
Algebraic Structures and Their Applications Vol. 8 No. 1 (2021) pp 1-12.

Research Paper

DIRECTED PRIME GRAPH OF NON-COMMUTATIVE RING

SANJOY KALITA∗ AND KUNTALA PATRA

Abstract. Prime graph of a ring R is a graph whose vertex set is the whole set R any any

two elements x and y of R are adjacent in the graph if and only if xRy = 0 or yRx = 0. Prime

graph of a ring is denoted by PG(R). Directed prime graphs for non-commutative rings and

connectivity in the graph are studied in the present paper. The diameter and girth of this

graph are also studied in the paper.

1. Introduction

The study of rings with the help of graphs began when Beck [6] defined a graph of a
commutative ring. It has drawn more attention when it was modified by Anderson and
Livingston[3] and named as zero divisor graph. S. P. Redmond [13] extended this concept
to non-commutative rings. Zero divisor graphs of non-commutative rings are further studied
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in [2, 5, 11, 12]. The concept of prime graph, introduced by Satyanarayana et al[14], is another
graph associated with rings. Prime graph of a ring R is defined as a graph whose vertex set
is the whole ring and any two distinct vertices x and y are adjacent if and only if xRy = 0 or
yRx = 0. Prime graph defined in [14] is a simple graph corresponding to any ring. In their
paper, they investigated some basic properties of the prime graph.

Before moving to the next sections we mention definitions of some basic terms used in
this paper which are also available in standard literature. A simple graph (directed graph) G

consists of a non-empty finite set V (G) of objects called vertices together with a set E(G),
possibly empty, of unordered (ordered) pairs of distinct vertices of G called edges (arcs). If for
some ring R the vertex set of PG(R) becomes empty we termed the graph as an empty graph.

A graph G whose edge set E(G) = φ is called a null graph or totally disconnected graph.
A simple graph G is said to be connected if for any two vertices there is a path joining them
otherwise G is said to be disconnected.

In a directed graph a vertex v is said to be reachable from u if there exists a directed path
from u to v.

A digraph is said to be strongly connected or strong if any two distinct vertices u and v

are mutually reachable from each other. A digraph is said to be unilaterally connected or
unilateral if for any two distinct vertices u and v at least one of them is reachable from the
other. A digraph is said to be weakly connected or weak if there is at least one semipath (a
path in which the arcs are not in the same direction) joining every pair of distinct vertices.
For a simple graph, the number of edges incident with a vertex v is called the degree of the
vertex and it is denoted by deg(v). For a digraph, two types of degrees are defined. For a
vertex v of a digraph G, the number of arcs incident from it is called outdegree of v denoted
by od(v), and the number arcs incident to it is called indegree of v denoted by id(v). If for a
vertex v in a directed graph, id(v) = 0 and od(v) ̸= 0, v is called a source and if od(v) = 0 and
id(v) ̸= 0, v is called a sink. The shortest u − v path in a graph G is called a geodesic. The
diameter of a graph G is the length of a longest geodesic in the graph. It is denoted by d(G)

or Diam(G). The girth of a graph G is the length of the smallest cycle(if it exists) in G. It is
denoted by g(G) or girth(G). Girth is undefined if G has no cycle.

Example 1.1. Let R = {0, a, b, c}. If addition and multiplication are defined as follows

+ 0 a b c

0 0 a b c

a a 0 c b

b b c 0 a

c c b a 0

. 0 a b c

0 0 0 0 0

a 0 b 0 b

b 0 0 0 0

c 0 b 0 b

then R is a commutative ring. The prime graph of R is given in Fig 1
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Fig 1 : Prime graph of commutative ring R

Example 1.2. Let R = {0, a, b, c}. If addition and multiplication are defined as follows

+ 0 a b c

0 0 a b c

a a 0 c b

b b c 0 a

c c b a 0

. 0 a b c

0 0 0 0 0

a 0 a b c

b 0 0 0 0

c 0 a b c

then R is a non-commutative ring. The prime graph of R is given in Fig 2

Fig 2 : Prime graph of non-commutative ring R

Theorem 1.3. [14] For any ring R, Diam(PG(R)) ≤ 2.

