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A NEW APPROACH TO SMALLNESS IN HYPERMODULES

ALI REZA MONIRI HAMZEKOLAEE∗, MORTEZA NOROUZI AND VIOLETA LEOREANU-FOTEA

Abstract. In this paper, we extend the concept of small subhypermodules to all types of

hypermodules and give nontrivial examples for this concept. As an application, we define and

study lifting hypermodules via small subhypermodules.

1. Introduction

Let R denote an arbitrary associative ring with identity and consider all modules to be
unitary right R-modules. For terminology in general module theory we refer to [12] and [15].
A submodule N of a module M is said to be small in M (denoted by N � M) if N +K 6= M

for all proper submodule K of M . In [10], Leonard defined a module M to be small provided
there is another module L such that M � L. It is well-known that M is a small module if
and only if M is small in its injective envelope. The concept of small submodules as one of

DOI: 10.22034/as.2020.1962

MSC(2010): Primary:16D10, 16D80, 20N20

Keywords: Direct summand, Lifting hypermodule, Small subhypermodule.

Received: 03 July, 2020, Accepted: 17 November 2020.

∗Corresponding author

© 2021 Yazd University.
131



132 Alg. Struc. Appl. Vol. 8 No. 1 (2021) 131-145.

the most applicable part of module theory was leading to define many classes of modules and
rings such as (semi)perfect and supplemented rings and modules.

In recent decades, lifting modules have been studied extensively by many researchers as
they play a key role in module theory. General properties of lifting modules such as direct
summands, homomorphic images, (finite) direct sums, some special submodules and their
relations with other known classes of modules have been investigated (see [4, 9]).

According to [12], a module M is called lifting if every submodule of M lies above a direct
summand of M , i.e. for every submodule N of M , there exists a direct summand D of M such
that N/D � M/D. A submodule N of M is called a supplement of a submodule K of M if
M = N +K and N ∩K � N . A module M is called supplemented if every submodule of M
has a supplement in M . Also M is called amply supplemented, if M = A+B, then A contains
a supplement of B in M . A lifting module is amply supplemented and hence supplemented.

Let H be a nonempty set and set “ ◦ ” : H ×H −→ P∗(H) where P∗(H) is the set of all
nonempty subsets of H. Then the mapping “ ◦ ” is called a hyperoperation on H and the
algebraic hyperstructures theory is based on it. This theory was first introduced by Marty
in [11]. Till now, many interesting developments have been accomplished in this context
and very attractive applications of this theory in mathematics and other sciences have been
characterized. To prove this claim, we refer readers to [5], [6], [7], [8] and [16]. In this paper,
we intend to try for extension of some of well-known concepts in classical algebraic structures
(specially, modules theory) to hyperstructures (hypermodules). We investigate conditions for
which some results of modules theory are valid for hypermodules and in order to do this we
introduce some concepts. Our results are based on concepts such as small submodules, direct
summands and lifting modules in module theory.

In [14], Talaee introduced and analyzed the concept of small subhypermodules in hyper-
modules in the same manner as in general module theory. We extend here this study to a
more general context.

In what follows, we give some basic concepts about hypergroups, hyperrings and hypermod-
ules which we need in this paper.

Let “ ◦ ” be a hyperoperation on H. Then (H, ◦) is said to be a hypergroupoid. For x ∈ H

and A,B ∈ P∗(H), we set A ◦ B =
∪

a∈A,b∈B a ◦ b and A ◦ x = A ◦ {x}. A hypergroupoid
(H, ◦) is called a semihypergroup if for all x, y, z of H, we have (x ◦ y) ◦ z = x ◦ (y ◦ z). We
say that a semihypergroup (H, ◦) is a hypergroup if for all x ∈ H, x ◦ H = H ◦ x = H. A
nonempty subset K of a hypergroup (H, ◦) is called a subhypergroup, if for all k ∈ K, we have
k ◦K = K ◦ k = K.

Definition 1.1. ([8]) A commutative hypergroup (H, ◦) is said to be canonical, if

(1) there exists a unique 0 ∈ H, such that for all x ∈ H, x ◦ 0 = {x};
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(2) for all x ∈ H, there exists a unique x−1 ∈ H, such that 0 ∈ x ◦ x−1;
(3) if x ∈ y ◦ z, then y ∈ x ◦ z−1 and z ∈ y−1 ◦ x, for all x, y, z ∈ H.

