Algebraic AS TA Carrows Republication AS TA Carrows Republication Associated Associated

Algebraic Structures and Their Applications

Algebraic Structures and Their Applications Vol. 8 No. 1 (2021) pp 147-161.

Research Paper

GENERALIZATION OF REDUCTION AND CLOSURE OF IDEALS

JAFAR A'ZAMI* AND MARYAM KHAJEPOUR

ABSTRACT. Throughout this paper, all rings are commutative with identity and all modules are unital. Let R be a ring and M be an R-module. Then M is called a multiplication module provided for every submodule N of M there exists an ideal I of R such that N = IM. Also M is said to be a comultiplication module if for every submodule N of M there exists an ideal I of R such that $N = (0 :_M I)$. In this paper, we introduce the notions of reduction and coreduction of submodules, integral dependence, integral codependence, integral closure and Δ -closure over multiplication and comultiplication modules.

1. Introduction

Throughout this paper, all rings are commutative with identity and all modules are unital. Let R be a ring and M be an R-module. Then M is called a multiplication module provided for every submodule N of M there exists an ideal I of R such that N = IM. Note that $I \subseteq (N:M)$ and hence $N = IM \subseteq (N:M)M \subseteq N$, so that N = (N:M)M. Moreover, a

DOI: 10.22034/as.2020.1957

MSC(2010): Primary: 13C05; Secondary: 13E15

Keywords: Integral closure, Integrally dependent, Multiplication modules, Reduction.

Received: 10 December 2019, Accepted: 10 November 2020.

*Corresponding author

© 2021 Yazd University.

submodule N of R-module M is said to be a multiplication submodule, if for each submodule K of $M, N \cap K = (K:N)N$. In this paper S(M) is the multiplicative semigroup of all finitely generated faithful multiplication submodule of M (See section 2 for details on the definition of the product of two submodules of M.). Let N be a submodule of an R-module M. Following [10], we call the intersection of all prime submodules of M containing N the M-radical of N, denoted by M-rad N or \sqrt{N} . In [10] it is shown that if N is a submodule of a finitely generated multiplication R-module M, then M-rad $N = \sqrt{(N:M)}M$. This result has been generalized to an arbitrary multiplication module by El-Bast and Smith [1]. Let N be a submodule of M, for each ideal I of R, the residual submodule of N by I is $(N:_M I) = \{x \in M : xI \subseteq N\}$. If M is a multiplication module, then by [3], $(N:_M I) = (N:IM)M$, for each ideal I of R. Also if M is finitely generated faithful multiplication, then for ideals I, I of I in I is I in I in

Reduction of ideals of local rings was first considered by D. G. Northcott and D. Rees in [12]. Suppose that I, J are ideals of R, I is a reduction of J, if $I \subseteq J$ and there exists $s \in \mathbb{N}$ such that $IJ^s = J^{s+1}$. Also $r \in R$ is integrally dependent on I if there exist $n \in \mathbb{N}$ and $c_1, c_2, ..., c_n \in R$ with $c_i \in I^i$, for i = 1, 2, ..., n such that $r^n + c_1r^{n-1} + ... + c_{n-1}r + c_n = 0$. In this paper we will define these concepts for submodules and we present a similar results as hold for ideals. For any ideal \mathfrak{b} of R, the radical of \mathfrak{b} , denoted by $\sqrt{\mathfrak{b}}$, is defined to be the set $\{x \in R : x^n \in \mathfrak{b} \text{ for some } n \in \mathbb{N}\}$. For any unexplained notation and terminology we refer the reader to [8], [9], and [12].

The concepts of integral closure of an ideal relative to a module and Δ -closure of an ideal were introduced in [13]. In section 3 we define the concept of Δ -closure of a submodule of a noetherian module and we present some results about this notion as in [14]. Let M be a noetherian R-module and Δ be a multiplicatively closed set of submodules of M. The maximum element of $\{(NK:_MK) \mid K \in \Delta\}$ is said to be Δ -closure of a submodule N of M. We show some results about the Δ -closure of a submodule of a multiplication module. For instance it is shown that if M is a faithful multiplication module and Δ is a multiplicatively closed set of submodules of M, such that each $N \in \Delta$ is not contained in a minimal prime submodule of M, then the integral closure of submodule N is equal to the Δ -closure of N. An R-module M is said to be a comultiplication module if for every submodule N of M there exists an ideal I of R such that $N = (0:_MI)$. Also M is a comultiplication module if and only if $N = (0:_M(0:_RN))$ for each submodule N of M (see [5]). In section 4 we introduce the concepts of coreduction of submodules and integral codependence. We give some results on coreduction over comultiplication modules.