Proof. By definition 0 ∈ R is adjacent to all x ∈ R. Therefore for any two distinct non zero
elements x, y ∈ R, if xRy ̸= 0 then x− 0− y is a path. So Diam(PG(R)) = 2. But if for all
x, y ∈ R, xRy = 0 or yRx = 0 then PG(R) is a complete graph and so Diam(PG(R)) = 1.
Hence Diam(PG(R)) ≤ 2.

Theorem 1.4. If R is a prime ring then girth(PG(R)) = ∞.

Proof. Since R is a prime ring, PG(R) is a star graph [14]. So PG(R) does not contain any
cycle and so girth(PG(R)) = ∞.

Theorem 1.5. For a ring R, girth(PG(R)) = 3 or ∞ if R is not prime ring.
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Proof. Since R is a prime ring, PG(R) is a star graph [14]. So PG(R) does not contain any
cycle and so girth(PG(R)) = ∞.

For the ring R = Z4, 2 ∈ Z4 is the only element such that 2R2 = 0 so PG(Z4) is a star
graph but Z4 is not prime ring.

Corollary 1.6. Let R be ring. If for all distinct elements a, b ∈ R, aRb = 0 or bRa = 0, then
Diam(PG(R)) = 1 and girth(PG(R)) = 3.

In the next section, we give a modified definition of prime graph of any ring R. In section
three directed prime graphs of non-commutative rings are defined and some properties of these
graphs are studied.

2. Prime Graph of Rings

In this section the earlier definition of prime graph is recast in new grab. In the new
definition, for any ring R, the vertices of prime graph are the non-zero annihilators of xR or
Rx for all x ∈ R which exclude 0 element and all the elements which were adjacent to 0 in
PG(R). Here the diameter and girth are also determined for this graph.

Definition 2.1. Let X be an element or a subset of a ring R, the right annihilator of X in
R is defined by Annr(X) = {r ∈ R : Xr = (0)}. Similarly the left annihilator of X in R is
defined by Annl(X) = {r ∈ R : rX = (0)}.

If the ring R is commutative then Annl(X) = Annr(X)

Definition 2.2. Prime graph of a ring is defined as a graph whose vertex set is V0 = {x ∈
R − {0} : x ∈ Annl(Ry) or x ∈ Annr(yR) for some y ∈ R − {0}} and its edge set is
E0 = {(x, y) : x ∈ Annl(Ry) or x ∈ Annr(yR), x ̸= y, x, y ∈ V }. We denote this graph as
PG0(R).

Observations:

(i) PG0(R) is always a simple graph.
(ii) Vertex set of PG0(R) is empty if and only if R is a prime ring.

If R is a prime ring then there is no non-zero elements x, y satisfying x ∈ Annl(Ry) or
x ∈ Annr(yR). So the vertex set is empty.

(iii) If R ∼= Z4 or Z2[x]
⟨x2⟩ , then PG0(R) is a trivial graph.

For the ring R = Z4, 2 ∈ Z4 is the only element such that 2 ∈ Annl(R2) and for the
ring R = Z2[x]

⟨x2⟩ , x ∈ R is the only element such that x ∈ Annl(Rx). So the vertex sets
contain only one element. Thus PG0(R) is a trivial graph.

(iv) If R ∼= Z6 and R ∼= Z8, then PG0(R) is a path.
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(v) R ∼= Z2p, where p is an odd prime, then PG0(R) is a star graph.
(vi) If R ∼= Zpq, where p and q are distinct odd primes, then PG0(R) is a complete bipartite

graph.
(vii) If R ∼= Zp2 , where p is an odd prime, then PG0(R) is a complete graph.

(a) (b) (c) (d)

Fig 3: (a) PG0(Z8) (b) PG0(Z10) (c) PG0(Z15) (d) PG0(Z25)

Theorem 2.3. For any ring R, the following holds for the graph PG0(R)

(i) PG0(R) is connected.
(ii) Diam(PG0(R)) ≤ 3.
(iii) girth(PG0(R)) ≤ 4 or ∞.