Definition 1.2. ([8]) The triple (R,], ◦) is a hyperring, if

(1) (R,]) is a hypergroup;
(2) (R, ◦) is a semihypergroup;
(3) “ ◦ ” is distributive over “ ] ”.

A hyperring (R,], ◦) is said to be Krasner ([8]), if (R,]) is a canonical hypergroup and
(R, ◦) is a semigroup such that 0 is a zero element (called also absorbing element), i.e. for all
x ∈ R, we have x ◦ 0 = 0 = 0 ◦ x.

Definition 1.3. Let (R,], ◦) be a hyperring and (M,+) a hypergroup. If there exists an
external hyperoperation · : R×M −→ P∗(M) such that for all a, b ∈ M and r, s ∈ R we have

(i) r · (a+ b) = (r · a) + (r · b);
(ii) (r ] s) · a = (r · a) + (s · a);
(iii) (r ◦ s) · a = r · (s · a),

then (M,+, ·) is called a left hypermodule over R (or a left R-hypermodule).

Similarly, a right hypermodule over R is defined. We say that M is a hypermodule over
R, if it is a right and left hypermodule over R. An R-hypermodule satisfying statements
in Definition 1.3 is called a general R-hypermodule. Also, if (M,+) is a canonical hyper-
group and (R,], ◦) is a Krasner hyperring in Definition 1.3, then M is said to be a canonical
R-hypermodule. Moreover, we say M is a Krasner R-hypermodule, if it is a canonical R-
hypermodule where ”.” is an external operation, that is . : R×M → M by (r,m) 7→ r.m ∈ M ,
and r.0 = 0.

A nonempty subset N of an R-hypermodule M is called a subhypermodule, denoted by
N ≤ M , if N itself is a hypermodule over R with (hyper)operation defined on R×M .

Note that a general R-hypermodule may not contain an element like 0. Moreover, in
canonical R-hypermodules, {0} is not a subhypermodule in general, while for Krasner R-
hypermodules there are no such problems.

2. Several non-trivial examples of small subhypermodules

In this section, we provide non-trivial examples of hypermodules with small subhypermod-
ules for all types of hypermodules. Also, we study some concepts such as local, hollow and
Rad(M) for hypermodules.

Definition 2.1. Let M be an R-hypermodule. A subhypermodule N is small in M (denoted
by N � M), if K +N = M or M = N +K implies M = K, where K ≤ M . Equivalently, if
K is a proper subhypermodule of M , then N +K 6= M and M 6= K +N .
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According to definition, the concept of small subhypermodules in canonical and Krasner
hypermodules is analogues to small submodules in modules theory. The next example shows
that it has a different behavior in general hypermodules:

Example 2.2. Consider the following hyperoperation on R = {a, b, c, d, e, f, g}:

+ a b c d e f g

a {a, b} {a, b} {c} {d} {e} {f} {g}

b {a, b} {a, b} {c} {d} {e} {f} {g}

c {c} {c} {a, b} {f} {g} {d} {e}

d {d} {d} {g} {a, b} {f} {e} {c}

e {e} {e} {f} {g} {a, b} {c} {d}

f {f} {f} {e} {c} {e} {g} {a, b}

g {g} {g} {d} {e} {c} {a, b} {f}

and x · y = {a, b} for all x, y ∈ R. Then (R,+, ·) is a hyperring, where + is not commutative
on R, (R,+, ·) is also a general R-hypermodule ([1]). By [13], the only subhypermodules of R
are R1 = {a, b}, R2 = {a, b, c}, R3 = {a, b, d}, R4 = {a, b, e} and R5 = {a, b, f, g}. Moreover,
we have R2 +R5 6= R = R5 +R2, R3 +R5 = R = R5 +R3 and R4 +R5 = R 6= R5 +R4. But,
R1 +Ri 6= R 6= Ri +R1 for all 2 ≤ i ≤ 5. Hence, the only proper small subhypermodule in R

is R1.

Hence, there are hypermodules with just one small subhypermodule. Also, it is worth to
say that in module theory, {0} is always a small submodule, but in hypermodules it is not
valid in general.