2. REDUCTION AND CLOSURE OVER MULTIPLICATION MODULES

Definition 2.1. Let M be an R-module and N, K be submodules of M. The product of N and K is defined as NK = (N : M)(K : M)M. (see [4]). Note that if N = IM, K = JM for some ideals I, J of R, then NK = (IM)(JM) = (IM : M)(JM : M)M = IJM. Therefore, if M is multiplication, then I(NK) = (IN)K = N(IK) for each ideal I of R.

Definition 2.2. Let M be an R-module and N, K be submodules of M. We say that K is a reduction of N, if $K \subseteq N$ and there exists $s \in \mathbb{N}$ such that $KN^s = N^{s+1}$.

Definition 2.3. Let M be an R-module and N, K be submodules of M such that K is a reduction of N. The least integer s such that $KN^s = N^{s+1}$ is said to be the reduction number of N with respect to K and is denoted by $r_K(N)$.

Proposition 2.4. Let M be a multiplication R-module, N, K be submodules of M and I, J be ideals of R. Then:

- 1) If K is a reduction of N, then IK is a reduction of IN.
- 2) If I is a reduction of J, then IN is a reduction of JN.
- 3) If I is a reduction of J and K is a reduction of N, then IK is a reduction of JN.
- 4) If $K \subseteq N$ and (K : M) is a reduction of (N : M), then K is a reduction of N.
- 5) If M is finitely generated faithful and K is a reduction of N, then (K:M) is a reduction of (N:M).
- 6) If $N \in S(M)$ and K is a reduction of N, then N = K.

Proof. 1,2,3 and 4 are easy.

- 5. Since M is finitely generated faithful multiplication, it is cancellation by [1]. So the result is obtained.
- 6. Let N = IM, K = JM for some ideals I, J of R. Since $N \in S(M)$, for each $n \in \mathbb{N}$, $N^n \in S(M)$. Assume that $KN^s = N^{s+1}$, for some $s \in \mathbb{N}$, then $JN^s = JI^sM = I^{s+1}M = II^sM = IN^s$. Therefore by [11, theorem 6.1], J = I, and so K = JM = IM = N.

Proposition 2.5. Let M be an R-module and N, K, L be submodules of M. Then:

- 1) If K is a reduction of N, then for every $m \in \mathbb{N}$ and for each $j \geq r_K(N)$ we have $K^m N^j = N^{m+j}$
- 2) If M is multiplication and K is a reduction of N, then $\sqrt{K} = \sqrt{N}$.
- 3) If K is a reduction of N and N is a reduction of L, then K is a reduction of L.

Proof. 1. Suppose that K is a reduction of N and $s = r_K(N)$. Set I = (K : M) and J = (N : M). Then we have the following relations:

$$\begin{split} K^m N^j &= I^m J^j M = I^{m-1} J^{j-s} I J^s M = I^{m-1} J^{j-s} J^{s+1} M \\ &= I^{m-1} J^{j+1} M = \ldots = I J^{j+m-1} M = J^{j+m-s-1} I J^s M \\ &= J^{j+m-s-1} J^{s+1} M = J^{j+m} M = N^{m+j}. \end{split}$$

2. Let K = IM and N = JM, so by [1, theorem 2.12],

$$\sqrt{N} = \sqrt{J}M = \sqrt{J^s}M = \sqrt{N^s} = \sqrt{KN^{s-1}}$$

$$\sqrt{IM \cdot J^{s-1}M} = \sqrt{IJ^{s-1}M} \subseteq \sqrt{IM} = \sqrt{K}.$$

The other inclusion is clear.