Proof. (i) Let a, b ∈ V0 such that (a, b) /∈ E0 i.e. neither a /∈ Annl(Rx) nor a ∈ Annr(xR),
then there exist a, b ∈ V0 such that a ∈ Annl(Rx) or a ∈ Annr(xR) and b ∈ Annl(Ry) or
b ∈ Annr(yR). If a ∈ Annl(Ry), a ∈ Annr(yR), b ∈ Annl(Rx) or b ∈ Annr(xR) then a−y−b

or a − x − b is a path. If not, then we have the following case: If x = y, then a − x − b is a
path. If x ̸= y and (x, y) ∈ E0 then a − x − y − b is a path. If (x, y) /∈ E0, then for some
r ∈ R, xry ̸= 0 and yrx ̸= 0. Then a−xry− b, a− yrx− b, a−xr′b− y− b or a−x− ar′y− b

is a path for some r, r′ ∈ R. So PG0(R) is connected.
(ii) Diam(PG0(R)) ≥ 1 as PG0(R) is connected.
Now let a − b − c − d − e be a path of length 4 for distinct elements a, b, c, d, e ∈ R with

a /∈ Annl(Re) and a /∈ Annr(eR). We need to show that there exists a path from a to e of
length ≤ 3.

(a) If a ∈ Annl(Rc) or a ∈ Annr(cR) then a− c− d− e is a path from a to e of length 3.
If or b ∈ Annr(dR) then a− b− d− e is a path from a to e of length 3.

If a ∈ Annl(Rd) or a ∈ Annr(dR) then a− d− e is a path from a to e of length 2.
If b ∈ Annl(Re) or b ∈ Annr(eR) then a − b − e is a path from a to e of length

2. For c ∈ Annl(Re) or c ∈ Annr(eR), a − c − e is a path from a to e of length 2 if
a ∈ Annl(Rc) or a ∈ Annr(cR), otherwise a− b− c− e is a path of length 3.

(b) If b /∈ Annl(Rd) and b /∈ Annr(dR) then a− bd− e or a− db− e is a path of length 2

or a− be− d− e or a− b− ad− e is a path of length 3.
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Thus Diam(PG0(R)) ≤ 3.
(iii) If PG0(R) does not contain any cycle then girth(PG0(R)) = ∞ which is supported by

examples given in observations (iii), (iv), (v).
If PG0(R) consist any cycle then girth(PG0(R)) ≥ 3. We have to show that

girth(PG0(R)) < 5.
Let a− b− c−d− e−a be a cycle of length 5 in PG0(R). If a ∈ Annl(Rc) or a ∈ Annl(Rd)

or b ∈ Annl(Rd) or b ∈ Annl(Re) or c ∈ Annl(Re) (a ∈ Annr(cR) or a ∈ Annr(dR) or
b ∈ Annr(dR) or b ∈ Annr(eR) or c ∈ Annr(eR)) then we will get a cycle of length 3. If none
of these occur then following cases may occur-

(a) If a ∈ Annl(Rb), b ∈ Annl(Rc), c ∈ Annl(Rd), d ∈ Annl(Re) and e ∈ Annl(Ra) then
ac− d− e− ac is a cycle of length 3.

(b) If a ∈ Annl(Rb), b ∈ Annl(Rc), c ∈ Annl(Rd), d ∈ Annl(Re) and e ∈ Annr(aR) then
a− bd− e− a is a cycle of length 3.

(c) If a ∈ Annl(Rb), b ∈ Annl(Rc), c ∈∈ Annl(Rd), d ∈ Annr(eR) and e ∈ Annr(aR)

then a− ec− d− e− a is a cycle of length 4.
(d) If a ∈ Annl(Rb), b ∈ Annr(cR), c ∈ Annl(Rd), d ∈ Annr(eR) and e ∈ Annl(Ra) then

a− be− c− b− a is a cycle of length 4.

Rests of the possibilities are similar to these cases.
It is observed that whenever PG0(R) consist of a cycle of length 5 it always contains a cycle

of length 3 or 4. Hence girth(PG0(R)) ≤ 4 or ∞.

3. Directed prime graph of non-commutative rings

The prime graph is defined [14] as a simple graph of any ring. But the non-commutative
property of the rings is not reflected explicitly in this definition of prime graph. So the
definition of prime graph further modified to get a flavour of the non-commutative property of
the rings. Three different definitions of directed prime graph are given in this section, which
is based on the vertex set of the graph taken. Various properties of these three graphs arising
from these definitions are studied here in this paper. Also, the relation between these graphs
are established.