Example 2.3. For the set of all integers, Z, define x⊕ y = {x, y, x+ y} and x⊗ y = {x · y},
for all x, y ∈ Z, where “+” and “·” are ordinary addition and multiplication. Then, (Z,⊕,⊗)

is a general Z-hypermodule. The subhypermodules of Z are {0} and nZ for n ∈ N. It is clear
that for all m,n ∈ N with gcd(m,n) = 1 we have nZ ⊕ mZ = Z. Therefore, the only small
subhypermodule of Z is {0}.

We next provide an R-hypermodule M such that all proper subhypermodules of M are
small in M .

Example 2.4. Consider the Z-module M = Z2 × Z4. Define (a, b) ∗ (c, d) = {(a, b), (c, d)}
and n � (a, b) = {n(a, b)} for all (a, b), (c, d) ∈ M and n ∈ Z. Also, for all n,m ∈ Z define
n⊕m = {n,m} and n�m = {nm}. Then, (M, ∗, �) is a general hypermodule over (Z,⊕,�).
All proper subhypemodules of M are:

(1) M1 = {(0, 0), (0, 1), (0, 2), (0, 3)}
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(2) M2 = {(0, 0), (0, 2)}
(3) M3 = {(0, 0), (1, 0)}
(4) M4 = {(0, 0), (1, 1), (0, 2), (1, 3)}
(5) M5 = {(0, 0), (1, 2)}
(6) M6 = {(0, 0)}.

An easy verification yields that for i, j ∈ {1, . . . , 6} with i 6= j, we have Mi ∗Mj 6= M , so that
Mi � M for all i ∈ {1, . . . , 6}.

The following one is an example which is a rich source of general hypermodules with different
small subhypermodules. Recall that a module M is local if it has a proper submodule which
contains all proper submodules of M (see[15]). The largest submodule of a local module must
be its radical, i.e. Rad(M) which is the intersection of all maximal submodules of M .

Example 2.5. Let (M,+, .) be an R-module over a ring (R,+′, .′). Consider a submodule N

of M and define x⊕ y = {x+ y}, r� x = r.x+N , r ] s = {r+′ s} and r ◦ s = {r.′s} (r.′s) for
all x, y ∈ M and r, s ∈ R. Then (M,⊕,�) is a general hypermodule (canonical hypermodule)
over (R,], ◦) (see [1, Example 2.3]). Note that every subhypermodule of M is a submodule of
M . On the other hand, every submodule of M containing N , is a subhypermodule of M . We
consider some special cases for N :

(1) Set N = {0}. Then the set of subhypermodules of M coincide with the set of submodules
of M .

(2) Let N be a maximal submodule of M . Then the only subhypermodules of M are N and
M . As an example, we can consider a local module M and N = Rad(M).

(3) If N is a small submodule of M , then N is a small subhypermodule of M . Also, every
small submodule of M containing N is a small subhypermodule of M .

(4) If N = M , then the R-hypermodule M has just one subhypermodule, namely M .

In general module theory, a module M is hollow if every proper submodule of M is small
in M . Let us introduce a correspondent concept in hypermodules.

Definition 2.6. Let M be a hypermodule.
(1) We say that M is hollow if every proper subhypermodule of M is small in M .
(2) We call M local if M has a proper subhypermodule that contains all proper subhyper-

modules of M .

In module theory, one of characterizations for hollow modules is obtained by the sum of
two proper submodules of a module. Indeed, a module M is hollow if and only if the sum
of any two proper submodules of it, is a proper submodule. But, the sum of two subhy-
permodules of a general hypermodule is not generally a subhypermodule (in Example 2.2,
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R2 + R3 = {a, b, c, d, f} and R3 + R2 = {a, b, c, d, g} are not subhypermodules of R) while in
canonical and Krasner hypermodules the sum of each two subhypermodules is a subhypermod-
ule. Hence, similar to what happens in module theory, it can be seen that a canonical (Krasner)
hypermodule M is hollow if and only if the sum of any two of its proper subhypermodules is
a proper subhypermodule.

Moreover, if M is a hypermodule such that its set of subhypermodules is a chain, then M

is hollow. It is clear that a local hypermodule is hollow.

Definition 2.7. Let M be a hypermodule, I an indexed set and A = {Ni | i ∈ I} be a set of
subhypermodules of M . We say that M satisfies CPS (commutative property for sums) on A
if for every subset J of I we have

∑
j∈J Nj =

∑
γ∈ΓNγ where Γ is a permutation of J .