3. Let $KN^s = N^{s+1}$ and $NL^t = L^{t+1}$, for some $s, t \in \mathbb{N}$. Therefore, by 1 we have the following:

$$KL^{ts+s} = K(L^{t+1})^s = K(NL^t)^s = KN^sL^{ts} = N^{s+1}L^{ts} = L^{ts+s+1}$$

Lemma 2.6. Let M be an R-module and K, N, L be submodules of M, such that K is a reduction of N and L. Then K is a reduction of N + L.

Proof. Let I=(K:M), J=(N:M) and l=(L:M). By assumption there exist natural numbers s,t, such that $KN^s=N^{s+1}$ and $KL^t=L^{t+1}$. Consequently we have the following relations:

$$\begin{split} K(N+L)^{t+s} &= I(J+l)^{t+s}M = I\sum_{i=0}^{t+s} J^i l^{t+s-i}M \\ &= \sum_{i=0}^s J^i l^{t+s-i}IM + \sum_{i=s}^{t+s} J^i l^{t+s-i}IM \\ &= \sum_{i=0}^s J^i l^{t+s-i+1}M + \sum_{i=s}^{t+s} l^{t+s-i}J^{i+1}M \\ &= \sum_{i=0}^{t+s+1} J^i l^{t+s+1-i}M = (J+l)^{t+s+1}M = (N+L)^{t+s+1}. \end{split}$$

Definition 2.7. Let M be an R-module and K be a submodule of M. If φ is the set of all submodules of M such that K is a reduction of them, then by Lemma 2.6, φ has a unique maximal element, that we say K^* . Indeed $K^* = \sum_{k_i \in \varphi} K_i$.

Proposition 2.8. Let (R, \mathfrak{m}) be a local ring, M be a faithful multiplication R-module and N, K be submodules of M such that $K \subseteq N$. Then K is a reduction of N, if and only if K + NM' is a reduction of N, where $M' = \mathfrak{m} M$.

Proof. We know that $M' = \mathfrak{m} M$ is the only maximal submodule of M, also by [1, 2.8, 3.1], M is cyclic and finitely generated cancellation R-module. First we assume that K + NM' is a reduction of N. Then there exists $s \in \mathbb{N}$, such that $(K + NM')N^s = N^{s+1}$. Set K = IM and N = JM. Hence we have the following:

$$(IM + J \mathfrak{m} M)J^sM = J^{s+1}M$$

$$IJ^sM + J^{s+1} \mathfrak{m} M = J^{s+1}M$$

$$IJ^s + J^{s+1} \mathfrak{m} = J^{s+1}.$$

Now from [8, lemma 18.1.8], we deduce that $IJ^s = J^{s+1}$.

Consequently, $KN^s = IJ^sM = J^{s+1}M = N^{s+1}$. Now let $KN^s = N^{s+1}$, for some $s \in \mathbb{N}$. So we have the following:

$$(K + NM')N^s = KN^s + N^{s+1}M' = N^{s+1} + N^{s+1}M' = N^{s+1}.$$

Definition 2.9. Let M be an R-module and N be a submodule of M. An element $x \in R$ is said to be integrally dependent on N, if there exists $n \in \mathbb{N}$ such that $x^n M \subseteq \sum_{i=1}^n x^{n-i} N^i$.

Theorem 2.10. Let M be a multiplication R-module and N = IM be a submodule of M. An element x of R is integrally dependent on N, if and only if N is a reduction of K = N + xM.

Proof. Let $x \in R$ be integrally dependent on N and so $x^n M \subseteq \sum_{i=1}^n x^{n-i} N^i$ for some $n \in \mathbb{N}$. We claim that $NK^{n-1} = K^n$, because

$$NK^{n-1} = I(I + Rx)^{n-1}M \subseteq (I + Rx)^n M = K^n$$

and also

$$K^{n} = (I + Rx)^{n} M = \sum_{i=0}^{n} I^{i} (Rx)^{n-i} M = (Rx)^{n} M + I(Rx)^{n-1} M + \dots + I^{n} M$$

$$= I(Rx^{n-1} M + I^{1} Rx^{n-2} M + I^{2} Rx^{n-3} + \dots + I^{n-1} M) + (Rx)^{n} M$$