Definition 3.1. The directed prime graph PGl
D(R) of a non-commutative ring is defined as

a graph whose vertex set is V l = {x ∈ R−{0} : x ∈ Annl(Ry) for some y ∈ R−{0}} and its
edge set is El = {(x, y) : x ∈ Annl(Ry), x ̸= y, x, y ∈ V l} i.e. x → y is an edge if and only if
x ∈ Annl(Ry).

Definition 3.2. The directed prime graph PGr
D(R) of a non-commutative ring is defined as

a graph whose vertex set is V r = {x ∈ R − {0} : x ∈ Annr(yR) for some y ∈ R − {0}} and
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its edge set is Er = {(x, y) : x ∈ Annl(Ry), x ̸= y, x, y ∈ V r} i.e. x → y is an edge if and only
if x ∈ Annl(Ry).

Definition 3.3. The directed prime graph PGD(R) of a non-commutative ring is defined as
a graph whose vertex set is V = {x ∈ R−{0} : x ∈ Annl(Ry) or x ∈ Annr(yR) for some y ∈
R− {0}} and E = {(x, y) : x ∈ Annl(Ry), x ̸= y, x, y ∈ V } i.e. x → y is an edge if and only
if x ∈ Annl(Ry).

It can easily be checked that PGD(R) = PGl
D(R) ∪ PGr

D(R).

Example 3.4. Let R = {0, a, b, c}. We define addition and multiplication as follows

+ 0 a b c

0 0 a b c

a a 0 c b

b b c 0 a

c c b a 0

. 0 a b b

0 0 0 0 0

a 0 a b c

b 0 0 0 0

c 0 a b c

Then R is a non-commutative ring and the prime graph of R, PGD(R) is given in Fig 4.

Fig 5 : Directed prime graph of commutative ring R

Theorem 3.5. Let R be a non-commutative ring. If V l ⊆ V r then PGl
D(R) is strongly

connected.

Proof. Let x, y ∈ V l, there exist a, b ∈ R such that x ∈ Annl(Ra) and y ∈ Annl(Rb). For
x, y ∈ V l, let (x, y) ∈ El i.e. x ∈ Annl(Ry). Since V l ⊆ V r, for x ∈ V l ⊆ V r there exist
c ∈ R such that x ∈ Annr(cR), which implies that c ∈ Annl(Rx) and c ∈ V l. If |V l| = 2 then
c = x or c = y. If c = y then (y, x) ∈ El. If c = x then bc = bx ∈ R such that bx ∈ Annl(Rx),
that is bx ∈ V l and y → bx → x is a path, but bx = x or bx = y i.e. (y, x) ∈ El. Let |V l| > 2

and c ̸= x, y. Then y → c → x is a path if y ∈ Annl(Rc) or y → bc → x is a path. If b ∈ V l,
y → b → x or y → b → c → x is a path according to b ∈ Annl(Rx) or b ∈ Annl(Rc).

Let (x, y), (y, x) /∈ El. As V l ⊆ V r, there exist c, d ∈ R such that x ∈ Annr(cR) and
y ∈ Annr(dR) and so c ∈ Annl(Rx) and d ∈ Annl(Ry). So x, y, c, d ∈ V l and |V l| ≥ 4 such
that c → x and d → y are edges in PGl

D(R). Then x → ad → y and y → bc → x are two
paths between x and y. Hence PGl

D(R) is strongly connected.
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Theorem 3.6. Let R be a non-commutative ring. If V r ⊆ V l then PGr
D(R) is strongly

connected.

Proof is similar to Theorem 3.5.

Example 3.7. Let M =


 a b

0 0

 | a, b ∈ Zp

 be the matrix ring over Zp. Then the

PGl
D(M) is complete and PGl

D(M) is subgraph of PGr
D(M).

Example 3.8. Let M =


 a 0

b 0

 | a, b ∈ Zp

 be the matrix ring over Zp. Then the

PGl
D(M) is complete and PGl

D(M) is subgraph of PGr
D(M).