Note that a Krasner R-hypermodule always satisfies CPS on the set of its all subhyper-
modules.

We next present a similar concept to Rad(M) in hypermodules. It is well-known that
Rad(M) is the sum of all small submodules of a module M .

Definition 2.8. Let M be a hypermodule such that M satisfies CPS on the set of its all small
subhypermodules. We define Rad(M) to be the sum of all small subhypermodules of M , i.e.
Rad(M) =

∑
N≪M N . In case M has no small subhypermodules, then we set Rad(M) = M .

Note that we may be not able to define Rad(M) for a hypermodule M that does not
satisfy the property N +K = K +N where N,K � M . According to the above statements,
Rad(M) is not generally a subhypermodule in a general hypermodule, while it is always a
subhypermodule in canonical and Krasner hypermodules.

Also, in Example 2.2, we can see that the sum of two subhypermodules is not a subhyper-
module, but Rad(R) is a subhypermodule since Rad(R) = R1.

Moreover, we must point out that there are hypermodules with at least one small subhy-
permodule such that Rad(M) = M (see Example 2.11).

Proposition 2.9. Let M be a Krasner R-hypermodule. Then M is local if and only if M is
hollow and Rad(M) 6= M .

Proof. Suppose that M is local. It is obvious that M is hollow. Let N be the largest proper
subhypermodule of M . Since every proper subhypermodule of M is small in M , it follows that
Rad(M) ⊆ N . Hence Rad(M) 6= M . For the converse, let M be hollow and K be a proper
subhypermodule of M . Then K � M . Hence K ⊆ Rad(M). It follows that Rad(M) is the
largest proper subhypermodule of M . Note that if Rad(M) = M , then the hypermodule M

can not be local.
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Example 2.10. Let M be an R-module such that its chain of submodules is {0} ⊂ H1 ⊂ . . . ⊂
Hn−1 ⊂ Hn = M (for example the Z-module M = Zpn for a prime number p). Define an R-
hypermodule by choosing N = H1 according to Example 2.5. Then each Hi for i ∈ {1, . . . , n}
is a subhypermodule of the R-hypermodule M and clearly each of them is small in M . It is
easy to see that M as an R-hypermodule is local and Rad(M) =

∑n−1
i=1 Hi = Hn−1.

There are hollow hypermodules which are not local, as we can see from the following exam-
ple.

Example 2.11. Let p be a prime number and consider the Z-module M = Zp∞ = { a
pn + Z |

a ∈ Z, n ≥ 0, 0 ≤ a
pn < 1, p ∤ a} and N =< 1

p + Z >. Construct a Z-hypermodule M with
respect to the hyperoperations of Example 2.5. It is clear that every subhypermodule of M is
small in M . Note that every subhypermodule of M has the form Lm =< 1

pm +Z > for m ≥ 1

and Rad(M) =
∑∞

i=1 Li = M which shows that M is not local.

Using Example 2.5 we can obtain more examples of small subhypermodules of hypermodules.

Example 2.12. Let M be the Z-module Z12. Consider the submodules H0 = {0}, H1 =< 2 >,
H2 =< 3 >, H3 =< 4 >, H4 =< 6 > and H5 = M . Then H2 + H3 = M , H2 ∩ H3 = {0},
H1 + H2 = M and H1 ∩ H2 = H4 � H2. So the only direct summands of M are H2 and
H3. Also note that the only supplement submodules of M are H2 and H3 which are direct
summands. It is well-known that every Artinian module is amply supplemented as well as M .
Therefore, M is a lifting Z-module by [12, Lemma 4.8]. We analyze some particular cases in
which M can be a Z-hypermodule with respect to the hyperoperations of Example 2.5:

(1) Choose N = H4. In this case all nontrivial subhypermodules of M are H1, H2 and H4.
It can be seen that H1 +H2 = M and H1 ∩H2 = H4 is small in both H1 and H2. The only
small subhypermodule of M is H4. Hence Rad(M) = H4.

(2) Choose N = H3. The nontrivial subhypermodules of M are H1 and H3 which are small
in M . Therefore, M is local (hollow) and Rad(M) = H1 is a proper subhypermodule of M .

