(y)h(t) = h^2(y)h(t)x_0 + h^2(y)tx_0 + h(y)h(t)x_0$$

for all $y, t \in U$. Using (9), (10) becomes

(11)
$$x_0 h^2(y)t = h^2(y)tx_0 \quad \text{for all} \quad y, t \in U.$$

Replacing t by tm in (11) and using it again, we get $h^2(y)t[x_0, m] = 0$ for all $y, t \in U, m \in \mathcal{N}$, ie. $h^2(y)U[x_0, m] = \{0\}$ for all $y \in U, m \in \mathcal{N}$. By Lemma 3.4 (iii) and Lemma 2.2 (ii), $x_0 \in Z(\mathcal{N})$. In this case, (8) becomes $h(x) + x \in Z(\mathcal{N})$ for all $x \in U$ which forces that \mathcal{N} is a commutative ring by Theorem 3.6. \Box

Theorem 3.10. Let \mathcal{N} be a 2-torsion free 3-prime near-ring and U be a nonzero semigroup ideal of \mathcal{N} . If \mathcal{N} admits a nonzero homoderivation h which is zero-power valued on \mathcal{N} and preserves U, then the following assertions are equivalent:

(i) h([x, y]) = [x, y] for all $x, y \in U$.

(ii) \mathcal{N} is a commutative ring.

Proof. It is obvious that (ii) implies (i).

 $(i) \Rightarrow (ii)$ Assume that

(12)
$$h([x,y]) = [x,y] \text{ for all } x, y \in U$$

Putting xy in place of y in (12), and using the fact that [x, xy] = x[x, y], we get

$$\begin{aligned} x[x,y] &= h(x[x,y]) \\ &= h(x)h([x,y]) + h(x)[x,y] + xh([x,y]) \\ &= 2h(x)[x,y] + x[x,y] \text{ for all } x, y \in U. \end{aligned}$$

Which implies that 2h(x)[x,y] = 0 for all $x, y \in U$. By 2-torsion freeness of \mathcal{N} , we finds h(x)[x,y] = 0 for all $x, y \in U$, which implies that

(13)
$$h(x)xy = h(x)yx$$
 for all $x, y \in U$.

Substituting yt for y in (13) and using it again, we obtain h(x)y[x,t] = 0 for all $x, y \in U, t \in \mathcal{N}$, ie. $h(x)U[x,t] = \{0\}$ for all $x \in U, t \in \mathcal{N}$. By Lemma 2.2 (ii), we arrive at

(14)
$$h(x) = 0 \text{ or } x \in Z(\mathcal{N}) \text{ for all } x \in U.$$

Suppose there is an element x_0 of U such that $h(x_0) = 0$, by (12) we can easly see that $[x_0, h(y)] = [x_0, y]$ for all $y \in U$ and invoking the definition of h. By recurrence we arrive at

(15)
$$[x_0, h^k(y)] = [x_0, y] \text{ for all } y \in U, k \in \mathbb{N}^*.$$

Using the fact that h is zero-power valued on \mathcal{N} , there exists an integer k(y) > 1 such that $h^{k(y)}(y) = 0$. Replacing k by k(y) in (15), we obviously get $x_0 \in Z(\mathcal{N})$. In this case, (14) becomes $x \in Z(\mathcal{N})$ for all $x \in U$ which forces that \mathcal{N} is a commutative ring by Lemma 2.3. \Box

Theorem 3.11. Let \mathcal{N} be a 2-torsion free 3-prime near-ring and U be a nonzero semigroup ideal of \mathcal{N} . If \mathcal{N} admits a non zero homoderivation h which is zero-power valued on \mathcal{N} , then the following assertions are equivalent:

(i) $(h(x) + x) \circ y \in Z(\mathcal{N})$ for all $x, y \in U$.

(ii) \mathcal{N} is a commutative ring.

Proof. It is obvious that (ii) implies (i).