Example 3.9. Let M =


 a b

0 0

 | a, b ∈ Z4

 be the matrix ring over Z4. Then the

PGr
D(M) and PGl

D(M) are given in Fig 5.

(i) (ii)
Fig 6 : (i) PGr

D(M) (ii) PGl
D(M)

Example 3.10. Let M =


 a 0

b 0

 | a, b ∈ Z4

 be the matrix ring over Z4. Then the

PGr
D(M) and PGl

D(M) are given in Fig 6.
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(i) (ii)
Fig 6 : (i) PGr

D(M) (ii) PGl
D(M)

Theorem 3.11. Let R be a non-commutative ring. If V l ∩ V r ̸= φ then any two elements of
V l ∩ V r are mutually reachable in PGD(R).

Proof. Let V l ∩ V r = X ̸= φ. Let x and y be two distinct vertices of PGD(R) such that
x, y ∈ X. Therefore there exists a, b, c, d ∈ R such that x ∈ Annl(Ra), y ∈ Annr(bR),
x ∈ Annr(cR) and y ∈ Annl(Rd). We have the following cases:

(a) If x ∈ Annl(Ry), y ∈ Annl(Rx) then x → y and y → x are two edges.
(b) If y ∈ Annl(Rx), x /∈ Annl(Ry), x ∈ Annl(Rx) and y ∈ Annl(Ry) then xy ∈ R such

that x → xy → y is a path.
(c) If y ∈ Annl(Rx), x /∈ Annl(Ry), x ∈ Annl(Rx) and y /∈ Annl(Ry) then b ∈ R such

that y ∈ Annr(bR). If x ∈ Annl(Rb) then x → b → y is a path. If x /∈ Annl(Rb)

then xb ∈ R such that x → xb → y. Similarly we can show that for x /∈ Annl(Ry),
x /∈ Annl(Rx) and y ∈ Annl(Ry) there exists a path from x to y.

(d) If y ∈ Annl(Rx), x /∈ Annl(Ry), x /∈ Annl(Rx) and y /∈ Annl(Ry) then a, b ∈ R such
that x ∈ Annl(Ra) and y ∈ Annr(bR). If a ∈ Annl(Rb) then x → a → b → y is a
path. If a /∈ Annl(Rb) then ab ∈ R such that x → ab → y is a path in PGD(R).

Similarly taking x ∈ Annl(Ry) and y /∈ Annl(Rx) we can show that there exist
paths from x to y and y to x.

(e) Let x /∈ Annl(Ry), y /∈ Annl(Rx), x /∈ Annl(Rx) and y /∈ Annl(Ry). If a ∈ Annl(Rb)

and d ∈ Annl(Rc) then x → a → b → y and y → d → c → x are two paths. If
a ∈ Annl(Rb) and d /∈ Annl(Rc) then x → a → b → y and y → dc → x are two paths.
If a /∈ Annl(Rb) and d ∈ Annl(Rc) then x → ab → y and y → d → c → x are two
paths. If a /∈ Annl(Rb) and d /∈ Annl(Rc) then x → ab → y and y → dc → x are two
paths.

Hence any two elements of V l ∩ V r are mutually reachable in PGD(R).
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Theorem 3.12. Let R be a non-commutative ring. If |V l−V r| = 1 = |V r−V l| then PGD(R)

is unilaterally connected.

Proof. Let V l ∩ V r = X ̸= φ. Then any two elements in X are mutually reachable by
Theorem 3.11. Let x ∈ X, then there exists a, b ∈ R such that x ∈ Annr(aR) and x ∈
Annl(Rb). Let u ∈ V l − V r and v ∈ V r − V l such that u and v are not adjacent to any of
a, b, x. If (u, v) ∈ E then u → va → x and x → bu → v are two paths. Thus every vertex
in PGD(R) is reachable from u but no vertex is reachable to u. Similarly every vertex in
PGD(R) is reachable to v but no vertex is reachable from v. Again if (u, v) /∈ E then there
exists c, d ∈ R such that u ∈ Annl(Rc) and v ∈ Annr(dR). Since |V l − V r| = 1 = |V r − V l|,
so c, d ∈ X and are reachable from each other. So, for any two vertices of PGD(R) at least
one vertex is reachable from the other through a directed path if |V l − V r| = 1 = |V r − V l|.
Hence PGD(R) is unilaterally connected.