$$\subseteq I(I + Rx)^{n-1} M + \sum_{i=1}^{n} x^{n-i} N^{i}$$

$$= I(I + Rx)^{n-1} M + I(Rx^{n-1} + IRx^{n-2} + \dots + I^{n-1}) M$$

$$= I(I + Rx)^{n-1} M + I(I + Rx)^{n-1} M$$

$$= I(I + Rx)^{n-1} M = NK^{n-1}.$$

For the converse, suppose that N = IM be a reduction of N + xM, so there exists a natural number n such that $I(I + Rx)^n M = (I + Rx)^{n+1} M$. So $I(\sum_{i=0}^n I^i x^{n-i}) M = (\sum_{i=0}^{n+1} I^i x^{n+1-i}) M$. Therefore, $(\sum_{i=0}^n I^{i+1} x^{n-i}) M = (\sum_{i=0}^{n+1} I^i x^{n+1-i}) M$, and it means $x^{n+1} M \subseteq (\sum_{i=1}^{n+1} I^i x^{n+1-i}) M$. \square

Theorem 2.11. Let M be a multiplication R-module and N = IM, K = JM be submodules of M such that $N \subseteq K$. If each element of J is integrally dependent on N, then N is a reduction of K

Proof. Suppose that each element of J is integrally dependent on N. Then by 2.10, for every $x \in J$, the R-module N is a reduction of (I + Rx)M. So there exists a number $n_x \in \mathbb{N}$, such that $I(I + Rx)^{n_x}M = (I + Rx)^{n_x+1}M$. Set $n = \sum_{x \in J} n_x$ where x is a generator of J. Hence $I(I + J)^n M = (I + J)^{n+1}M$ and so $NK^n = K^{n+1}$. \square

Corollary 2.12. Let M be a finitely generated faithful multiplication R-module, N=IM be a submodule of M and $J=\{x\in R\colon x \text{ is integrally dependent on } N\}$. Set $\bar{N}=JM$, then $\bar{I}M=\bar{N}\subseteq N^*$, where $\bar{I}=\{x\in R\colon x \text{ is integrally dependent on } I\}$.

Proof. It is clear from 2.11, that $\bar{N} = JM \subseteq N^*$.

Assume that $x \in \bar{I}$, so there exist $c_i \in I^i$ for i = 0, 1, ..., n such that $\sum_{i=0}^n c_i x^{n-i} = 0$, then $x^n \in \sum_{i=1}^n x^{n-i} I^i$ and so $x^n M \subseteq \sum_{i=1}^n x^{n-i} I^i M = \sum_{i=1}^n x^{n-i} N^i$. Therefore, $x \in J$. For the reverse inclusion suppose that $x \in J$ so there exists $n \in \mathbb{N}$ such that $x^n M \subseteq \sum_{i=1}^n x^{n-i} N^i = \sum_{i=1}^n x^{n-i} I^i M$, by [1], M is cancellation and so $x^n \in \sum_{i=1}^n x^{n-i} I^i$. Therefore, there exist $c_i \in I^i$ for i = 1, ..., n such that $x^n = \sum_{i=1}^n c_i x^{n-i}$, hence $\sum_{i=0}^n c_i x^{n-i} = 0$, so $x \in \bar{I}$. We show that $\bar{I} = J$ and so $\bar{N} = JM = \bar{I}M$. \Box

3. Δ -closure of a submodule of multiplication modules

In this section M is a noetherian R-module. If M is a multiplication R-module and N is a submodule of M, then by [3], for each ideal I of R, $(N:_MI) = (N:IM)M$. Moreover, for each submodule K = JM of M, by considering the definition of product of submodules $(N:_MK) = (N:K)M$. Since $(N:_MK) = (N:_MJM) = (N:_MJ) = (N:_MJ)M = (N:_MM)M$.

Definition 3.1. Let M be a noetherian R-module, and Δ be a multiplicatively closed set of submodules of M. Then the set $\{(NK:_MK) \mid K \in \Delta\}$ has a maximum element. Since $(NK:_MK) \subseteq (NLK:_MLK)$ and $(NL:_ML) \subseteq (NLK:_MLK)$, it follows that the maximum element of this set is unique. We show this maximum element with N_{Δ} and we call it the Δ -closure of N.