 $(i) \Rightarrow (ii)$ Assume that

(16)
$$(h(x) + x) \circ y \in Z(\mathcal{N}) \text{ for all } x, y \in U.$$

Replacing y by (h(x) + x)y in (16), we get

$$(h(x) + x)((h(x) + x) \circ y) \in Z(\mathcal{N})$$
 for all $x, y \in U$.

By Lemma 2.1, it follows that

(17)
$$(h(x) + x) \circ y = 0 \text{ or } h(x) + x \in Z(\mathcal{N}) \text{ for all } x, y \in U.$$

If there exists $x_0 \in U$ such that $h(x_0) + x_0 \in Z(\mathcal{N}) \setminus \{0\}$, by (16) together with Lemma 2.1 (iii), we may conclude that

$$y + y \in Z(\mathcal{N})$$
 for all $y \in U$,

so that

(18)
$$r(y+y) = ry + ry \in Z(\mathcal{N}) \text{ for all } y \in U, r \in \mathcal{N}.$$

Since \mathcal{N} is 2-torsion free, by using (18) and Lemma 2.1 (iii), we obtain $\mathcal{N} \subseteq Z(\mathcal{N})$, which implies that \mathcal{N} is a commutative ring by Lemma 2.1.

In view of (17), we may now assume that $(h(x) + x) \circ y = 0$ for all $x, y \in U$ i.e.

$$y(h(x) + x) = -(h(x) + x)y$$
 for all $x, y \in U$.

Taking yt instead if y, where $t \in \mathcal{N}$, in the last equation, we obtain

$$yt(h(x) + x) = -(h(x) + x)yt$$

= $(h(x) + x)y(-t)$
= $(-y(h(x) + x))(-t)$
= $y(-(h(x) + x))(-t)$ for all $x, y \in U, t \in \mathcal{N}$,

which leads to

$$y(t(h(x) + x) - (-(h(x) + x))(-t)) = 0$$
 for all $x, y \in U, t \in \mathcal{N}$,

thereby obtaining

$$U(-t(-(h(x) + x)) + (-(h(x) + x))t) = \{0\} \text{ for all } x \in U, t \in \mathcal{N}.$$

By Lemma 2.2 (i), we conclude that $-x + h(-x) \in Z(\mathcal{N})$ for all $x \in U$. Thus By Theorem 3.6, it follows that \mathcal{N} is a commutative ring. \Box

Theorem 3.12. Let \mathcal{N} be a 3-prime near-ring and U be a nonzero semigroup ideal of \mathcal{N} . If \mathcal{N} admits a nonzero homoderivation on h which is zero-power valued on \mathcal{N} , then the following assertions are equivalent:

- (i) $[h(x) + x, y] \in Z(\mathcal{N})$ for all $x, y \in U$.
- (ii) $h(xy) + xy \in Z(\mathcal{N})$ for all $x, y \in U$.
- (iii) \mathcal{N} is commutative ring.

Proof. It is clear that the implications $(iii) \Rightarrow (i)$ and $(iii) \Rightarrow (ii)$ are trivial. $(i) \Rightarrow (iii)$ Suppose that

(19)
$$[h(x) + x, y] \in Z(\mathcal{N}) \text{ for all } x, y \in U.$$

Replacing y by (h(x) + x)y in (19), we get

$$(h(x) + x)[h(x) + x, y] \in Z(\mathcal{N})$$
 for all $x, y \in U$.

By Lemma 2.1(iii), we obtain

$$h(x) + x \in Z(\mathcal{N})$$
 or $[h(x) + x, y] = 0$ for all $x, y \in U$.

Both cases force that $h(x) + x \in Z(\mathcal{N})$ for all $x \in U$. Using Theorem 3.6, we conclude that \mathcal{N} is a commutative ring.

 $(ii) \Longrightarrow (iii)$ Now assume that $h(xy) + xy \in Z(\mathcal{N})$ for all $x, y \in U$. We have

$$\begin{array}{lll} h\,(zxy) + zxy &=& h(z)h(xy) + h(z)xy + zh(xy) + zxy \\ &=& h(z)(h(xy) + xy) + z(h(xy) + xy) \\ &=& (h(xy) + xy)(h(z) + z) \in Z(\mathcal{N}) \ \mbox{for all} \ x, y, z \in U. \end{array}$$

Using Lemma 2.1 (iii) implies

(20)
$$h(xy) + xy = 0$$
 for all $x, y \in U$ or $h(z) + z \in Z(\mathcal{N})$ for all $z \in U$.

If h(xy) + xy = 0 for all $x, y \in U$, by recurrence we have $h^k(xy) + (-1)^{k+1}xy = 0$ for all $x, y \in U, k \in \mathbb{N}^*$. Since h is zero-power valued on \mathcal{N} , there exists an integer k(xy) > 1 such that $h^{k(xy)}(xy) = 0$. Replacing k by k(xy) in the above expression we get xy = 0 for all

186

 $x, y \in U$. Thus by the 3-primeness of \mathcal{N} we get $U = \{0\}$; a contradiction. Hence (19) becomes $h(z) + z \in Z(\mathcal{N})$ for all $z \in U$, and by Theorem 3.6 we proves that \mathcal{N} is commutative ring. \Box

Theorem 3.13. Let \mathcal{N} be a 2-torsion 3-prime near-ring and U be a nonzero semigroup ideal of \mathcal{N} . There is no nonzero homoderivation h which is zero-power valued on \mathcal{N} such that $h(x \circ y) + x \circ y = [x, y]$ for all $x, y \in U$.

Proof. Suppose that $h \neq 0$ and

(21)
$$h(x \circ y) + x \circ y = [x, y] \text{ for all } x, y \in U.$$

Thus

$$\begin{split} y[x,y] &= [yx,y] \\ &= h(yx \circ y) + yx \circ y \\ &= h(y(x \circ y)) + y(x \circ y) \\ &= h(y)h(x \circ y) + h(y)x \circ y + yh(x \circ y) + y(x \circ y) \\ &= h(y)(h(x \circ y) + x \circ y) + y(h(x \circ y) + x \circ y) \\ &= h(y)[x,y] + y[x,y] \quad \text{for all} \quad x,y \in U. \end{split}$$

This expression gives us h(y)[x, y] = 0 for all $x, y \in U$, that is

$$h(y)xy = h(y)yx$$
 for all $x, y \in U$.

Substituting xm in place of x in the last expression, we get

$$\begin{split} h(y)xmy &= h(y)yxm \\ &= h(y)xym \quad \text{for all} \quad x,y \in U, m \in \mathcal{N}. \end{split}$$

Which can be rewritten as $h(y)U[m, y] = \{0\}$ for all $y \in U, m \in \mathcal{N}$. By Lemma 2.2 (ii), we obtain

(22)
$$h(y) = 0 \text{ or } y \in Z(\mathcal{N}) \text{ for all } y \in U.$$

Suppose there is an element $y_0 \in U$ such that $y_0 \in Z(\mathcal{N})$. Then (21) becomes $h(2xy_0) + 2xy_0 = 0$, for all $x \in U$. By recurrence, it follows that

(23)
$$h^{k}(2xy_{0}) + (-1)^{k+1}2xy_{0} = 0 \text{ for all } x \in U, k \in \mathbb{N}^{*}.$$

Since h is zero-power valued on \mathcal{N} , there exists an integer $k(2xy_0) > 1$ such that $h^{k(2xy_0)}(2xy_0) = 0$. Replacing k by $k(2xy_0)$ in (23), we get $2xy_0 = 0$ for all $x \in U$, and

using 2-torsion freeness of \mathcal{N} , it follows that $Uy_0 = \{0\}$. Hence $y_0 = 0$ by Lemma 2.2 (i). In this case, (22) implies that $h(U) = \{0\}$ which gives a contradiction by Lemma 3.3. \Box

Theorem 3.14. Let \mathcal{N} be a 2-torsion 3-prime near-ring and U be a nonzero semigroup ideal of \mathcal{N} . There is no nonzero homoderivation h satisfying $h([x, y]) + [x, y] = x \circ y$ for all $x, y \in U$.

