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SOME REMARKS ON GOURSAT LEMMA

BRICE RENE AMOUGOU MBARGA∗

Abstract. In this article,we give a characterization of containment of subgroups in a direct

product A × B × C. Other potential generalizations are investigated and applications char-

acterizing different types of groups and modules are given. Most of applications are simple

while somewhat deeper applications occur in the case of cyclic modules.

1. Introduction

Over the past years various authors have investigated the famous elementary result in group
theory called Goursat’s lemma for characterizing the subgroups of the direct product A × B

of two groups A,B. This has the advantage that it generalize easily to higher direct product.
Given a family of groups (Ai)1≤i≤n, the direct product A1 × · × An of Ai is the set of or-
dered pairs {(a1, · · · , an)|ai ∈ Ai} with coordinate-wise product (a1, · · · , an)(b1, · · · , bn) =

(a1b1, · · · , anbn). Here (1, · · · , 1) is the identity element and (a1, · · · , an)−1 = (a−1
1 , · · · , a−1

n ).
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If Hi is a subgroup of Ai, then H1 × · ×Hn is easily checked to be a subgroup of A1 × · ×An.
Moreover H1 × ·×Hn is a normal subgroup of A1 × ·×An if and only if each Hi ⊴Ai. Let us
call a subgroup of A1 × ·×An of the form H1 × ·×Hn a subproduct of A1 × ·×An. The only
prerequisites from group theory are a good understanding of subgroups, normal subgroups,
factor group, and permutable subgroup of G . Two subgroups M and S of a group G are said
to permute, or M permutes with S, if MS = SM . Furthermore, M is a permutable subgroup
of G if M permutes with every subgroup of G.
There are a number of interesting possibilities for generalizing this useful lemma. The first is
to subgroups of a semi-direct product, and this is studied in [21]. The second is to other cate-
gories besides groups. Indeed, it is proved for modules in [9], and this implies that it will hold
in any abelian category by applying the embedding theorems .The most general category in
which one can hope to have a Goursat lemma is likely an exact Mal’cev and Goursat category
Structure of the paper: In section 2 we recall some properties of groups. In section 3, We state
this section with module version of a generalized Goursat’s lemma and explore relative deeper
applications as cyclic modules.

2. Containment of Subgroups of a Direct Product A×B × C

Goursat’s lemma for groups ([15], p. 2) can be stated as follows:

Lemma 2.1. Let L and R be arbitrary groups. Then there is a bijection between the set S of all
subgroups of L×R and the set T of all quintuple (A,B,C,D, θ), where B⊴A ≤ L, D⊴C ≤ R

and θ : A/B → C/D is a bijective homomorphism (here ≤ denotes subgroup and ⊴ denotes
normal subgroup). More precisely, the subgroup corresponding to (A,B,C,D, θ) is

G = {(g, h) ∈ A× C : θ(gB) = hD}.

Example 2.2. The subgroups of S2 × S2. First, the subgroups of S2 are ⟨(1)⟩,⟨(12)⟩. Con-
sider the subnormal quotient groups A/B where B ⊴ A ⊆ S2. If |A/B| = 1, one has
⟨(1)⟩/⟨(1)⟩; ⟨(12)⟩/⟨(12)⟩ It has only the identity maps between the 2 different quotients;so
there are 4 different isomorphisms θ : A/B → C/D yielding the 4 different subprod-
ucts ⟨(1)⟩ × ⟨(1)⟩, v1 = ⟨(1)⟩ × S2, v2 = S2 × ⟨(1)⟩ and S2 × S2. If |A/B| = 2 on has
⟨(12)⟩/⟨(1)⟩; therefore the isomorphism ⟨(12)⟩/⟨(1)⟩ → ⟨(12)⟩/⟨(1)⟩; gives the subgroup
v3 =

{(
(1), (1)

)
,
(
(12), (12)

)}
.

Remark 2.3. For an arbitrary quadruple Q2(G) = (A,C,D, θ1) and θ1 : A → C/D a surjective
homomorphism define

Ψ2(Q) := p−1(Gθ1),

where Gθ1 ⊆ A × (C/D) is a graph of θ1 and p : A × C → A × (C/D) is natural surjection.
The functions Q2 and Ψ2 are inverse to each other.
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Lemma 2.4. Let H,G ≤ A × B where G is given by the quadruple Q2(G) = {G1, G2, G2, θ}
and H is given by the quadruple Q2(H) = {H1, H2,H2, γ}. Suppose further that the following
conditions hold:

(i) H i ≤ Gi, H1 ≤ G1, i = 1, 2

(ii) θ(H1) =
H2G2

G2

(iii) Define θ̃ : H1 → H2G2

G2
and γ̃ : H1 → H2

H2 ∩G2

to be the restrictions of θ and γ

respectively. Then θ̃ and γ̃ are epimorphisms.

Note that for (h, l) ∈ H, γ̃(h) = l(H2 ∩G2)

Theorem 2.5. Let H,G ≤ A×B where G is given by the quadruple Q2(G) = {G1, G2, G2, θ}
and H is given by the quadruple Q2(H) = {H1, H2,H2, γ}. H ≤ G if and only if

(i) H i ≤ Gi, H1 ≤ G1, i = 1, 2

(ii) θ(H1) =
H2G2

G2
(iii) the following diagram commutes .

H1
θ̃ / /

γ̃   @
@@

@@
@@

@@
@

H2G2

G2

ε
��

H2

H2 ∩G2

Proof. (⇒) Suppose H ≤ G. It is obvious that H i ≤ Gi, H1 ≤ G1, i = 1, 2, θ(H1) =
H2G2

G2
.Hence, it suffices to show that the diagram commutes. More specifically, that εθ̃ = γ̃

let (h, l) ∈ H since H ≤ G we have θ(h) = lG2. Then εθ̃(h) = ε(lG2) = l(H2 ∩G2) = γ̃(h).

(⇐)Conversely, suppose the containments hold and the diagram commutes. Our aim is to
show H ≤ G. Let (h, l) ∈ H. Then θ̃(h) = ε−1γ̃(h) = ε−1(lH2 ∩ G2) = lG2 .Therefore, by
Lemma 2.4 we know θ(h) = lG2 and H ≤ G.

We will state the result (Lemma 2.1 below) for n ≥ 3, after first introducing some convenient
notation

Definition 2.6. Let m = {i1, i2, · · · , im} ⊆ {1, 2, · · · , n} = n, and j ∈ n \m. Then

G(j|m) := {xj ∈ Aj |(x1, · · · , xj , · · · , xn) ∈ G

for some xi ∈ Ai, 1 ≤ i ≤ n, i ̸= j with xi = e if i ∈ m}
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For brevity, we extend this notation and let Gk = G(k|∅) = πk(G) for all k,where πi :

A1×· · ·×An → Ai is the standard projection onto the ith factors. We next give a generalized
of Goursat’s lemma as follows:

Theorem 2.7. [15](Goursat’s Lemma for n ≥ 2) There is a bijection correspon-
dence between the subgroups G ≤ A1 × A2 × · · · × An and (3n − 2)-tuples Qn(G) :=

{G1, G2, , G(2|1), θ1, · · · , Gn, G(n|1, · · · , n − 1), θn−1} where Gi ≤ Ai, G(i|1, · · · , i − 1) ⊴ Gi

and θi−1 : Ωi−1 ↠ Gi/G(i|1, · · · , i−1) is a surjective homomorphism. Here Ωi ≤ A1×· · ·×Ai

is defined recursively,1 ≤ i ≤ n , by setting Ω1 := G1 and

Ωi = Ψ2

(
{Ωi−1, Gi, G(i|1, · · · , i− 1), θi−1}

)
≤ (A1 × · · · × Ai−1)×Ai,

with Ψ2 as defined in remark 2.3.

Definition 2.8. For a subgroup G ≤ A1×· · ·×An, we say that the corresponding (3n−2)-tuple
Qn(G) of theorem 2.7 is the Goursat decomposition of G .

Theorem 2.9. Let H,G ≤ A × B × C where G is given by the Goursat decomposition
Q3(G) := {G1, G2, G(2|1), θ1, G3, G(3|1, 2), θ2,Λ} and H is given by the Goursat decomposition
Q3(H) := {H1, H2,H(2|1), γ1, H3,H(3|1, 2), γ2,Ω}. H ≤ G ⇔

(i) H i ≤ Gi, i = 1, 2,Ω ≤ Λ, H(2|1) ≤ G(2|1),H(3|1, 2) ≤ G(3|1, 2)

(ii) θ1(H1) =
H2G(2|1)
G(2|1)

and θ2(Ω) =
H3G(3|1, 2)
G(3|1, 2)

(iii) the following diagram is a commutative

H1

θ̃1 //

γ̃1 !!C
CC

CC
CC

CC
CC

H2G(2|1)
G(2|1)

ε
��

H2

H2 ∩G(2|1)

Ω
θ̃2 //

γ̃2 ""D
DD

DD
DD

DD
DD

H3G(3|1, 2)
G(3|1, 2)

ξ
��

H3

H3 ∩G(3|1, 2)

Proof. (⇒) Suppose H ≤ G. It is obvious that H i ≤ Gi, i = 1, 2, H(2|1) ≤ G(2|1),H(3|1, 2) ≤
G(3|1, 2). It suffices to show that Ω ≤ Λ. But

Ω = Ψ2({H1, H2,H(2|1), γ1})

= {(x, y) ∈ H1 ×H2/γ1(x) = yH(2|1)} ≤ A×B

Λ = {(a, b) ∈ G1 ×G2/θ1(a) = bG(2|1)} ≤ A×B

By using Theorem 2.5 we have Ω ≤ Λ and

θ1(H1) =
H2G(2|1)
G(2|1)

, θ2(Ω) =
H3G(3|1, 2)
G(3|1, 2)
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Against By using Theorem 2.5 show that the first diagram commute :εθ̃1 = γ̃1. Similarly we
show that εθ̃2 = γ̃2 since

H = Ψ2({Ω, H3,H(3|1, 2), γ2})

= {(x, z) ∈ Ω×H3/γ2(x) = zH(3|1, 2)}

G = {(a, c) ∈ Λ×G3/θ2(a) = cG(3|1, 2)}.

⇐ Conversely, suppose the containments hold and the diagram commutes. Our aim is to show
that H ≤ G. The same argument as in the Theorem 2.5 show that H ≤ G.

3. Applications

There is a well known characterization of normal subgroups of a direct product. It states
that N is a normal subgroup of G ×H if and only if πG(N)/(N ∩ G) ≤ Z(G/(N ∩ G)) and
πH(N)/(N ∩ H) ≤ Z(H/(N ∩ H)), where πG and πH are the natural projections of G × H

onto G and H respectively. This prior result allows us to give a version of Goursat’s Lemma
for normal subgroups of order n. Let i = {1, · · · , i}, then we have the following lemma.

Lemma 3.1. Let G ≤ A1 × · · · × An, with Goursat decomposition

Qn(G) := {G1, G2, , G(2|1), θ1, · · · , Gn, G(n|1, · · · , n− 1), θn−1}.

If G ⊴ A1 × A2 × · · · × An, then
G(i|i− 1)⊴Ai and Gi/G(i|i− 1) ⊆ Z(Ai/G(i|i− 1)) the center of Ai/G(i|i− 1).

Proof. Suppose that G⊴A1×· · ·×An,show that G(i|1, · · · , i−1)⊴Ai. Let ai ∈ G(i|1, · · · , i−1)

and bj ∈ Aj , since ai ∈ G(i|1, · · · , i − 1) we have a = (e, · · · , e, ai, · · · , an) ∈ G as G ⊴ A1 ×
· · · × An then

bab−1 = (e, · · · , e, biaib−1
i , · · · , bnanb−1

n ) ∈ G

with b = (b1, · · · , bn) ∈ A1×, · · · ,×An, thus G(i|1, · · · , i− 1)⊴Ai.
Show that Gi/G(i|1, · · · , i− 1) ⊆ Z(Ai/G(i|1, ., i− 1)). For gi =

giG(i|1, · · · , i − 1) with gi ∈ Gi and ai = aiG(i|1, ., i − 1)) with ai ∈ Ai ,since gi ∈ Gi then
there exists gj ∈ Aj such that b = (g1, ., gi, ., gn) ∈ G, (g1, ., a

−1
i giai, gi+1, ., gn), b

−1 ∈ G

give (e, , e, a−1
i giai, e, ., e) ∈ G and hence a−1

i giai ∈ G(i|1, · · · , i − 1). So Gi/G(i|i− 1) ⊆
Z(Ai/G(i|i− 1)).

Our goal in this section is to provide necessary conditions for a subgroup of a direct product
of n groups to be permutable.Let P = A1 ×A2 × · · · × An.
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Lemma 3.2. Let G ≤ P , with Goursat decomposition

Qn(G) := {G1, G2, , G(2|1), θ1, · · · , Gn, G(n|1, · · · , n− 1), θn−1}.

If G is a permutable subgroup of P , then, for all ai ∈ Ai,
Gi ≤ NAi

(
G(i|i− 1)⟨ai⟩

)
.

Proof. Without loss of generality assume i = 2 .Let a2 ∈ A2 and (v1, v2, · · · , vn) ∈ G. Since G

is permutable in P ,

(1, a2, 1, · · · , 1)(v1, v2, · · · , vn) = (w1, w2, · · · , wn)(1, a
j
2, 1, · · · , 1)

for some (w1, w2, · · · , wn) ∈ P and j ∈ Z. Thus, wi = vi for i ̸= 2 . But then w2 = v2x

for some x ∈ G(2|1). So v−1
2 a2v2 = xaj2. Of course,Gi ≤ NAi

(
G(i|i− 1)

)
, and therefore

G2 ≤ NA2

(
G(2|1)⟨a2⟩

)
for a2 ∈ A2.

We continue this section by stating a module asymmetric version of Goursat’s lemma, and
give generalization of this lemma. throughout this paper, let R be a commutative ring with
identity.

Lemma 3.3. Let R be a ring and N1 and N2 R-modules.

(1) Let M be an R-submodule of N1 × N2. Let M2 = {b ∈ N2|(0, b) ∈ M},M2 = {b ∈
N2|∃a ∈ N1 : (a, b) ∈ M} and M1 = {a ∈ N1|∃b ∈ N2 : (a, b) ∈ M}. Then M2 ⊆ M2

are R-submodules of N2 and the map f̂ : M1 ↠ M2/M2 given by f̂(a) = b+M2 where
(a, b) ∈ M is an R-module epimorphism.

(2) Let M2 ⊆ M2 be R-submodules of N2 with an R-module epimorphism f : M1 ↠
M2/M2. Then M = {(a, b) ∈ M1 ×M2|f(a) = b+M2} is an R-module of N1 ×N2.

(3) The constructions given in (1) and (2) are inverses to each other.

Proof. It is easy checked that M2 ⊆ M2 are R-submodules of N2. Define f̂ : M1 ↠ M2/M2

by f̂(a) = b+M2 where (a, b) ∈ M . If (a, b), (a, c) ∈ M , then (0, c−b) = (−a,−b)+(a, c) ∈ M

implies c− b ∈ M2 and hence b+M2 = c+M2 so f̂ is well defined . It is easily checked that
f̂ is surjective and R-linear.
(2) and (3) are clears.

f̂ determines g via the first isomorphism theorem, specifically

M1

f̂
// //

t

##G
GG

GG
GG

GG
M2/M2

OO

g≀

M1/M1
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Theorem 3.4. Let V and U be an R-submodules of N1×N2. where V is given by the quintuple
Q2(V ) = {V 1, V1, V 2, V2, θ} and U is given by the quintuple Q2(U) = {U1, U1, U2, U2, α}. Then
V ≤ U if and only if:

(a) V n ≤ Un and Vn ≤ Un for n = 1, 2

(b) α(V 1+U1
U1

) = V 2+U2
U2

and θ(V 1∩U1
V1

) = V 2∩U2
V2

(c) the following diagram is a commutative

V 1 + U1

U1

α̃ //

λ1

��

V 2 + U2

U2

λ2

��

V 1

V 1 ∩ U1 θ̃

// V 2

V 2 ∩ U2

Proof. (⇒) Suppose V ≤ U . It is obvious that V n ≤ Un and Vn ≤ Un for n = 1, 2, α(V 1+U1
U1

) =
V 2+U2

U2
and θ(V 1∩U1

V1
) = V 2∩U2

V2
. Hence, it suffices to show that the diagram commutes. More

specifically, that λ2α̃ = θ̃λ1. Let c ∈ V 1 = πN1(V ). Then there exists a d ∈ V 2 = πN2(V )

such that (c, d) ∈ V . Since V ≤ U , we know α(c+ U1) = d+ U2. Then α̃ is a restriction of α.
Hence, we can consider α̃(c + U1) . Then λ2(α̃(c + U1) = λ2(d + U2) = d + V 2 ∩ U2. On the
other hand, we get θ̃(λ1(c+ U1)) = θ̃(c+ V 1 ∩ U1) = d+ V 2 ∩ U2. Therefore, λ2α̃ = θ̃λ1, and
the diagram commutes.
(⇐) Conversely, suppose the containments hold and the diagram commutes. Our aim is to
show V ≤ U . Let (c, d) ∈ V . Then θ(c + V1) = d + V2, where c ∈ V 1 and d ∈ V 2. Then
α̃(c + U1) = λ−1

2 θ̃(λ1(c + U1)) = λ−1
2 (θ̃(c + V 1 ∩ U1)). We see that λ−1

2 (θ̃(c + V 1 ∩ U1)) =

λ−1
2 (d+ V 2 ∩ U2) = d+ U2. So, α̃(c+ U1) = d+ U2. Therefore, we know α(c+ U1) = d+ U2

and V ≤ U .

A cyclic module or monogenous module [17] is a module over a ring that is generated by
one element. The concept is analogous to cyclic group, that is, a group that is generated by
one element.

Definition 3.5. A left R-module M is called cyclic if M can be generated by a single element
i.e.M = (x) = Rx = {rx|r ∈ R} for some x in M .
A left R-module M is called finite cyclic if (M,+) is finite cyclic abelian group. We denote by
O the trivial module .

Example 3.6. (1) Every cyclic group is a cyclic Z-module.
(2) If the ring R is considered as a left module over itself, then its cyclic submodules are

exactly its left principal ideals as a ring.
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Remark 3.7. Given a cyclic R-module M that is generated by x, there exists an isomorphism
between M and R/AnnRx, where AnnRx denotes the annihilator of x in R. If R is integral
domain and M torsion free then M ∼= R.

The next application, that of determining the cyclic submodule of M1 × M2, will involve
more substantial use of Goursat’s lemma. In what follow, let R is integral domain and M

torsion free.

Theorem 3.8. Let M be a left R-submodule of M1 × M2 with Goursat quintuple Q2(M) =

{M1,M1,M2,M2, θ}. The submodule M is cyclic if and only if one of the following three cases
occur:

i) M1 ≈ R , M2 is finite cyclic, and M2 = O,
ii) M2 ≈ R , M1 is finite cyclic, and M1 = O,
iii) M1 ≈ M2 ≈ R with M1 = M2 = O.

Proof. If M is Z-module we recover the same theorem in groups (see theorem 4.4 [15], p.9
) Since M is a cyclic left R-module and M ⊆ M1 × M2, at least one of M1,M2 must be
cyclic.Without loss of generality, suppose M1 ≈ R. Now suppose (α, β) generates the cyclic
module M , then α generates M1, and β generates M2. We claim that M2 = O. For, if
y ∈ M2 then y = rβ for some element r ∈ R, whence (0, y) = r(0, β) ∈ M . This implies
(0, y) = t(α, β) = (tα, tβ) for some element t ∈ R. Therefore tα = 0, whence t = 0 since R is
principal ideal domain and y = tβ = 0. Hence M2 = O. We now consider separately the cases
M2 cyclic module and M2 finite cyclic module (the case M1 finite and M2 ≈ R is symmetric
so can be omitted).
Suppose first M ≈ R with M2 ≈ R. Then the argument in the previous paragraph now
also implies M1 = O. Conversely, suppose M1 ≈ M2 ≈ R and M1 = M2 = O. Then the
isomorphisms

M/(M1 ×M2) ≈ M1/M1
≈→ M2/M2 reduce to M ≈ M1 ≈ M2 ≈ R.

Secondly, for the remaining case, suppose M ≈ R,M1 ≈ R as before and now M2 ≈ Zn is
cyclic of order n, n ≥ 2. Then n(α, β) = (nα, 0) implies nα ∈ M1 and clearly iα /∈ M1 if i < n.
Thus M1 ≈ nR, and as before M2 = O.
Conversely, suppose M1 ≈ Z,M1 ≈ nZ,M2 ≈ Zn and M2 = 0. In this case we have the
isomorphism θ : M1/M1

≈→ M2/M2 ≈ M2 . Let α ∈ M1 with [α] generating M1/M1. Then
θ([α]) = β generates M2/M2 ≈ M2 ≈ Zn. We claim that M is generated by the single element
(α, β), and thus is cyclic module.
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Definition 3.9. Let M be the R-submodule of N1×N2×· · ·×Nn Let m = {i1, i2, · · · , im} ⊆
{1, 2, · · · , n} = n, and j ∈ n \m. Then

M(j|m) := {xj ∈ Nj |(x1, · · · , xj , · · · , xn) ∈ M

for some xi ∈ Ni, 1 ≤ i ≤ n, i ̸= j with xi = 0 if i ∈ m}

let Mk = M(k|∅).

We next give a generalized of Goursat’s lemma as follows:

Lemma 3.10. (Goursat’s Lemma for n ≥ 2) There is a bijection correspondence between the
R-submodule M of N1 ×N2 × · · · ×Nn and (3n− 2)-tuples

Qn(M) := {M1,M2, · · · ,M(2|1), θ1, · · · ,Mn,M(n|1, · · · , n− 1), θn−1}

where ,M(i|1, · · · , i−1) ≤ M i are R-submodules of Ni and θi−1 : Ωi−1 ↠ M i/M(i|1, · · · , i−1)

is an R-module epimorphism. Here Ωi ≤ N1 × · · · × Ni is defined recursively,1 ≤ i ≤ n , by
setting Ω1 := M1 and

Ωi = Ψ2

(
{Ωi−1,M i,M(i|1, · · · , i− 1), θi−1}

)
≤ N1 × · · ·Ni,

and Ψ2 is defined as in remark 2.3.

Proof. Use theorem 2.7 for instance.

In what follow, let R is integral domain and M torsion free.

Theorem 3.11. Let M ≤ N1 ×N2 ×N3, with Goursat decomposition

Q3(M) := {M1,M2,M(2|1), θ1,M3,M(3|1, 2), θ2}.

The submodule M is cyclic if and only if one of the following three cases (up to obvious
permutation of indices) occur:

i) M1 ≈ R , M2 and M3 are finite cyclic, M(2|1) = M(3|1) = O,
ii) M1 ≈ M2 ≈ R,M3 finite cyclic, and

M(2|1) = M(3|1) = M(1|2) = M(3|2) = O.
iii) M i ≈ R for i = 1, 2, 3 and M(i|j) = O for 1 ≤ i ̸= j ≤ 3.

Proof. The three cases when M is cyclic module all follow from Theorem 3.8 in obvious ways,
namely in (i) we use N1×N2×N3 ≈ N1× (N2×N3), in (ii) and (iii) we use N1×N2×N3 ≈
(N1 ×N2)×N3. We omit the details.
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[21] V. M. Usenko, Subgroups of semidirect products, Ukrain. Mat. Zh., 43 No. 7 (1991) 982-988.



Alg. Struc. Appl. Vol. 8 No. 2 (2021) 119-129. 129

Brice Rene Amougou Mbarga

Department of mathematics,

University of Yaounde 1,

Yaounde, Cameroon.

renebrice3@gmail.com


	1. Introduction
	2. Containment of Subgroups of a Direct Product ABC
	3. Applications 
	4. Acknowledgments
	References