Lemma 3.2. Let M be an R-module, N, K be submodules of M and Δ be a multiplicatively closed set of submodules of M. Then:

- 1) $N \subseteq N_{\Delta}$.
- 2) If $N \subseteq K$, then $N_{\Delta} \subseteq K_{\Delta}$.
- 3) $N_{\Delta}K_{\Delta} \subseteq (NK)_{\Delta}$.
- 4) $IN_{\Delta} \subseteq (IN)_{\Delta}$, for each ideal I of R.

Proof. Proofs of 1 and 2 are easy.

- 3. Let $m = xy \in N_{\Delta}K_{\Delta}$. Then there exist submodules L_1 and L_2 of M such that $xL_1 \subseteq NL_1$ and $yL_2 \subseteq KL_2$. Consequently $xyL_1L_2 \subseteq KNL_1L_2$ and so $xy \in (KNL_1L_2 :_M L_1L_2) \subseteq (KN)_{\Delta}$.
- 4. $IN_{\Delta} = I(NK :_M K)$, for suitable submodule K of M. So $IN_{\Delta} \subseteq (INK :_M K) \subseteq (IN)_{\Delta}$.

Lemma 3.3. Suppose that M is an R-module, N is a submodule of M and Δ is a multiplicatively closed set of submodules of M. Then for each $K \in \Delta$, $N_{\Delta} = (N_{\Delta}K :_M K)$.

Proof. Obviously $N_{\Delta} \subseteq (N_{\Delta}K :_M K)$. Let $m \in (N_{\Delta}K :_M K)$ and $N_{\Delta} = (NL :_M L)$, for suitable $L \in \Delta$. So $mK \subseteq N_{\Delta}K = (NL :_M L)K \subseteq (NLK :_M L)$. Therefore, $m \in ((NLK :_M L) :_M K) = (NLK :_M LK) \subseteq N_{\Delta}$. \square

Proposition 3.4. Let M be an R-module, Δ be a multiplicatively closed set of submodules of M and $\{N_i\}_{i\in I}$ be a family of submodules of M. Then:

- $1)(\cap_{i\in I}N_i)_{\Delta}\subseteq\cap_{i\in I}(N_i)_{\Delta}.$
- $2)(N_{\Delta})_{\Delta}=N_{\Delta}.$
- $3)\sum_{i\in I}(N_i)_{\Delta}\subseteq (\sum_{i\in I}N_i)_{\Delta}.$

Proof. 1. For each $i \in I, \cap_{i \in I} N_i \subseteq N_i$, so for each $i \in I, (\cap_{i \in I} N_i)_{\Delta} \subseteq (N_i)_{\Delta}$ and hence $(\cap_{i \in I} N_i)_{\Delta} \subseteq \cap_{i \in I} (N_i)_{\Delta}$.

- 2. It is clear by 3.3.
- 3. $N_i \subseteq \sum_{i \in I} N_i$, for each $i \in I$, so $\sum_{i \in I} (N_i)_{\Delta} \subseteq (\sum_{i \in I} N_i)_{\Delta}$.

Corollary 3.5. Let M be an R-module, N be a submodule of M and Δ be a multiplicatively closed subset of submodules of M. Then:

- $1)((N:I)M)_{\Delta}\subseteq (N_{\Delta}:_{M}I), for each ideal I of R.$
- 2) $(IN)_{\Delta} = (IN_{\Delta})_{\Delta}$, for each ideal I of R.
- 3) $(N_{\Delta}:_M K_{\Delta}) = (N_{\Delta}:_M K)$, for each submodule $K \in \Delta$.

Proof. 1. Since $I(N:I)M \subseteq N$, so by 3.2 we have

$$I((N:I)M)_{\Delta} \subseteq (I(N:I)M)_{\Delta} \subseteq N_{\Delta}$$

thus $((N:I)M)_{\Delta} \subseteq (N_{\Delta}:_M I)$.

2. $IN \subseteq IN_{\Delta} \subseteq (IN)_{\Delta}$, so by 3.2 and 3.4

$$(IN)_{\Delta} \subseteq (IN_{\Delta})_{\Delta} \subseteq ((IN)_{\Delta})_{\Delta} = (IN)_{\Delta}.$$

3.It is clear that $(N_{\Delta} :_M K_{\Delta}) \subseteq (N_{\Delta} :_M K)$, since by 3.2, $K \subseteq K_{\Delta}$. Moreover, $K(N_{\Delta} :_M K) \subseteq N_{\Delta}$, so by 3.2 and 3.3

$$K_{\Delta}(N_{\Delta}:_{M}K) \subseteq (K(N_{\Delta}:_{M}K))_{\Delta} \subseteq (N_{\Delta}K:_{M}K)_{\Delta} = (N_{\Delta})_{\Delta} = N_{\Delta}$$

hence $(N_{\Delta} :_M K) \subseteq (N_{\Delta} :_M K_{\Delta})$.