Proof. Suppose that $h \neq 0$ and

(24)
$$h([x,y]) + [x,y] = x \circ y \text{ for all } x, y \in U.$$

Thus

$$\begin{array}{lll} y(x \circ y) &=& yx \circ y \\ &=& h([yx,y]) + [yx,y] \\ &=& h(y[x,y]) + y[x,y] \\ &=& h(y)h([x,y]) + h(y)[x,y] + yh([x,y]) + y[x,y] \\ &=& h(y)(h([x,y]) + [x,y]) + y(h([x,y]) + [x,y]) \\ &=& h(y)(x \circ y) + y(x \circ y) \quad \text{for all} \quad x,y \in U. \end{array}$$

This expression gives us $h(y)(x \circ y) = 0$ for all $x, y \in U$, it follows that

(25)
$$h(y)xy = -h(y)yx \text{ for all } x, y \in U.$$

Substituting xm in place of x in (25), we get

$$\begin{aligned} h(y)xmy &= -h(y)yxm \\ &= h(y)yx(-m) \\ &= h(y)x(-y)(-m) \quad \text{for all} \quad x, y \in U, m \in \mathcal{N}. \end{aligned}$$

Which can be rewritten as $h(y)U(-m(-y) + (-y)m) = \{0\}$ for all $y \in U$ and $m \in \mathcal{N}$. By Lemma 2.2, we have

(26)
$$h(y) = 0 \text{ or } -y \in Z(\mathcal{N}) \text{ for all } y \in U.$$

Suppose there is an element $y_0 \in U$ such that $-y_0 \in Z(\mathcal{N})$. Replacing y by $-y_0$ in (24) we get $2(-y_0)x = 0$ for all $x \in U$. Using 2-torsion freeness of \mathcal{N} , we obtain $-y_0U = \{0\}$ and by Lemma 3.3, we have $y_0 = 0$. In this case, (26) implies that $h(U) = \{0\}$ which gives a contradiction by Lemma 3.3. \Box

Theorem 3.15. Let \mathcal{N} be a 3-prime near-ring and U be a nonzero semigroup ideal of \mathcal{N} . There is no nonzero homoderivation h which is zero-power valued on \mathcal{N} such that h(xy) + xy = [x, y] for all $x, y \in U$.

Proof. Suppose that $h \neq 0$ and

(27)
$$h(xy) + xy = [x, y] \text{ for all } x, y \in U.$$

Thus

$$y[x,y] = [yx,y]$$

= $h(yxy) + yxy$
= $h(y(xy)) + y(xy)$
= $h(y)h(xy) + h(y)xy + yh(xy) + y(xy)$
= $h(y)(h(xy) + xy) + y(h(xy) + xy)$
= $h(y)[x,y] + y[x,y]$ for all $x, y \in U$.

This expression gives us h(y)[x, y] = 0 for all $x, y \in U$. As in proof of Theorem 3.12, it follows that

(28)
$$h(y) = 0 \text{ or } y \in Z(\mathcal{N}) \text{ for all } y \in U.$$

Suppose there is an element $y_0 \in U$ such that $y_0 \in Z(\mathcal{N})$. Then (27) becomes $h(xy_0) + xy_0 = 0$ for all $x \in U$. By recurrence, it follows that

(29)
$$h^{k}(xy_{0}) + (-1)^{k+1}xy_{0} = 0 \text{ for all } x \in U, k \in \mathbb{N}^{*}.$$

Since h is zero-power valued on \mathcal{N} , there exists an integer $k(xy_0) > 1$ such that $h^{k(xy_0)}(xy_0) = 0$. Replacing k by $k(xy_0)$ in (29), we get $xy_0 = 0$ for all $x \in U$, so $Uy_0 = \{0\}$. Hence $y_0 = 0$. In this case, (28) implies that $h(U) = \{0\}$ which gives a contradiction by Lemma 3.3. \Box

Theorem 3.16. Let \mathcal{N} be a 3-prime zero symmetric near-ring and U be a nonzero semigroup ideal of \mathcal{N} . If \mathcal{N} admits a nonzero homoderivation h such that $h(xy) + xy = x \circ y$ for all $x, y \in U$, then \mathcal{N} is a commutative ring.