(3) Set N = H2. In this case, the only nontrivial subhypermodule of M is H2. It is obvious
that H2 is small in M . Hence Rad(M) = H2.

(4) Set N = H1. Then the only proper subhypermodule of M is H1. Clearly H1 is small in
M and Rad(M) = H1.

Example 2.13. Let M be the Z-module Z4. Suppose that N = {0, 2} which is a submodule of
M . Consider the Z-hypermodule (M,⊕,�) constructed by N according to Example 2.5. Now,
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set M ′ = M ∪ {a, b, c} such that {a, b, c} ∩M = ∅ and consider the following hyperoperations:

+′ 0 1 2 3 a b c

0 {0} {1} {2} {3} {a} {b} {c}

1 {1} {2} {3} {0} {a} {b} {c}

2 {2} {3} {0} {1} {a} {b} {c}

3 {3} {0} {1} {2} {a} {b} {c}

a {a} {a} {a} {a} M {c} {b}

b {b} {b} {b} {b} {c} M {a}

c {c} {c} {c} {c} {b} {a} M

and n ·′ x =



n� x, x ∈ M

{a}, x = a

{b}, x = b

{c}, x = c

for all n ∈ Z. Then (M ′,+′, ·′) is a general Z-hypermodule by [2, Page 46]. It can be seen
that M ′

1 = M ∪ {a}, M ′
2 = M ∪ {b}, M ′

3 = M ∪ {c}, M ′
4 = M and M ′

5 = N are the only
proper subhypermodules of M ′. Since M ′

i +
′ M ′

j = M ′ for i 6= j ∈ {1, 2, 3}, none of them is a
small subhypermodule of M ′. It is easy to see that M ′

4 +
′ M ′

i 6= M ′ and M ′
5 +

′ M ′
i 6= M ′ for

i ∈ {1, 2, 3, 4, 5}. So, M ′
4 and M ′

5 are small subhypermodules of M ′.

We end this section by presenting some R-hypermodules with no small subhypermodules.

Example 2.14. (1) Let (M1 = Z4,+1, .1), N1 = {0, 2}, (M2 = K4 = {e, a, b, c},+2, .2) and
N2 = {e, a}. By K4 we mean Klein’s four-group. Clearly N1 ≤ M1 and N2 ≤ M2. Construct
Z-hypermodules (M1,⊕1,�1) and (M2,⊕2,�2) by N1 and N2, respectively, based on Example
2.5. Set L = M1 ∪M2 ∪ {d} where d /∈ M1 ∪M2. By [2, Page 47], (L,⊞,⊡) is a general Z-
hypermodule where

⊞ 0 1 2 3 e a b c d

0 {0} {1} {2} {3} L L L L {d}

1 {1} {2} {3} {0} L L L L {d}

2 {2} {3} {0} {1} L L L L {d}

3 {3} {0} {1} {2} L L L L {d}

e L L L L {e} {a} {b} {c} L

a L L L L {a} {e} {c} {b} L

b L L L L {b} {c} {e} {a} L

c L L L L {c} {b} {a} {e} L

d {d} {d} {d} {d} L L L L M1

and n ⊡ x = n �1 x, n ⊡ y = n �2 y and n ⊡ d = {d} for all x ∈ M1, y ∈ M2 and n ∈ Z.
The proper subhypermodules of L are L1 = M1 ∪ {d}, L2 = M1, L3 = M2, L4 = N1 and
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L5 = N2. Also, we have L1 ⊞ L3 = L2 ⊞ L3 = L4 ⊞ L5 = L and hence none of them is a small
subhypermodule of L.

(2) Let M1 and M2 be two general R-hypermodules with the external hyperoperations ·1
and ·2, respectively. Set M = M1∪M2∪{a} (a /∈ M1∪M2) with the following hyperoperation
for x1, x2 ∈ M1 and y1, y2 ∈ M2:

+′ x1 a y1

x2 x1 + x2 {a} M

a {a} M1 M

y2 M M y1 + y2

and for all x ∈ M1, y ∈ M2 and r ∈ R, the scalar multiplication is defined by r ·′ x = r ·1 x,
r ·′ y = r ·2 y and r ·′ a = {a}. It can be easily seen that (M,+′, ·′) is a general R-hypermodule.
Note that every subhypermodule of M must be one of Mf = Ni or Mg = M1∪{a} or Mh = Ki,
where Ni is a subhypermodule of M1 and Ki is a subhypermodule of M2. We can easily check
that Mf +′ Mh = M and Mg +

′ Mh = M . Hence, M does not have a small subhypermodule.