Lemma 3.6. Suppose that M is an R-module, N is a submodule of M and Δ is a multiplicatively closed set of submodules of M. Then for each $K \in \Delta$, $N_{\Delta} = (N_{\Delta}K :_M K) = ((NK)_{\Delta} :_M K)$.

Proof. $N_{\Delta} = (N_{\Delta}K :_M K) \subseteq (N_{\Delta}K_{\Delta} :_M K) \subseteq ((NK)_{\Delta} :_M K)$. Now let $m \in ((NK)_{\Delta} :_M K)$, then $mK \subseteq (NK)_{\Delta} = (NKL :_M L)$ for suitable submodule L of M. Hence $mKL \subseteq NKL$ and so $m \in (NKL :_M KL) \subseteq N_{\Delta}$. \square

Theorem 3.7. Let M be a faithful multiplication module and N = IM be a submodule of M. If Δ is a multiplicatively closed set of submodules of M. Then $\bar{N} \subseteq N_{\Delta}$.

Proof. Let $x \in \bar{N} = \bar{I}M$. Then x = im for some $i \in \bar{I}$ and N is a reduction of (I + Ri)M, by 2.10 and 2.12. For some $n \in \mathbb{N}$, we have

$$I(I+Ri)^n M = (I+Ri)^{n+1} M = (I+Ri)^n (I+Ri) M = (I+Ri)^n I M + (I+Ri)^n i M.$$

So $iM(I+Ri)^n \subseteq (I+Ri)^n IM$, it follows that $i \in ((I+Ri)^n IM :_R (I+Ri)^n M)$. Set $(I+Ri)^n M = K$. Therefore, $i \in (KN :_R K)$ and so $iK \subseteq KN$ and $iKM \subseteq KNM = KN$. Consequently $im \in (KN :_M K) \subseteq N_{\Delta}$. \square

Theorem 3.8. Let R be a noetherian ring, M be a faithful multiplication R-module, Δ be a multiplicatively closed set of submodules of M, and Λ be the set of all submodules of M that are not contained in any minimal prime submodules. If $\Delta \subseteq \Lambda$, then $\bar{N} = N_{\Delta}$ for each submodule N of M.

Proof. Let N = IM for some ideal I of R, Λ_1 be the set of all ideals of R that are not contained in any minimal prime ideal, and $\Delta_1 = \{J \leq R; JM \in \Delta\}$. By [1, 2.11, 3.1], $\Delta_1 \subseteq \Lambda_1$, so by [13, 3.2], for each ideal I of $R, I_{\Delta_1} \subseteq \overline{I}$. We claim that $N_{\Delta} = I_{\Delta_1}M$ and therefore, by 2.12

$$N_{\Delta} = I_{\Delta_1} M \subseteq \bar{I} M = \bar{N}.$$

Assume that $m \in I_{\Delta_1}M$, so $m = im_1$ and $i \in I_{\Delta_1} = (IJ:J)$ for some ideal J of R. Thus $iJM \subseteq IJM$, so $m = im_1 \in (IJM:JM)M \subseteq (IJM:_MJM) = (NK:_MK) \subseteq N_{\Delta}$, where $K = JM \in \Delta$. On the other hand since M is finitely generated faithful multiplication, we have

$$N_{\Delta} = (NK :_M K) = (NK : K)M = (IJM : JM)M = (IJ : J)M \subseteq I_{\Delta_1}M$$

Theorem 3.9. With the conditions of Theorem 3.8, if $L, K \in \Delta$ and $\overline{NK} = \overline{LK}$, then $\overline{N} = \overline{L}$.

Proof. Let M be a faithful multiplication R-module and N, L, K be submodules of M such that $\overline{NK} = \overline{LK}$. Then $(NK)_{\Delta} = (LK)_{\Delta}$. Suppose that $m \in \overline{N} = \overline{I}M$. Hence m = xm' for some $x \in \overline{I}$. By 2.10 and 2.12 N is a reduction of (I + Rx)M and there exists $n \in \mathbb{N}$, such that $I(I + Rx)^n M = (I + Rx)^{n+1}M$. Now as we show in 3.7 $x(I + Rx)^n M \subseteq I(I + Rx)^n M$ and so for all $K \in \Delta$,

$$xK(I+Rx)^nM \subseteq K(I+Rx)^nIM.$$

Therefore,

$$x \in (NK(I+Rx)^n : K(I+Rx)^n M) \subset ((NK)_{\Delta}(I+Rx)^n M :_R K(I+Rx)^n M)$$

= $((LK)_{\Delta}(I+Rx)^n M :_R K(I+Rx)^n M).$

Now by 3.6

$$m = xm' \in ((LK)_{\Delta}(I + Rx)^n M :_M K(I + Rx)^n M)$$
$$= (L_{\Delta}K(I + Rx)^n M :_M K(I + Rx)^n M)$$
$$= L_{\Delta} = \bar{L}.$$

Consequently $\bar{N} \subseteq \bar{L}$. In the similar way we can prove that $\bar{L} \subseteq \bar{N}$.

Theorem 3.10. Let Δ , N and K be as in theorem 3.8. The following are equivalent:

- 1) NL = KL for some $L \in \Delta$;
- 2) $\overline{NT} = \overline{KT}$ for every $T \in \Delta$;
- 3) $\bar{N} = \bar{K}$.

Proof. $1 \to 2$) Suppose that $m \in \overline{NT} = \overline{IJ}M$, where N = IM and T = JM. Then m = xm', where $x \in \overline{IJ}$. Hence NT is a reduction of (IJ + Rx)M and so there exists $s \in \mathbb{N}$, such that

$$x(IJ + Rx)^s M \subseteq IJ(IJ + Rx)^s M.$$

Let L = lM. Then $xl(IJ + Rx)^sM \subseteq IJl(IJ + Rx)^sM$ and we have the following relations:

$$xL(IJ + Rx)^sM \subset TNL(IJ + Rx)^sM = TKL(IJ + Rx)^sM.$$

This shows that $x \in (TKL(IJ + Rx)^sM :_R L(IJ + Rx)^sM)$ and $m \in (TKL(IJ + Rx)^sM :_M L(IJ + Rx)^sM) \subseteq (TK)_{\Delta} = \overline{TK}$. Similarly, we prove that $\overline{TK} \subseteq \overline{NT}$ $2 \to 3$) By 3.9.

3 → 1) $\bar{N} = N_{\Delta} = (NT_1 :_M T_1) = K_{\Delta} = (KT_2 :_M T_2)$ for some $T_1, T_2 \in \Delta$. Set $L = T_1T_2$. Clearly $L \in \Delta$ and $NL = (NL :_M L)L = (KL :_M L)L = KL$ because $(NT_1T_2 :_M T_1T_2) = (NL :_M L) \subseteq N_{\Delta} = \bar{N} = \bar{K}$ and $N_{\Delta} = (NT_1 :_M T_1) \subseteq (NT_1T_2 :_M T_1T_2)$. Consequently $(NL :_M L) = N_{\Delta} = K_{\Delta} = (KL :_M L)$. □

4. Coreduction over comultiplication modules

Definition 4.1. Let M be an R-module and N, K be submodules of M. The coproduct of N and K is defined in [4] as $C(NK) = (0:_M Ann(N)Ann(K))$. It is easy to see that if M is comultiplication and $N = (0:_M I), K = (0:_M J)$, then $C(NK) = (0:_M IJ)$.

Definition 4.2. Let M be an R-module and N, K be submodules of M such that $N \subseteq K$. We say that K is a coreduction of N, if there exists a natural number s such that $(0:_M Ann(K)Ann^s(N)) = (0:_M Ann^{s+1}(N))$. We denote it by $C(KN^s) = C(N^{s+1})$. The least integer s such that $C(KN^s) = C(N^{s+1})$ is said to be the coreduction number of N with respect to K and is denoted by $r_K(N)$.