Proof. Suppose that

(30)
$$h(xy) + xy = x \circ y \quad \text{for all} \quad x, y \in U$$

Thus

$$\begin{aligned} y(x \circ y) &= yx \circ y \\ &= h(yxy) + yxy \\ &= h(y(xy)) + y(xy) \\ &= h(y)h(xy) + h(y)xy + yh(xy) + y(xy) \\ &= h(y)(h(xy) + xy) + y(h(xy) + xy) \\ &= h(y)(x \circ y) + y(x \circ y) \text{ for all } x, y \in U. \end{aligned}$$

This expression gives us $h(y)(x \circ y) = 0$ for all $x, y \in U$. As in proof of Theorem 3.17, it follows that

(31)
$$h(y) = 0 \text{ or } -y \in Z(\mathcal{N}) \text{ for all } y \in U.$$

Suppose there is an element $y_0 \in U$ such that $h(y_0) = 0$. Then (30) becomes

(32)
$$h(x)y_0 + xy_0 = x \circ y_0 \quad \text{for all} \quad x \in U.$$

Replacing x by y_0 in (32), we arrive at $y_0^2 = 0$. Substituting xy_0 in place of x in (32), then for $x \in U$, we have

$$y_0 x y_0 = x y_0^2 + y_0 x y_0$$

= $x y_0 \circ y_0$
= $h(x y_0) y_0 + x y_0^2$
= 0,

thus $y_0Uy_0 = \{0\}$. Hence $y_0 = 0$. In this case, (31) implies that $-U \subseteq Z(\mathcal{N})$. Since -U is nonzero left semigroup ideal of \mathcal{N} , by Lemma 2.3 \mathcal{N} is a commutative ring. \Box

Theorem 3.17. Let \mathcal{N} be a 2-torsion free 3-prime near-ring and U be a nonzero semigroup ideal of \mathcal{N} . If \mathcal{N} admits a nonzero homoderivation on h which is zero-power valued on \mathcal{N} , then the following assertions are equivalent:

(i) $h(x \circ y) + x \circ y \in Z(\mathcal{N})$ for all $x, y \in U$. (ii) \mathcal{N} is commutative ring.

Proof. It is easy to see that $(ii) \Longrightarrow (i)$.

 $(i) \Longrightarrow (ii)$ Suppose that

(33)
$$h(x \circ y) + x \circ y \in Z(\mathcal{N}) \text{ for all } x, y \in U.$$

190

Since $x \circ xy = x(x \circ y)$ for all $x, y \in U$, replacing y by xy in (33), we obtain

$$h(x)h(x\circ y) + h(x)(x\circ y) + xh(x\circ y) + x(x\circ y) \in Z(\mathcal{N}) \quad \text{for all} \quad x, y \in U.$$

Thus

$$h(x)(h(x \circ y) + x \circ y) + x(h(x \circ y) + x \circ y) \in Z(\mathcal{N}) \text{ for all } x, y \in U.$$

By (33) we get

(34)
$$(h(x \circ y) + x \circ y)(h(x) + x) \in Z(\mathcal{N}) \text{ for all } x, y \in U.$$

By Lemma 2.1 we have

(35)
$$h(x \circ y) + x \circ y = 0$$
 or $h(x) + x \in Z(\mathcal{N})$ for all $x, y \in U$.

Suppose there is an element $x_0 \in U$ such that $h(x_0 \circ y) + x_0 \circ y = 0$ for all $y \in \mathcal{N}$. Then by recurrence we prove that

(36)
$$h^k(x_0 \circ y) + (-1)^{k+1}x_0 \circ y = 0 \text{ for all } y \in U, k \in \mathbb{N}^*.$$

Since h is zero-power valued on \mathcal{N} , there exists an integer $k(x_0 \circ y) > 1$ such that $h^{k(x_0 \circ y)}(x_0 \circ y) = 0$. Replacing k by $k(x_0 \circ y)$ in (36), it follows that

(37)
$$x_0 \circ y = 0 \quad \text{for all} \quad y \in U.$$

Substituting x_0 in place of y in (37), we get $2(x_0)^2 = 0$. Using 2-torsion freeness of \mathcal{N} we obtain $(x_0)^2 = 0$. Putting $x_0 y$ in place of y in (37), we get $x_0 y x_0 = 0$ for all $y \in U$, so $x_0 U x_0 = \{0\}$. Thus $x_0 = 0$ by Lemma 2.2 (ii). In this case, (35) implies that $h(x) + x \in Z(\mathcal{N})$ for all $x \in U$. By Theorem 3.6 it follows that \mathcal{N} is commutative ring. \Box

The following examples shows that h is "zero-power valued on \mathcal{N} " cannot be omitted in the hypothesis of Theorems 3.6, 3.8, 3.9, 3.11, 3.12 and 3.17.

Example 3.18. Let $\mathcal{N} = U = M_2(\mathbb{Z})$, that is a 2-torsion free prime ring. We consider $h = -id_{\mathcal{N}}$, then it is clear that h is a not "zero-power valued homoderivation on \mathcal{N} " which preserve U and satisfy the following conditions:

$$\begin{array}{l} (i) \ h(x) + x \in Z(\mathcal{N}), \\ (ii) \ -x + h(-x) \in Z(\mathcal{N}), \\ (iii) \ [h(x), h(y) + y] = 0, \\ (iv) \ [h(x) + x, y] \in Z(\mathcal{N}), \\ (v) \ h([x, y]) + [x, y] = [h(x) + x, y], \\ (vi) \ (h(x) + x) \circ y \in Z(\mathcal{N}), \\ (vii) \ h(xy) + xy \in Z(\mathcal{N}), \\ (viii) \ h(x \circ y) + x \circ y \in Z(\mathcal{N}), \end{array}$$

for all $x, y \in U$, but \mathcal{N} is not commutative.

Example 3.19. Let $\mathcal{N} = U = \mathbb{C} = \{a + ib \mid a, b \in \mathbb{R}\}$ be the set of all complex numbers. Addition is the usual addition of complex numbers. Then $(\mathcal{N}, +)$ is a group. Define multiplication \star on \mathcal{N} by $u \star v = |u|v$. Then $(\mathcal{N}, +, \star)$ is a 3-prime near-ring, which is not a ring. We consider $h = -id_{\mathcal{N}}$, then it is clear that h is not "zero-power valued homoderivation on \mathcal{N} ," which preserve U and satisfy the following conditions:

$$\begin{aligned} &(i) \ h(x) + x \in Z(\mathcal{N}), \\ &(ii) \ -x + h(-x) \in Z(\mathcal{N}), \\ &(iii) \ [h(x), h(y) + y] = 0, \\ &(iv) \ [h(x) + x, y] \in Z(\mathcal{N}), \\ &(v) \ h([x, y]) + [x, y] = [h(x) + x, y], \\ &(vi) \ (h(x) + x) \circ y \in Z(\mathcal{N}), \\ &(vii) \ h(xy) + xy \in Z(\mathcal{N}), \\ &(viii) \ h(x \circ y) + x \circ y \in Z(\mathcal{N}), \end{aligned}$$

for all $x, y \in U$, but \mathcal{N} is not commutative ring.

The following example illustrates that the hypothesis "3-primeness of \mathcal{N} " is essential in Theorems 3.8, 3.9, 3.10, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16 and 3.17 of our paper.

Example 3.20. Let S be a zero-symmetric 2-torsion free left near-ring and

$$\mathcal{N} = \left\{ \begin{pmatrix} a & b & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \mid a, b, 0 \in S \right\}.$$
$$U = \left\{ \begin{pmatrix} 0 & u & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \mid u, 0 \in S \right\}.$$

Then \mathcal{N} is a 2-torsion left near-ring which is not 3-prime and U is a nonzero semigroup ideal of \mathcal{N} . Let us defined $h: \mathcal{N} \to \mathcal{N}$ as follow:

$$h\left(\begin{array}{rrrr} a & b & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right) = \left(\begin{array}{rrrr} 0 & a & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

It is clear that h is a zero-power valued homoderivation on \mathcal{N} , which satisfy the following conditions:

 $\begin{array}{l} (i) \ [h(x), h(y) + y] = 0, \\ (ii) \ [h(x) + x, y] \in Z(\mathcal{N}), \\ (iii) \ h([x, y]) + [x, y] = [h(x) + x, y], \\ (iv) \ (h(x) + x) \circ y \in Z(\mathcal{N}), \\ (v) \ (h(x) + x) \circ y \in Z(\mathcal{N}), \\ (v) \ h(xy) + xy \in Z(\mathcal{N}), \\ (vii) \ h(x \circ y) + x \circ y \in Z(\mathcal{N}), \\ (vii) \ h(x \circ y) + x \circ y = [x, y], \\ (viii) \ h([x, y]) = [x, y], \\ (ix) \ h([x, y]) + [x, y] = x \circ y, \\ (x) \ h(xy) + xy = [x, y], \\ (xi) \ h(xy) + xy = x \circ y \end{array}$

for all $x, y \in U$, but \mathcal{N} is not commutative.

4. Acknowledgments

The authors wish to sincerely thank the referees for several useful comments.

References

- E. F. Al harfie and N. Muthana, On homoderivations and commutativity of prime rings, Bull. int. math. virtual inst., 9 (2019) 301-304.
- [2] A. Al-Kenani, A. Melaibari and N. Muthana, Homoderivations and commutativity of *-prime rings, East-West J. of Math., 17 No. 2 (2015) 117-126.
- [3] H. E. Bell, On derivations in near-rings II, Kluwer Acad. Publ., 426 (1997) 191-197.
- [4] H. E. Bell, A. Boua and L. Oukhtite, Semigroup ideals and commutativity in 3-prime near-rings, Comm. in Alg., 43 (2015) 1757-1770.
- [5] A. Boua, A .Ali and I. Huque, Serval algebraic identities in 3-prime near-rings, Kragujev. J. Math., 42 No. 2 (2018) 247-256.
- [6] A. Boua, Homoderivations and Jordan right ideals in 3-prime near-rings, AIP Conference Proceedings 2074, 020010 (2019).
- [7] J. R. Clay, Near-rings: Geneses and Applications, Oxford Univ. Press, Oxford, 1992.
- [8] M. M. El Sofy, *Rings with some kinds of mappings*, M.Sc. Thesis, Cairo University, Branch of Fayoum, 2000.
- [9] A. Lakehal and A. Boua, Image encryption using the incidence matrix, Int. J. Appl. Math., 31 No. 2 (2018) 279-288.
- [10] A. Melaibari, N. Muthana and A. Al-Kenani, *Homoderivations on Rings*, Gen. Math. Notes, **35** No. 1 (2016) 1-8.
- [11] J. D. P. Meldrum, Near-rings and Their Links with Groups, Pitman, Marshfield, MA, 1985.
- [12] G. Pilz, Near-rings, 2nd ed., 23, North Holland/American Elsevier, Amsterdam, 1983.
- [13] X. K. Wang, Derivations in prime near-rings, Proc. Am. Math. Soc., 121 (1994) 361-366.

Samir Mouhssine

University Sidi Mohammed Ben Abdellah, Polydisciplinary Faculty, Department of Mathematics, Physics and Computer Science, LSI, Taza; Morocco. samir.mouhssine@usmba.ac.ma, samirfes27@gmail.com Abdelkarim Boua

University Sidi Mohammed Ben Abdellah,

Polydisciplinary Faculty, Department of Mathematics,

Physics and Computer Science, LSI, Taza; Morocco.

abdelkarim.boua@usmba.ac.ma, abdelkarimboua@yahoo.fr