3. Lifting hypermodules

In this section, we introduce a new class of hypermodules namely, lifting hypermodules. We
present equivalent conditions for a lifting hypermodule and we show that a direct summand
of a lifting Krasner hypermodule is lifting, too.

Before dealing with lifting hypermodules, we present some results related to small subhy-
permodules of factor hypermodules.

Lemma 3.1. Let M be a Krasner hypermodule. Let K,L,N ≤ M , K + L = M and (K ∩
L) +N = M . Then K + (L ∩N) = L+ (K ∩N) = M .

Proof. We prove that K+(L∩N) = M . The other equality is similar. Clearly, K+(L∩N) ⊆
M . Let x ∈ M . Since K + L = M , there exist k ∈ K and l ∈ L such that x ∈ k + l. Also, we
have l ∈ L ⊆ M = (L∩K) +N which implies that l ∈ t+ n for t ∈ L∩K and n ∈ N . Hence,
n ∈ l − t ⊆ L − (L ∩ K) ⊆ L, and so n ∈ N ∩ L. Then, l ∈ t + n ⊆ K + (L ∩ N) and thus
x ∈ k + l ⊆ K +K + (L ∩N) ⊆ K + (L ∩N). This completes the proof.

As an example for Lemma 3.1, we can consider the trivial Krasner Z-hypermodule M = Z
with K = 2Z, L = 3Z and N = 5Z.

Let (M1,+1, ·1) and (M2,+2, ·2) be two hypermodules over R. A map f : M1 −→ M2 is
called a strong homomorphism, if f(x +1 y) = f(x) +2 f(y) and f(r ·1 x) = r ·2 f(x) for all
x, y ∈ M1 and r ∈ R.
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Let f : M1 → M2 be a strong homomorphism of Krasner hypermodules. It is easy to
see that the set Kerf = {x ∈ M1 | f(x) = 0M2} is a subhypermodule of M1. Similar to
representation theorem for module theory, we can obtain the following theorem for Krasner
R-hypermodules.

Theorem 3.2. Let M and N be two Krasner hypermodules over R and f : M −→ N be
a strong epimorphism. Then there exists an one to one correspondence h : A −→ B, by
L 7−→ f(L), where A = {L | Kerh ⊆ L ≤ M} and B = {T | T ≤ N}.

Each subhypermodule L of an R-hypermodule (M,+, ·) leads to the quotient M/L = {x+L |
x ∈ M} which is an R-hypermodule by (x + L) ⊕ (y + L) = {z + L | z ∈ (x + L) + (y + L)}
and r � (x+ L) = {c+ L | c ∈ r · (x+ L)} for all x+ L, y + L ∈ M/L and r ∈ R.

If M is a Krasner R-hypermodule, then we have (x + L) ⊕ (y + L) = {z + L | z ∈ x + y}
and r � (x+ L) = {c+ L | c ∈ r · x}. In this case, π : M −→ M/L, defined by π(x) = x+ L,
is a strong epimorphism where Kerπ = L. Therefore, by Theorem 3.2, it follows that every
subhypermodule of M/L has the form K/L where L ⊆ K ≤ M .

Proposition 3.3. Let M be a Krasner R-hypermodule and L ⊆ N be subhypermodules of M .
Then N/L � M/L if and only if for all K ≤ M the equality N +K = M implies L+K = M .

Proof. Suppose that N/L � M/L and N +K = M . Then, for all x + L ∈ M/L there exist
n ∈ N and k ∈ K such that x ∈ n+k. Hence, x+L ∈ (n+L)⊕(k+L) = (n+L)⊕(k+l+L) ⊆
N/L ⊕ (K + L)/L, which implies that M/L = N/L ⊕ (K + L)/L. Since N/L � M/L, we
conclude that (K + L)/L = M/L. Now, for all x ∈ M we have x + L = t + L for some
t ∈ K + L. Thus, x ∈ x + 0 ⊆ x + L = t + L ⊆ K + L + L = K + L which implies that
K + L = M .

For the converse let N/L ⊕ T/L = M/L, for T/L ≤ M/L. Then, for x ∈ M there exist
n ∈ N and t ∈ T such that x + L ∈ (n + L) ⊕ (t + L). Hence, x + L = q + L for q ∈ n + t,
and so x ∈ x+L ⊆ n+ t+L ⊆ N + T . Then N + T = M . Now, the assumption implies that
L+ T = M . Since L is contained in T , we can conclude by definitions that T = M . It follows
that T/L = M/L.

Before presenting definitions of lifting ((amply) supplemented) hypermodules, we discuss
about the intersection of two subhypermodules of a hypermodule. From ([8]), recall that a
subhypergroup N of a hypergroup (M,+) is called closed on the left (on the right), if for all
x, y ∈ N and m ∈ M , x ∈ m + y (x ∈ y + m) implies that m ∈ N . A subhypergroup N is
said to be closed, if it is closed on the left and right. Moreover, a subhypergroup N of (M,+)

is closed if and only if N + (M \ N) = M \ N . Now, let (M,+, ·) be a hypermodule over R
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and N be a subhypermodule of M . We say that N is a closed subhypermodule if N is a closed
subhypergroup of (M,+). For example:

(1) Set R = {0, 1, 2, 3} and consider the following hyperoperation and operation on R:

+ 0 1 2 3

0 {0} {1} {2} {3}

1 {1} {0, 1} {3} {2, 3}

2 {2} {3} {0} {1}

3 {3} {2, 3} {1} {0, 1}

and r · s =

 2, if r, s ∈ {2, 3}

0, else

Then (R,+, ·) is a Krasner hyperring ([3]). Moreover, if M = R, then (M,+, ·) is a Krasner
R-hypermodule. The subhypermodules {0}, K = {0, 1} and L = {0, 2} are closed in M , since

{0}+M \ {0} = {0}+ {1, 2, 3} = {1, 2, 3} = M \ {0}

K + (M \K) = {0, 1}+ {2, 3} = {2, 3} = M \K,

L+ (M \ L) = {0, 2}+ {1, 3} = {1, 3} = M \ L.

(2) Consider the hypermodule (M ′,+′, ·′) in Example 2.13. All proper subhypermodules of
M ′, which are M ′

1,M
′
2,M

′
3,M

′
4 and M ′

5, are closed in M ′.
(3) None of subhypermodules of the hypermodules (L,⊞,⊡) defined in Example 2.14 (L1 =

M1 ∪ {d}, L2 = M1, L3 = M2, L4 = N1 and L5 = N2), is not closed in L.
The intersection of two subhypermodules of a canonical/Krasner hypermodule is a subhy-

permodule, while it is not true in general hypermodules. Closed subhypermodules can help us
to provide one of the most fundamental conditions (intersection of two subhypermodules is a
subhypermodule) for studying similar results about general R-hypermodules.

Lemma 3.4. If N and K are closed subhypermodules of a general hypermodule (M,+, ·) and
N ∩K 6= ∅, then N ∩K is a closed subhypermodule of M .

Proof. Let x, y ∈ N ∩ K and m ∈ M be such that x ∈ m + y. Since x, y ∈ N and N is
closed, it follows that m ∈ N , and similarly m ∈ K. Thus, m ∈ N ∩ K. Then N ∩ K is
closed on the left and similarly it is closed on the right. So, closed property is valid for N ∩K.
Clearly, (N ∩K,+) satisfies the associativity law. Now, let t ∈ N ∩K. If x ∈ N ∩K, then
x ∈ K = t+K. So, there exists k ∈ K such that x ∈ t+ k. By the closed property for N ∩K,
we have k ∈ N ∩ K. Then, x ∈ t + k ⊆ t + (N ∩ K). Hence, N ∩ K ⊆ t + (N ∩ K). It is
not difficult to see that t+ (N ∩K) ⊆ N ∩K. Therefore, the reproduction axiom is valid for
(N ∩K,+) and so N ∩K is a subhypermodule of M .
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Definition 3.5. ([14]) Let M be a Krasner R-hypermodule. A subhypermodule N is a direct
summand of M , if there is a subhypermodule L of M such that N ∩L = {0} and N +L = M .

Note that if M is a general R-hypermodule with element 0 such that the intersection of
each two subhypermodules is a subhypermodule, we can state that N is a direct summand of
M if N +K = M = K +N and N ∩K = {0}. For instance, choose N = H0 in Example 2.12.
Then H2 and H3 are direct summands of M .

Definition 3.6. (1) Let M be an R-hypermodule. We call M lifting if for all proper subhy-
permodule K of M , there is a direct summand L of M such that L ≤ K and K/L is a small
subhypermodule of M/L.

(2) Let M be an R-hypermodule such that the intersection of each two subhypermodules of
M is a subhypermodule of M . We say M is amply supplemented if B + A = M = A+ B for
two proper subhypermodules A and B of M implies that B (A) contains a subhypermodule A′

(B′) such that A′+A = M = A+A′ (B′+B = M = B+B′) and A∩A′ � A′ (B∩B′ � B′).
(3) Let M be an R-hypermodule such that the intersection of each two subhypermodules

of M is a subhypermodule of M . We say M is supplemented if for all proper subhypermodule
N of M there is a proper subhypermodule K of M , such that K + N = M = N + K and
N ∩K � K.

Example 3.7. (1) Consider the Krasner R-hypermodule (M = R = {0, 1, 2, 3},+, ·) defined
by

+ 0 1 2 3

0 {0} {1} {2} {3}

1 {1} {0, 1} {3} {2, 3}

2 {2} {3} {0} {1}

3 {3} {2, 3} {1} {0, 1}

and r · s =

 2, if r, s ∈ {2, 3}

0, else

We can see that the only proper subhypermodules of M are {0}, K = {0, 1} and L = {0, 2}.
Note that K +L = M . Hence, {0} is the only small subhypermodule of M . It follows that M

is lifting, since all subhypermodules of M are direct summands of M and {0}/{0} � M/{0},
K/K � M/K, L/L � M/L. Note also that M is amply supplemented.
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(2) Consider (R,+, ·) defined in (1). Let M2(R) =
{a b

0 0

 | a, b ∈ R
}

. Define the

following hyperoperation and operation on M2(R), for all a, b, c, d ∈ R:a b

0 0

⊕

c d

0 0

 =
{x y

0 0

 | x ∈ a+ c, y ∈ b+ d
}

a b

0 0

⊗

c d

0 0

 =

a · c a · d

0 0


Then M2(R) is a Krasner M2(R)-hypermodule. All proper subhypermodules of M2(R) are:

N1 = {

0 0

0 0

},

N2 = {

0 0

0 0

 ,

0 1

0 0

 ,

1 0

0 0

 ,

1 1

0 0

} and

N3 = {

0 0

0 0

 ,

0 2

0 0

 ,

2 0

0 0

 ,

2 2

0 0

}.

It is obvious that N1 � M2(R) and N2 ⊕ N3 = M2(R). Therefore, N1 is the only small
subhypermodule of M2(R). Similar to (1), we conclude that M2(R) is lifting.

Example 3.8. The general R-hypermodules M in Examples 2.10 and 2.11 are amply sup-
plemented. Note also that the general R-hypermodules M in Example 2.12(1,2) are amply
supplemented.

Now, we are ready to present an equivalent condition for a Krasner R-hypermodule to be
lifting.

Proposition 3.9. Let M be a Krasner R-hypermodule. Then M is lifting if and only if for
all subhypermodule N of M , there are subhypermodules M1 and M2 such that M = M1 +M2,
M1 ∩M2 = {0}, M1 ⊆ N and N ∩M2 � M2.

Proof. The proof is similar to the module case.

The following result describes subhypermodules of lifting hypermodules.

Corollary 3.10. Let M be a Krasner R-hypermodule. Then M is lifting if and only if all
subhypermodule N of M can be written as N = M1 +M2 with M1 ∩M2 = {0} where M1 is a
direct summand of M and M2 is small in M .
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4. Conclusion

We give non-trivial examples of small subhypermodules for all types of hypermodules and
study local, hollow and Rad(M) for hypermodules by them. Also, lifting hypermodules and
equivalent conditions for lifting hypermodules are presented. We conclude the paper by stating
this point that for a Krasner R-hypermodule the similar result to the module case do also
hold. But it remains open to present an equivalent condition for a general R-hypermodule to
be lifting.
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