Lemma 4.3. Let M be an R-module and $N \subseteq K$ be submodules of M such that K is a coreduction of N. Then for any $m \in \mathbb{N}$ and any $j \geq r_k(N)$; $C(K^mN^j) = C(N^{m+j})$.

Proof. Let I = Ann(K), J = Ann(N) and $r_k(N) = s$. Then we have the following:

$$\begin{split} C(K^mN^j) &= (0:_M I^mJ^j) = (0:_M IJ^sI^{m-1}J^{j-s}) \\ &= \left((0:_M IJ^s):_M I^{m-1}J^{j-s} \right) \\ &= \left((0:_M J^{s+1}):_M I^{m-1}J^{j-s} \right) \\ &= (0:_M I^{m-1}J^{j+1}) = \ldots = (0:_M IJ^{j+m-1}) \\ &= ((0:_M IJ^s):_M J^{j+m-1-s}) = (0:_M IJ^{j+m-1-s}) \\ &= (0:_M J^{j+m}) = C(N^{m+j}). \end{split}$$

Lemma 4.4. Let M be an R-module and $L \subseteq N \subseteq K$ be submodules of M. If K is a coreduction of N and N is a coreduction of L then K is a coreduction of L.

Proof. Easy. \square

Lemma 4.5. Let M be an R-module and a submodule K of M be a coreduction of submodules N and L of M. Then K is a coreduction of $N \cap L$.

Proof. Let $K = (0:_M I), N = (0:_M J), L = (0:_M l)$. By assumption $N \subseteq K$ and $L \subseteq K$ and so $N \cap L \subseteq K$. Also we have $C(KL^t) = C(L^{t+1}), C(KN^s) = C(N^{s+1})$, for suitable $s, t \in \mathbb{N}$.

So we have:

$$\begin{split} C(K(N\cap L)^{t+s}) &= C((0:_MI)\big((0:_MJ)\cap(0:_Ml)\big)^{t+s}) \\ &= C((0:_MI)\big(0:_M(J+l)^{t+s}\big)) \\ &= \big(0:_MI(J+l)^{t+s}\big) \\ &= \big(0:_M\sum_{i=0}^{t+s}IJ^il^{t+s-i}\big) \\ &= \left(0:_M\sum_{i=0}^{t+s+1}J^il^{t+s+1-i}\right) \\ &= \bigcap_{i=0}^{t+s+1}(0:_MJ^il^{t+s+1-i}) = C((N\cap L)^{t+s+1}). \end{split}$$

Definition 4.6. Let K be a submodule of R-module M and φ be the set of all submodules of M such that K is a correduction of them. By the previous lemma φ has a unique minimum element. We denote it by \underline{K} . Indeed $\underline{K} = \bigcap_{K_i \in \varphi} K_i$.

Definition 4.7. Let M be an R-module and N be a submodule of M. An element $x \in R$ is said to be integrally codependent on N, if there exists $n \in \mathbb{N}$, such that $\bigcap_{i=1}^{n} (C(N^i) :_M x^{n-i}) \subseteq (0 :_M x^n)$.

Theorem 4.8. Let M be a comultiplication R-module and $N = (0:_M I)$ be a submodule of M. Then an element $x \in R$ is integrally codependent on N, if and only if N is a coreduction of $K = (0:_M I + Rx)$.

Proof. Let x be integrally codependent on N. Then there exists $n \in \mathbb{N}$ such that $\bigcap_{i=1}^{n} (C(N^i))_{M} : x^{n-i} \subseteq (0:_M x^n)$. We prove that $C(NK^n) = C(K^{n+1})$.

$$C(K^{n+1}) = (0:_M (I + Rx)^{n+1}) \subseteq (0:_M I(I + Rx)^n) = C(NK^n).$$

Now suppose that $m \in C(NK^n) = (0:_M I(I+Rx)^n)$. Then $mI(I+Rx)^n = 0$ and this follows that:

$$(4.1) mI^{n+1} + mI^nRx + \dots + mIRx^n = 0.$$

On the other hand:

$$m \in (0 :_{M} I(I + Rx)^{n}) = ((0 :_{M} I) :_{M} (I + Rx)^{n})$$

$$= (N :_{M} (I + