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THE (p, q, r)-GENERATIONS OF THE SYMPLECTIC GROUP Sp(6, 2)

AYOUB B. M. BASHEER, MALEBOGO J. MOTALANE∗ AND THEKISO T. SERETLO

Abstract. A finite group G is called (l,m, n)-generated, if it is a quotient group of the

triangle group T (l,m, n) =
⟨
x, y, z|xl = ym = zn = xyz = 1

⟩
. In [29], Moori posed the ques-

tion of finding all the (p, q, r) triples, where p, q and r are prime numbers, such that a

non-abelian finite simple group G is a (p, q, r)-generated. In this paper we establish all the

(p, q, r)-generations of the symplectic group Sp(6, 2). GAP [20] and the Atlas of finite group

representations [33] are used in our computations.

1. Introduction

Generations of finite groups by suitable subsets is of great interest and has many appli-
cations to groups and their representations. For example, the computations of the genus of
simple groups can be reduced to the generations of the relevant simple groups (see Woldar [34]
for details). Also Di Martino et al. [27] established a useful connection between generation
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of groups by conjugates and the existence of elements representable by almost cyclic matri-
ces. Their motivation was to study irreducible projective representations of sporadic simple
groups. Recently more attention was given to the generation of finite groups by conjugate
elements. In his PhD Thesis [32], Ward considered generation of a simple group by conjugate
involutions satisfying certain conditions. In this paper we are interested in the generation of
the symplectic group Sp(6, 2) by two elements of prime orders, not necessary distinct primes
such that the product is an element of a prime order.

A finite group G is said to be (l,m, n)-generated, if G = ⟨x, y⟩ , with o(x) = l, o(y) = m

and o(xy) = o(z) = n. Here [x] = lX, [y] = mY and [z] = nZ, where [x] is the conjugacy
class of lX in G containing elements of order l. The same applies to [y] and [z]. In this case G

is also a quotient group of the triangular group T (l,m, n) and, by definition of the triangular
group, G is also (σ(l), σ(m), σ(n))-generated group for any σ ∈ S3. Therefore we may assume
that l ≤ m ≤ n. In a series of papers [21, 22, 23, 24, 25, 28, 29], Moori and Ganief established
all possible (p, q, r)-generations, where p, q and r are distinct primes, of the sporadic groups
J1, J2, J3, HS, McL, Co3, Co2 and F22. Ashrafi in [3, 4] did the same for the sporadic
simple groups He and HN. Also Darafsheh and Ashrafi established in [15, 16, 17, 18], the
(p, q, r)-generations of the sporadic simple groups Co1, Ru, O

′
N and Ly. The motivation for

this study is outlined in these papers and the reader is encouraged to consult these papers for
background material as well as basic computational techniques.

In this paper we intend to establish all the (p, q, r)-generations of the symplectic group Sp(6, 2).

For more information on (p, q, r)-generations, the reader is referred to [1] and [2]. We follow
the methods used in the papers [5, 6, 7, 8, 9, 10, 11] and [12]. Note that, in general, if G is a
(2, 2, n)-generated group, then G is a dihedral group and therefore G is not simple. Also by
[13], if G is a non-abelian (l,m, n)-generated group, then either G ∼= A5 or 1

l +
1
m + 1

n < 1.
Thus for our purpose of establishing the (p, q, r)-generations of G = Sp(6, 2) the only cases we
need to consider are when 1

p +
1
q +

1
r < 1. The result on the (p, q, r)-generations of Sp(6, 2) can

be summarized in the following theorem.

Theorem 1.1. With the notation being as in the Atlas [14], the symplectic group
Sp(6, 2) is generated by the triples (pL, qM, rN), p, q and r primes divid-
ing |Sp(6, 2)|, for the cases (pL, qM, rN) ∈ {(2D, 3B, 7A), (2X, 5A, 7A), (2X, 7A, 7A),

(3C, 5A, 5A), (3Y, 5A, 7A), (3Z, 7A, 7A), (5A, 5A, 7A), (5A, 7A, 7A), (7A, 7A, 7A)}, for all X ∈
{C,D}, Y ∈ {B,C} and Z ∈ {A,B,C}.
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2. Preliminaries

Let G be a finite group and C1, C2, · · · , Ck (not necessarily distinct) for k ≥ 3 be conjugacy
classes of G with g1, g2, · · · , gk being representatives for these classes respectively.

For a fixed representative gk ∈ Ck and for gi ∈ Ci, 1 ≤ i ≤ k − 1, denote by ∆G =

∆G(C1, C2, · · · , Ck) the number of distinct (k − 1)-tuples (g1, g2, · · · , gk−1) ∈ C1 × C2 × · · · ×
Ck−1 such that g1g2 · · · gk−1 = gk. This number is known as class algebra constant or struc-
ture constant. With Irr(G) = {χ1, χ2, · · · , χr}, the number ∆G is easily calculated from the
character table of G through the formula

(1) ∆G(C1, C2, · · · , Ck) =

k−1∏
i=1

|Ci|

|G|

r∑
i=1

χi(g1)χi(g2) · · ·χi(gk−1)χi(gk)

(χi(1G))k−2
.

Also for a fixed gk ∈ Ck we denote by ∆∗
G(C1, C2, · · · , Ck) the number of distinct (k − 1)-

tuples (g1, g2, · · · , gk−1) satisfying

(2) g1g2 · · · gk−1 = gk and G = ⟨g1, g2, · · · , gk−1⟩ .

Definition 2.1. If ∆∗
G(C1, C2, · · · , Ck) > 0, the group G is said to be (C1, C2, · · · , Ck)-

generated.

Furthermore if H is any subgroup of G containing a fixed element hk ∈ Ck, we let
ΣH(C1, C2, · · · , Ck) be the total number of distinct tuples (h1, h2, · · · , hk−1) are in C1 ×C2 ×
· · · × Ck−1 such that

(3) h1h2 · · ·hk−1 = hk and ⟨h1, h2, · · · , hk−1⟩ ≤ H,

The value of ΣH(C1, C2, · · · , Ck) can be obtained as a sum of the structure constants
∆H(c1, c2, · · · , ck) of H-conjugacy classes c1, c2, · · · , ck such that ci ⊆ H ∩ Ci.

Theorem 2.2. Let G be a finite group and H be a subgroup of G containing a fixed element g
such that gcd(o(g), [NG(H):H]) = 1. Then the number h(g,H) of conjugates of H containing
g is χH(g), where χH(g) is the permutation character of G with action on the conjugates of
H. In particular

h(g,H) =
m∑
i=1

|CG(g)|
|CNG(H)(xi)|

,

where x1, x2, · · · , xm are representatives of the NG(H)-conjugacy classes fused to the G-class
of g.
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Proof. See [22] and [25, Theorem 2.1].

The above number h(g,H) is useful in giving a lower bound for ∆∗
G(C1, C2, · · · , Ck), namely

∆∗
G(C1, C2, · · · , Ck) ≥ ΘG(C1, C2, · · · , Ck), where

(4) ΘG(C1, C2, · · · , Ck) = ∆G(C1, C2, · · · , Ck)−
∑

h(gk,H)ΣH(C1, C2, · · · , Ck),

gk is a representative of the class Ck and the sum is taken over all the representatives H

of G-conjugacy classes of maximal subgroups of G containing elements of all the classes
C1, C2, · · · , Ck. Since we have all the maximal subgroups of the sporadic simple groups (ex-
cept for G = M the Monster group), it is possible to build a small subroutine in GAP [20] to
compute the values of ΘG = ΘG(C1, C2, · · · , Ck) for any collection of conjugacy classes of the
symplectic group Sp(6, 2).

The following results are in some cases useful in establishing non-generation for finite groups.

Lemma 2.3. Let G be a finite centerless group. If ∆∗
G(C1, C2, · · · , Ck) < |CG(gk)|,

gk ∈ Ck, then ∆∗
G(C1, C2, · · · , Ck) = 0 and therefore G is not (C1, C2, · · · , Ck)-generated.

Proof. See [10, Lemma 2.7].

Theorem 2.4 (Ree [30]). Let G be a transitive permutation group generated by permutations
g1, g2, · · · , gs acting on a set of n elements such that g1g2 · · · gs = 1G. If the generator gi has

exactly ci cycles for 1 ≤ i ≤ s, then
s∑

i=1

ci ≤ (s− 2)n+ 2.

Theorem 2.5 (Scott [31]). Let g1, g2, · · · , gs be elements generating a group G with
g1g2 · · · gs = 1G and V be an irreducible module for G with dimV = n ≥ 2. Let CV(gi)

denote the fixed point space of ⟨gi⟩ on V and let di be the codimension of CV(gi) in V. Then
s∑

i=1

di ≥ 2n.

With χ being the ordinary irreducible character afforded by the irreducible module V and
1⟨gi⟩ being the trivial character of the cyclic group ⟨gi⟩ , the codimension di of CV(gi) in V can
be computed using the following formula ([19]):

di = dim(V)− dim(CV(gi)) = dim(V)−
⟨
χ↓G⟨gi⟩,1⟨gi⟩

⟩
= χ(1G)−

1

| ⟨gi⟩ |

o(gi)−1∑
j=0

χ(gji ).(5)

Theorem 2.6. [10, Lemma 2.5] Let G be a (2X, sY, tZ)-generated simple group, then G is
(sY, sY, (tZ)2)-generated.
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3. The symplectic group Sp(6, 2)

In this section we apply the results discussed in Section 2, to the group Sp(6, 2). We deter-
mine all the (p, q, r)-generations of Sp(6, 2), where p, q and r are primes dividing the order of
Sp(6, 2).

The group Sp(6, 2) is a simple group of order 1451520 = 29 × 34 × 5 × 7. By the Atlas of
finite groups [14], the group Sp(6, 2) has exactly 30 conjugacy classes of its elements and
8 conjugacy classes of its maximal subgroups. Representatives of these classes of maximal
subgroups can be taken as follows:

H1 = U4(2):2, H2 = S8, H3 = 25:S6,

H4 = U3(3):2, H5 = 26:L3(2), H6 = (21+4 × 22):(S3 × S3),

H7 = S3 × S6, H8 = L2(8):3.

In this section we let G = Sp(6, 2). For the sake of computations with GAP, we use a
permutation presentation for G. By the electronic Atlas [33], G can be generated in terms of
permutations on 28 points. Generators g1 and g2 can be taken as follows:

g1 = (2, 3)(6, 7)(9, 10)(12, 14)(17, 19)(20, 22),

g2 = (1, 2, 3, 4, 5, 6, 8)(7, 9, 11, 13, 16, 18, 14)(10, 12, 15, 17, 20, 19, 21)(22, 23, 24, 25, 26, 27, 28),

with o(g1) = 2, o(g2) = 7 and o(g1g2) = 9.

The group Sp(6, 2) has 7- and 15-dimensional complex irreducible modules V1 and V2 re-
spectively. For any conjugacy class nX, let dnX = dim(Vi/CVi(nX)), i ∈ {1, 2} denote the
codimension of the fixed space (in Vi) of a representative of nX. Using Equation (5) together
with the power maps associated with the character table of Sp(6, 2) given in the Atlas, we
were able to compute all the values of dnX for all non-trivial classes nX of G, with respect to
V1 and V2 and we list these values in Tables 1 and 2 respectively.

In Table 3, we list the values of the cyclic structure for each conjugacy of G which con-
taining elements of prime order together with the values of both ci and di obtained from Ree
and Scott theorems, respectively.

In Table 4 we list the representatives of classes of the maximal subgroups together with orbit
lengths of these maximal subgroups on their conjugates and respective permutation characters.

Table 5 gives us the partial fusion maps of classes of maximal subgroups into the classes
of Sp(6, 2). These will be used in our computations.
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Tables 6 to 13 that give the structure constants of Sp(6, 2) are listed at the end of this paper.

Table 1. dnX = dim(V/CV(nX)), nX is a non-trivial class of G and dim(V) = 7

nX 2A 2B 2C 2D 3A 3B 3C 4A 4B 4C 4D 4E 5A 6A 6B

dnX 6 4 2 4 2 6 4 4 4 6 6 4 4 6 4

nX 6C 6D 6E 6F 6G 7A 8A 8B 9A 10A 12A 12B 12C 15A

dnX 6 4 6 6 6 6 6 6 6 6 6 6 6 6

Table 2. dnX = dim(V/CV(nX)), nX is a non-trivial class of Sp(6, 2) and

dim(V) = 15.

nX 2A 2B 2C 2D 3A 3B 3C 4A 4B 4C 4D 4E 5A 6A 6B 6C 6D

dnX 10 4 6 8 10 12 8 10 12 10 8 10 12 14 12 12 12

nX 6E 6F 6G 7A 8A 8B 9A 10A 12A 12B 12C 15A

dnX 12 10 12 12 12 12 14 14 14 14 14 14

Table 3. Cycle structures of prime order conjugacy classes of G

nX Cycle Structure ci di

1A 128 28 0
2A 11626 22 6
2B 14212 16 12
2C 18210 18 10
2D 14212 16 12
3A 11036 16 12
3B 1 39 10 18
3C 1 39 10 18
5A 1355 8 20
7A 74 4 24

Table 4. Maximal subgroups of Sp(6, 2)

Maximal Subgroup Orbit Lengths Character

U4(2):2 [1,27] 1a + 27a

S8 [28] 1a + 35b

25:S6 [12,16] 1a + 27a + 35b

U3(3):2 [28] 1a + 35a + 84a

26:L3(2) [28] 1a + 15a + 35b + 84a

(2 · 26):(S3 × S3) [4,24] 1a + 27a + 35b + 84a + 168a

S3 × S6 [10,18] 1a + 27a + 35b + 105b + 168a

L2(8):3 [28] 1a + 70a + 84a + 105b + 280a + 420a
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Table 5. The partial fusion maps into Sp(6, 2)

U4(2):2-class 2a 2b 2c 2d 3a 3b 3c 5a
→ Sp(6, 2) 2C 2A 2B 2D 3A 3C 3B 5A

h 3

Table 5 continued
U4(2):2-class 2a 2b 2c 2d 3a 3b 3c 5a
→ Sp(6, 2) 2C 2A 2B 2D 3A 3C 3B 5A

h 3

S8-class 2a 2b 2c 2d 3a 3b 5a 7a
→ Sp(6, 2) 2C 2A 2D 2B 3A 3C 5A 7A

h 1 1

25:S6-class 2a 2b 2c 2d 2e 2f 2g 2h 2i 2j 3a 3b 5a
→ Sp(6, 2) 2A 2C 2D 2C 2A 2D 2C 2D 2D 2B 3A 3B 5A

h 3

U3(3):2-class 2a 2b 3a 3b 7a
→ Sp(6, 2) 2B 2D 3C 3B 7A

h 1

26:L3(2)-class 2a 2b 2c 2d 2e 2f 2g 3a 7a 7b
→ Sp(6, 2) 2A 2C 2D 2B 2C 2D 2B 3C 7A 7A

h 1 1

2 · 26:(S3 × S3)-class 2a 2b 2c 2d 2e 2f 2g 2h 2i 2j 2k 2l 2m 3a 3b 3c
→ Sp(6, 2) 2C 2A 2B 2C 2D 2B 2D 2A 2D 2C 2D 2C 2B 3B 3A 3C

h 9 15 3

S3 × S6-class 2a 2b 2c 2d 2e 2f 2g 3a 3b 3c 3d 3e 5a
→ Sp(6, 2) 2A 2C 2A 2C 2D 2B 2D 3A 3C 3A 3C 3B 5A

h 1

L2(8):3-class 2a 3a 3b 3c 7a
→ Sp(6, 2) 2D 3C 3B 3B 7A

h 1

4. The (p, q, r)-generations of Sp(6, 2)

Let pX, p ∈ {2, 3, 5, 7} be a conjugacy class of G and ci be the number of disjoint cycles
in a representative of pX. For the group G and from the Atlas of finite group representations
[33] we have G acting on 28 points, so that n = 28 and since our generation is triangular, we
have s = 3. Hence by Ree’s Theorem [30] if G is (l,m, n)-generated, then

∑
ci ≤ 30.

4.1. (2, q, r)-generations. Now the (2, q, r)-generations of G comprises the cases (2, 3, r)-,
(2, 5, r)- and (2, 7, r)-generations.

4.1.1. (2, 3, r)-generations. The condition 1
2 +

1
3 +

1
r < 1 shows that r must be 7. Thus we have

to consider the cases (2X, 3Y, 7A) for X ∈ {A,B,C,D} and Y ∈ {A,B,C}.