Corollary 3.13. Let R be a non-commutative ring and φ ̸= V l ∩ V r ̸= V . If |V l − V r| > 1

or |V r − V l| > 1 then PGD(R) is weakly connected.

Proof. Let V l ∩ V r = X ̸= φ. Then by Theorem 3.11 any two elements in X are mutually
reachable. If |V l − V r| > 1 by Theorem 3.12, every vertex of V l − V r is reachable to all
vertices of X but no two vertices of the set V l − V r are reachable from each other. Similarly,
if |V r −V l| > 1 every vertex of V r −V l is reachable from all vertices of X but no two vertices
the set V r − V l are reachable from each other. So there exist vertices in PGD(R) which are
not reachable through any directed path but connected as a simple graph. Hence PGD(R) is
weakly connected.

Corollary 3.14. Let R be a non-commutative ring. If V l = V r then PGr
D(R) ∼= PGl

D(R) ∼=
PGD(R) and PGD(R) is strongly connected.

Proof. Since V l = V r = V so El = Er and hence PGr
D(R) ∼= PGl

D(R) ∼= PGD(R).
The strong connectivity follows from Theorem 3.11.

Corollary 3.15. Let R be a non-commutative ring. Then PGD(R) does not contain sink and
source together if any one of V l or V r is a subset of the other.

Proof. The result follows from Theorem 3.11 and Theorem 3.12.

Theorem 3.16. Let Mn(R) be the ring of all n× n matrices over a commutative ring. Then
the vertex set of PGD(Mn(R)) is empty if R is a prime ring.
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Proof. Since R is a prime ring, for any two non-zero elements a, b ∈ R, aRb ̸= 0. Let A( ̸=
0), B( ̸= 0) ∈ Mn(R), then A and B are adjacent in PGD(Mn(R)) if and only if aij ∈ Ann(Rbkl)

for all entries aij of A and bkl of B. But it is not possible as R is a prime ring. Therefore for
any two elements A( ̸= 0), B( ̸= 0) ∈ Mn(R), A /∈ Annl(Mn(R)B). Similarly we can show that
B /∈ Annl(Mn(R)A). Therefore the vertex set of PGD(Mn(R)) is empty.

Theorem 3.17. If M =


 a b

c d

 | a, b, c, d ∈ Zp2

 be the matrix ring, where p is a

prime, then PGD(M) is strongly connected and complete graph.

Proof. For any A( ̸= 0) ∈ M,A ∈ V l if and only if there is at least one B( ̸= 0) ∈ M such that
A ∈ Annl(MB). Then B ∈ V r. It is possible if and only if all entries of both A and B are
divisible by p. But for this we also have B ∈ Annl(MA) i.e. B ∈ V l and A ∈ V r. So we
have V l = V r. By Corollary 3.14, PGD(M) is strongly connected. Now any two elements of
PGD(M) are adjacent from each other and hence PGD(M) is a complete digraph.

Example 3.18. Let M =


 a b

c d

 | a, b, c, d ∈ Z4

 be the matrix ring over Z4. Then

V l = V r and PGr
D(M) ∼= PGl

D(M) ∼= PGD(M).

Theorem 3.19. If M =


 a b

c d

 | a, b, c, d ∈ Zpq

 be the matrix ring, where p and q

are distinct primes, then PGD(M) is strongly connected and complete bipartite graph.

Proof. For any A( ̸= 0) ∈ M,A ∈ V l if and only if there is at least one B( ̸= 0) ∈ M such that
A ∈ Annl(MB). Then B ∈ V r. It is possible if and only if all entries of either A or B are
divisible by p and the entries of the other by q. But for this we also have B ∈ Annl(MA)

i.e. B ∈ V r and A ∈ V r. So we have V l = V r. But By Corollary 3.14, PGD(M) is strongly
connected. The vertex set of M can be partitioned into two sets one containing the matrices
with entries divisible by p and other containing those with entries divisible by q. It can easily
be show that PGD(R) is a complete bipartite digraph.
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