Proposition 4.1. The group G is
(i) neither (2X, 3Y, 7A)- nor (2D, 3Z, 7A)-generated group for all X,Y ∈ {A,B,C} and Z ∈
{A,C},
(ii) (2D, 3B, 7A)-generated.
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Proof. (i) Since by [26, Theorem 2], G is a Hurwitz group, we have to consider the triples
(2X, 3Y, 7A) for X ∈ {A,B,C,D} and Y ∈ {A,B,C}. If G is a (2A, 3A, 7A)-generated group,
then we must have c2A+c3A+c7A ≤ 30. From Table 3 we see that c2A+c3A+c7A = 22+16+4 =

42 > 30 and by Ree’s Theorem [30], it follows that G is not (2A, 3A, 7A)-generated. The same
applies to the triples (2A, 3B, 7A), (2A, 3C, 7A), (2B, 3A, 7A), (2C, 3A, 7A), (2C, 3B, 7A),
(2C, 3C, 7A) and (2D, 3A, 7A). By Table 7 we have ∆G(2B, 3B, 7A) = 0 and by Lemma 2.3 it
follows that G is not (2B, 3B, 7A)-generated.
By Table 5 we see that only four maximal subgroups of G have each an element of order 7 viz.
H2, H4, H5 and H8. The intersection of these four maximal subgroups contains only the iden-
tity element. The intersection of any three maximal subgroups does not contain an element of
order 7. We also noticed that H2∩H5

∼= 24:S4 and H5∩H8
∼= A4 do not contain an element of

order 7. Thus, subgroups H2, H4, H5, H8, H2∩H4
∼= L3(2):2, H2∩H8

∼= 7:6, H4∩H5
∼= L3(2)

and H4 ∩H8
∼= 7:6 contain elements of order 7. We obtained that H2 ∩H8 and H4 ∩H8 will

not have any contributions here since their relevant structure constants are all zero.
By Table 2, the group G acts on a 15-dimensional irreducible complex module V and we have
d2B + d3C + d7A = 4 + 8 + 12 = 24 < 2× 15. By applying Scott’s Theorem [31], we conclude
that G is not (2B, 3C, 7A)-generated.
We now investigate the (2D, 3C, 7A) generation of G. By the same Table 2, the group G acts
on a 15-dimensional irreducible complex module V and we have d2D+d3C+d7A = 8+8+12 =

28 < 2 × 15. Again by applying Scott’s Theorem, we conclude that G is not (2D, 3C, 7A)-
generated.
(ii) By Table 9 we have ∆G(2D, 3B, 7A) = 7. Although H4 and H8 are the only subgroups
meeting the 2D, 3B, 7A classes of G, none of them will have any contributions because their
relevant structure constants are all zero. We then obtained ∆∗

G(2D, 3B, 7A) = 7 > 0, proving
that G is (2D, 3B, 7A)-generated.

4.1.2. (2, 5, r)-generations. The condition 1
2 + 1

5 + 1
r < 1 shows that r must be 5 or 7. Thus

we have to consider the cases (2X, 5A, 5A) and (2X, 5A, 7A), for X ∈ {A,B,C,D}.

Proposition 4.2. The group G is not a (2X, 5A, 5A)-generated group for all X ∈ {A,B,C,D}.

Proof. If G is a (2X, 5A, 5A)-generated group, then we must have c2X + c5A + c5A ≤ 30. Since
by Table 3 we have c2X ∈ {16, 18, 22}, it follows that c2X+c5A+c5A = c2X+8+8 > 30 for any
X ∈ {A,B,C,D} and by Ree’s Theorem [30] we conclude that G is not (2X, 5A, 5A)-generated
group, for all X ∈ {A,B,C,D}.
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Proposition 4.3. The group G is
(i) not (2X, 5A, 7A)-generated for X ∈ {A,B,C},
(ii) (2D, 5A, 7A)-generated.

Proof. (i) By Table 6 we see that ∆G(2A, 5A, 7A) = 0, it follows that G is not (2A, 5A, 7A)-
generated.
We prove that G is not (2B, 5A, 7A)-generated. By Proposition 4.1, we see that the groups
23:L3(2), L3(2):2, L3(2) and 7:6 have elements of order 7 and no one will contribute here
because none have elements of order 5. By Table 4 we noticed that H2 is the only maximal
subgroup containing elements of orders 2, 5 and 7. We obtained that ΣH2(2b, 5a, 7a) = 7 and
h(7A,H2) = 1. Since by Table 7 we have ∆G(2B, 5A, 7A) = 7, it follows that

∆∗
G(2B, 5A, 7A) = ∆G(2B, 5A, 7A)−

∑
H2

(2b, 5a, 7a) = 7− 7 = 0,

proving that G is not (2B, 5A, 7A)-generated.
(ii) As stated ealier, only H2 will have a contribution because it contains elements of orders 2,
5 and 7. For the case (2C, 5A, 7A), we obtained that ΣH2(2c, 5a, 7a) = 7 and by Table 8, we
have ∆G(2C, 5A, 7A) = 7 so that

∆∗
G(2C, 5A, 7A) = ∆G(2C, 5A, 7A)− ΣH2(2c, 5a, 7a) = 14− 7 = 7 > 0,

proving that G is (2C, 5A, 7A)-generated.

By Table 9 we have ∆G(2D, 5A, 7A) = 98. Although H2 is the only maximal subgroup meet-
ing the 2D, 5A, 7A classes of G, it will not have any contribution since its relevant structure
constant is zero. We then obtained that ∆∗

G(2D, 5A, 7A) = ∆G(2D, 5A, 7A) = 98 > 0, proving
that G is (2D, 5A, 7A)-generated.

4.1.3. (2, 7, r)-generations. We have to check the generation of G through the triples
(2A, 7A, 7A), (2B, 7A, 7A), (2C, 7A, 7A) and (2D, 7A, 7A).

Proposition 4.4. The group G is
(i) not (2X, 7A, 7A)-generated for X ∈ {A,B}
(ii) (2Y, 7A, 7A)-generated for Y ∈ {C,D}.

Proof. (i) As in Proposition 4.1, subgroups H2, H4, H5, H8, H2 ∩H4, H2 ∩H8, H4 ∩H5 and
H4 ∩H8 are the only ones having elements of order 7.

By Table 6 we have ∆G(2A, 7A, 7A) = 14. Out of all the subgroups having elements of or-
der 7, only H2 and H5 meet the 2A, 7A classes of G. The maximal subgroup H2 will not
have any contribution here since its relevant structure constant is zero. We obtained that
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ΣH5(2a, 7x, 7x) = ∆H5(2a, 7a, 7a) + ∆H5(2a, 7a, 7b) + ∆H5(2a, 7b, 7b) = 7 + 0 + 7 = 14.,
Since the value of h for each of these contributing subgroups is 1, we then obtain that
∆∗

G(2A, 7A, 7A) = ∆G(2A, 7A, 7A) − ΣH5(2a, 7x, 7x) = 14 − 14 = 0, proving that G is not
(2A, 7A, 7A)-generated.
By Table 2, the group G acts on a 15-dimensional irreducible complex module V and we have
d2B + d7A + d7A = 4+ 12+ 12 = 28 < 2× 15. By applying Scott’s Theorem, we conclude that
G is not (2B, 7A, 7A)-generated.
(ii) By Table 8 we have ∆G(2C, 7A, 7A) = 210. Of all the subgroups of G having elements of
order 7, only H2, H5, H2∩H4 and H4∩H5 meet the 2C, 7A classes of G. The subgroup H4∩H5

will not have any contributions since its relevant structure constant is zero. We obtained that
ΣH2(2a, 7a, 7a) = 70,

∑
H5

(2x, 7y, 7z) = ∆H5(2b, 7a, 7a) + ∆H5(2b, 7a, 7b) + ∆H5(2b, 7b, 7b) +

∆H5(2e, 7a, 7a) + ∆H5(2e, 7a, 7b) + ∆H5(2e, 7b, 7b) = 21 + 0 + 21 + 0 + 28 + 0 = 70 and∑
H2∩H4

(2b, 7a, 7a) = 7. The value of h for all contributing subgroups is 1. We then get that

∆∗
G(2C, 7A, 7A) = ∆G(2C, 7A, 7A)−

∑
H2

(2a, 7a, 7a)

−
∑
H5

(2x, 7y, 7z) +
∑

H2∩H4

(2b, 7a, 7a)

= 210− 70− 70 + 7 = 77 > 0,

proving that G is (2C, 7A, 7A)-generated.
By Table 9 we have ∆G(2D, 7A, 7A) = 560. Although H2, H4, H5 and H8 are the
only subgroups meeting the 2D, 7A classes of G, only H5 and H8 have contributions
since the relevant structure constants of H2 and H4 are all zero. We obtained that∑

H5
(2x, 7y, 7z) = ∆H5(2c, 7a, 7a) + ∆H5(2c, 7a, 7b) + ∆H5(2c, 7b, 7b) + ∆H5(2f, 7a, 7a) +

∆H5(2f, 7a, 7b) + ∆H5(2f, 7b, 7b) = 21 + 0 + 21 + 0 + 28 + 0 = 70 and
∑

H8
(2a, 7a, 7a) = 28.

The value of h for all contributing subgroups is 1. We then get

∆∗
G(2D, 7A, 7A) = ∆G(2D, 7A, 7A)−

∑
H5

(2x, 7y, 7z)−
∑
H8

(2a, 7a, 7a)

= 560− 112− 28 = 420 > 0,

proving that G is (2D, 7A, 7A)-generated.

4.2. (3, q, r)-generations. The condition 1
3 + 1

3 + 1
r < 1 shows that r must be 5 or 7. For

the (3, q, r)-generations, we end up having the following cases: (3X, 3Y, 5A)-, (3X, 3Y, 7A)-,
(3X, 5A, 5A)-, (3X, 5A, 7A)- and (3X, 7A, 7A)-
generations.



Alg. Struc. Appl. Vol. 8 No. 2 (2021) 31-49. 41

4.2.1. (3, 3, r)-generations.

Proposition 4.5. The group G is not (3X, 3Y, 5A)-generated group for all X,Y ∈ {A,B,C}.

Proof. The group G acts on a 7-dimensional irreducible complex module V. By Scott’s Theorem
[31] applied to the module V and using the Atlas of finite groups [14], we get:

d3A = dim(V/CV(3A)) =
2(7− 4)

3
= 2,

d3B = dim(V/CV(3B)) =
2(7 + 2)

3
= 6.

d3C = dim(V/CV(3C)) =
2(7− 1)

3
= 4,

d5A = dim(V/CV(5A)) =
4(7− 2)

5
= 4.

Since d3X ∈ {2, 4, 6} above, it follows that d3A + d3X + d5A < 14 and by Scott’s Theo-
rem G is not (3A, 3X, 5A)-generated for all X ∈ {A,B,C}. Again by Scott’s Theorem, G

is not (3C, 3C, 5A)-generated because d3C + d3C + d5A = 12 < 14. By Table 11 we see
that ∆G(3B, 3B, 5A) = ∆G(3B, 3C, 5A) = 10 < 30 = |CG(5A)|, proving that G is not
(3B, 3X, 5A)-generated for X ∈ {B,C}.

Proposition 4.6. The group G is not (3X, 3Y, 7A)-generated for X ∈ {A,B,C}.

Proof. By Table 10 we have ∆G(3A, 3A, 7A) = ∆G(3A, 3B, 7A) = 0, it follows that
G is not (3A, 3X, 7A)-generated for all X ∈ {A,B}. As in Proposition 4.1, subgroups
H2, H4, H5, H8, H2 ∩ H4, H2 ∩ H8, H4 ∩ H5 and H4 ∩ H8 are the only ones having el-
ements of order 7.

Again, by Table 10 we have ∆G(3A, 3C, 7A) = 7. The maximal subgroup H2 is the only one
meeting the classes 3A, 3C and 7A of G. We obtained that

∑
H2

(3a, 3b, 7a) = 7 and we have
h(7A,H2) = 1. We obtain ∆∗

G(3A, 3C, 7A) = 7 − 7 = 0, proving that the group G is not
(3A, 3C, 7A)-generated.

By Table 11 we have ∆G(3B, 3B, 7A) = 7. Although the maximal subgroups H4 and H8

are the only ones meeting the 3B, 7A classes of G, the maximal subgroup H4 will not contri-
bution because its relevant structure constant is zero. Although the intersection of H4 and H4

contains an element of order 7, it will not have any contributions because none of its element
of order 3 fuses to 3B. We obtained that

∑
H8

(3c, 3c, 7a) = 7 and we have h(7A,H8) = 1.

Thus we obtain

∆∗
G(3B, 3B, 7A) = ∆G(3B, 3B, 7A)−

∑
H8

(3c, 3c, 7a) = 7− 7 = 0,
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proving that G is not (3B, 3B, 7A)-generated.
By Table 11 we have ∆G(3B, 3C, 7A) = 7. Although H4 and H8 meet the 3B, 3C, 7A classes
of G, only H4 has a contribution because the relevant structure constant of H8 is zero. We
obtained that

∑
H4

(3a, 3b, 7a) = 7. Thus we obtain

∆∗
G(3B, 3C, 7A) = ∆G(3B, 3C, 7A)−

∑
H4

(3b, 3a, 7a) = 7− 7 = 0,

proving that G is not (3B, 3C, 7A)-generated.
By Table 2, the group G acts on a 15-dimensional irreducible complex module V and we have
d3C + d3C + d7A = 8 + 8 + 12 = 28 < 2× 15. By applying Scott’s Theorem, we conclude that
G is not (3C, 3C, 7A)-generated.

4.2.2. (3, 5, r)-generations.

Proposition 4.7. The group G is
(i) not (3X, 5A, 5A)-generated for all X ∈ {A,B},
(ii) (3C, 5A, 5A)-generated.

Proof. (i) If G is a (3A, 5A, 5A)-generated group, then we must have c3A + c5A + c5A ≤ 30.

Since by Table 3 we have c3A + c5A + c5A = 16 + 8 + 8 = 32 > 30 and by Ree’s Theorem we
conclude that G is not (3A, 5A, 5A)-generated group.

From Table 5 we see that only four maximal subgroups of G, namely H1, H2, H3 and
H7, that each one has elements of order 5. The intersection of these four maximal sub-
groups contains the identity element and the intersection of any three maximal subgroups
does not contain an element of order 5. The subgroups H1 ∩ H7

∼= ((S3 × S3:2) × S3),
H2 ∩ H3

∼= (S4 × S4):2, H2 ∩ H7
∼= 2 × ((S3 × S3):2) and H3 ∩ H7

∼= 2 × 2 × 4 will not
have any contributions because they do not contain elements of order 5. Thus, subgroups H1,
H2, H3, H7, H1 ∩H2

∼= 2 × S6 and H1 ∩H3
∼= 2 × S6 are the only ones containing elements

of order 5. We have h(5A,H1) = h(5A,H3) = h(5A,H1 ∩ H2) = h(5A,H1 ∩ H3) = 3 and
h(5A,H2)H2 = h(5A,H7) = 1.

By Table 11 we have ∆G(3B, 5A, 5A) = 30. Out of the above subgroups having elements
of order 5, only H1 and H7 meet the 3B, 5A classes of G. The maximal subgroup H7 has no
contributions because its structure constant is zero. We obtained that

∑
H1

(3c, 5a, 5a) = 10.

We obtain

∆∗
G(3B, 5A, 5A) = ∆G(3B, 5A, 5A)− 3 ·

∑
H1

(3c, 5a, 5a) = 30− 3(10) = 0,
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proving that G is not (3B, 5A, 5A)-generated.

(ii) By Table 12 we have ∆G(3C, 5A, 5A) = 690. Out of the above subgroups having el-
ements of order 5, only H1, H2, H7, H1 ∩ H2 and H1 ∩ H7 meet the 3C, 5A classes of
G. We obtained that

∑
H1

(3b, 5a, 5a) = 105,
∑

H2
(3b, 5a, 5a) = 135,

∑
H7

(3x, 5a, 5a) =

∆H7(3b, 5a, 5a) + ∆H7(3d, 5a, 5a) = 0 + 15 = 15 and
∑

H1∩H7
(3b, 5a, 5a) = 15. We get

∆∗
G(3C, 5A, 5A) = ∆G(3C, 5A, 5A)− 3 ·

∑
H1

(3b, 5a, 5a)−
∑
H2

(3b, 5a, 5a)

−
∑
H7

(3x, 5a, 5a) + 3 ·
∑

H1∩H7

(3a, 5b, 5a)

= 690− 3(105)− 135− 15 + 3(15) = 270 > 0,

proving (ii).

Proposition 4.8. The group G is
(i) not (3A, 5A, 7A)-generated
(ii) (3X, 5A, 7A)-generated, where X ∈ {B,C}.

Proof. By Table 10 we have ∆G(3A, 5A, 7A) = 7, From Table 5, we see that H2 is the only max-
imal subgroup of G having elements of orders 3, 5 and 7. We obtained that

∑
H2

(3a, 5a, 7a) = 7

and we have h(7A,H2) = 1. We then obtain

∆∗
G(3A, 5A, 7A) = ∆G(3A, 5A, 7A)−

∑
H2

(3a, 5a, 7a) = 7− 7 = 0,

proving that G is not (3A, 5A, 7A)-generated.
(ii) By Table 11 we have ∆G(3B, 5A, 7A) = 77. None of the elements of H2 meet the 3B, 5A,
7A classes of G, so we obtained that ∆∗

G(3B, 5A, 7A) = ∆G(3B, 5A, 7A) = 77 > 0, proving
that G is (3B, 5A, 7A)-generated.
By Table 12 we have ∆G(3C, 5A, 7A) = 441. Although H2 is the only maximal subgroup
meeting the classes 3C, 5A and 7A of G, it has no contribution because its relevant structure
constant is zero. We obtain that ∆∗

G(3C, 5A, 7A) = ∆G(3C, 5A, 7A) = 441 > 0. Thus, the
group G is (3C, 5A, 7A)-generated.

4.2.3. (3, 7, r)-generations. In this subsection we discuss the cases (3, 7, r)-generations. It fol-
lows that we will end up with 3 cases, namely (3A, 7A, 7A)-, (3B, 7A, 7A)- and (3C, 7A, 7A)-
generation.

Proposition 4.9. The group G is (3X, 7A, 7A)-generated for all X ∈ {A,B,C}.
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Proof. As in Proposition 4.1, subgroups H2, H4, H5, H8, H2 ∩H4, H2 ∩H8,

H4 ∩H5 and H4 ∩H8 are the only ones having elements of order 7.

By Table 10 we have ∆G(3A, 7A, 7A) = 133. Only H2 has a contribution because it meets
the 3A, 7A classes of G. We obtained that

∑
H2

(3a, 7a, 7a) = 42 and h(7A,H2) = 1. We then
obtain that ∆∗

G(3A, 7A, 7A) = ∆G(3A, 7A, 7A) −
∑

H2
(3a, 7a, 7a) = 133 − 42 = 91 > 0. This

shows that G is (3A, 7A, 7A)-generated.

By Table 11 we have ∆G(3B, 7A, 7A) = 245. Out of all the subgroups of G having elements of
order 7, only H4 and H8 meet the 3B, 7A classes of G. The maximal subgroup H8 has no con-
tributions since its relevant structure constant is zero. We obtained that

∑
H4

(3b, 7a, 7a) = 7

and h(7A,H4) = 1. We then obtain ∆∗
G(3B, 7A, 7A) = ∆G(3B, 7A, 7A) −

∑
H4

(3b, 7a, 7a) =

245− 7 = 238 > 0, proving that G is (3B, 7A, 7A)-generated.

By Table 12 we have ∆G(3C, 7A, 7A) = 2289. All these subgroups H2, H4, H5, H8,

H2∩H4, H2∩H8, H4∩H5 and H4∩H8 meet the 3C, 7A classes of G. Although H2∩H8 and H4∩
H8 meet the 3C, 7A classes of G, they will not have any contributions because their relevant
structure contants are all zero. We obtained that

∑
H2

(3b, 7a, 7a) = 294,
∑

H4
(3a, 7a, 7a) =

189,
∑

H5
(3a, 7x, 7y) = ∆H5(3a, 7a, 7a)+∆H5(3a, 7a, 7b)+∆H5(3a, 7b, 7b) = 112+112+112 =

336,
∑

H8
(3a, 7a, 7a) = 21,

∑
H2∩H4

(3a, 7a, 7a) = 14 and
∑

H4∩H5
(3a, 7x, 7y) =

∆H4∩H5(3a, 7a, 7a) + ∆H4∩H5(3a, 7a, 7b) + ∆H4∩H5(3a, 7b, 7b) = 7 + 7 + 7 = 21. The value of
h for all contributing subgroups is 1. We then get

∆∗
G(3C, 7A, 7A) = ∆G(3C, 7A, 7A)−

∑
H2

(3b, 7a, 7a)−
∑
H4

(3a, 7a, 7a)

−
∑
H5

(3a, 7x, 7y)−
∑
H8

(3a, 7a, 7a) +
∑

H2∩H4

(3a, 7a, 7a)

+
∑

H2∩H4

(3b, 3a, 7a) +
∑

H4∩H5

(3a, 7x, 7y)

= 2289− 294− 189− 336− 21 + 14 + 21 = 1484 > 0.

Hence G is (3C, 7A, 7A)-generated.

4.3. Other results. In this subsection we handle all the remaining cases, namely the (5, q, r)-
and (7, q, r)-generations. This will end up with four cases, namely (5A, 5A, 5A)-, (5A, 5A, 7A)-,
(5A, 7A, 7A)- and (7A, 7A, 7A)-generation.

4.3.1. (5, 5, r)-generations. We have to check the generation of G through the triples
(5A, 5A, 5A) and (5A, 5A, 7A) .



Alg. Struc. Appl. Vol. 8 No. 2 (2021) 31-49. 45

Proposition 4.10. The group G is not (5A, 5A, 5A)-generated.

Proof. By Table 1, the group G acts on a 7-dimensional irreducible complex module V and we
have d5A + d5A + d5A + d5A = 3× 4 < 2× 7. By applying Scott’s Theorem, we conclude that
G is not (5A, 5A, 5A)-generated.

Proposition 4.11. The group G is (5A, 5A, 7A)-generated.

Proof. By Proposition 4.3, G is (2C, 5A, 7A)-generated. It follows by Theorem 2.6 that G is
(5A, 5A, (7A)2)-generated. Since G has one class of order 7, we must have (7A)2 = 7A. The
group G will become (5A, 5A, 7A)-generated.

4.3.2. (5, 7, r)- and (7, 7, r)-generations.

Proposition 4.12. The group G is (5A, 7A, 7A)-generated.

Proof. By Table 5, we see that H2 is the only subgroup of G having elements of orders 5 and
7. We then obtained that

∑
H2

(5a, 7a, 7a) = 91. Since by Table 13 we have ∆G(5A, 7A, 7A) =

7483− 91 = 7392 > 0. Hence the group G is (5A, 7A, 7A)-generated.

We conclude our investigation on the (p, q, r)-generation of the symplectic group Sp(6, 2)

by considering the (7A, 7A, 7A)-generations.

Proposition 4.13. The group G is (7A, 7A, 7A)-generated.

Proof. By Proposition 4.4, G is (2C, 7A, 7A)-generated. By the application of Theorem 2.6,
it follows that G is (7A, 7A, (7A)2)-generated. Since (7A)2 = 7A, the group G becomes
(7A, 7A, 7A)-generated.

The following tables, namely Tables 6 to 13 give the partial structure constants of Sp(6, 2)
computed by Gap [20] that will be used in our calculations.
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Table 6. Structure constants ∆Sp(6,2)(2A, qY, rZ)

pX 2A 2B 2C 2D 3A 3B 3C 5A 7A

∆G(2A, 2A, pX) 0 0 2 0 3 0 0 0 0
∆G(2A, 2B, pX) 0 0 1 1 0 0 0 0 0
∆G(2A, 2C, pX) 30 3 0 3 0 0 0 0 0
∆G(2A, 2D, pX) 0 12 12 3 0 0 0 0 0
∆G(2A, 3A, pX) 32 0 0 0 0 0 0 0 0
∆G(2A, 3B, pX) 0 0 0 0 0 0 0 0 0
∆G(2A, 3C, pX) 0 0 0 0 0 0 0 0 0
∆G(2A, 5A, pX) 0 0 0 0 0 0 0 0 0
∆G(2A, 7A, pX) 0 0 0 0 0 0 0 0 14

|CG(pX)| 23040 4608 1536 384 2160 648 108 30 7

Table 7. Structure constants ∆Sp(6,2)(2B, qY, rZ)

pX 2A 2B 2C 2D 3A 3B 3C 5A 7A

∆G(2B, 2B, pX) 0 18 8 0 0 0 3 0 0
∆G(2B, 2C, pX) 15 24 6 3 0 0 0 0 0
∆G(2B, 2D, pX) 60 0 12 15 0 0 0 0 0
∆G(2B, 3A, pX) 0 0 0 0 0 0 0 0 0
∆G(2B, 3B, pX) 0 0 0 0 0 0 0 0 0
∆G(2B, 3C, pX) 0 128 0 0 0 0 27 0 7
∆G(2B, 5A, pX) 0 0 0 0 0 0 0 15 7
∆G(2B, 7A, pX) 0 0 0 0 0 0 108 30 70

|CG(pX)| 23040 4608 1536 384 2160 648 108 30 7

Table 8. Structure constants ∆Sp(6,2)(2C, qY, rZ)

pX 2A 2B 2C 2D 3A 3B 3C 5A 7A

∆G(2C, 2C, pX) 0 18 34 6 45 0 9 5 0
∆G(2C, 2D, pX) 180 36 24 21 0 0 0 0 0
∆G(2C, 3A, pX) 0 0 32 0 45 0 0 5 0
∆G(2C, 3B, pX) 0 0 0 0 0 27 0 0 0
∆G(2C, 3C, pX) 0 0 128 0 0 0 54 20 14
∆G(2C, 5A, pX) 0 0 256 0 360 0 72 140 14
∆G(2C, 7A, pX) 0 0 0 0 0 0 216 60 210

|CG(pX)| 23040 4608 1536 384 2160 648 108 30 7

Table 9. Structure constants ∆Sp(6,2)(2D, qY, rZ)

pX 2A 2B 2C 2D 3A 3B 3C 5A 7A

∆G(2D, 2D, pX) 180 180 84 12 180 108 36 15 7
∆G(2D, 3A, pX) 0 0 0 32 0 0 0 0 0
∆G(2D, 3B, pX) 0 0 0 64 0 0 0 0 7
∆G(2D, 3C, pX) 0 0 0 128 0 0 54 30 28
∆G(2D, 5A, pX) 0 0 0 192 0 0 108 90 98
∆G(2D, 7A, pX) 0 0 0 384 0 648 432 420 560

|CG(pX)| 23040 4608 1536 384 2160 648 108 30 7



Alg. Struc. Appl. Vol. 8 No. 2 (2021) 31-49. 47

Table 10. Structure constants ∆Sp(6,2)(3A, qY, rZ)

pX 2A 2B 2C 2D 3A 3B 3C 5A 7A

∆G(3A, 3A, pX) 0 0 32 0 46 0 2 5 0
∆G(3A, 3B, pX) 0 0 0 0 0 12 2 0 0
∆G(3A, 3C, pX) 0 0 0 0 40 12 20 20 7
∆G(3A, 5A, pX) 0 0 256 0 360 0 72 120 7
∆G(3A, 7A, pX) 0 0 0 0 0 0 108 30 133

|CG(pX)| 23040 4608 1536 384 2160 648 108 30 7

Table 11. Structure constants ∆Sp(6,2)(3B, qY, rZ)

pX 2A 2B 2C 2D 3A 3B 3C 5A 7A

∆G(3B, 3B, pX) 0 0 64 0 40 28 20 10 7
∆G(3B, 3C, pX) 0 0 0 0 40 120 4 10 7
∆G(3B, 5A, pX) 0 0 0 0 0 216 36 30 77
∆G(3B, 7A, pX) 0 0 0 384 0 648 108 330 245

|CG(pX)| 23040 4608 1536 384 2160 648 108 30 7

Table 12. Structure constants ∆Sp(6,2)(3C, qY, rZ)

pX 2A 2B 2C 2D 3A 3B 3C 5A 7A

∆G(3C, 3C, pX) 0 1152 768 192 400 24 500 150 203
∆G(3C, 5A, pX) 0 0 1024 384 1440 216 540 690 441
∆G(3C, 7A, pX) 0 4608 3072 1536 2160 648 3132 1890 2289

|CG(pX)| 23040 4608 1536 384 2160 648 108 30 7

Table 13. Structure constants ∆Sp(6,2)(5A, qY, rZ) and ∆Sp(6,2)(7A, 7A, rZ)

pX 2A 2B 2C 2D 3A 3B 3C 5A 7A

∆G(5A, 5A, pX) 0 2304 7168 1152 8640 648 2484 3998 1379
∆G(5A, 7A, pX) 0 4608 3072 5376 2160 7128 6804 5910 7483
∆G(7A, 7A, pX) 46080 46080 46080 30720 41040 22680 35316 32070 30595

|CG(pX)| 23040 4608 1536 384 2160 648 108 30 7
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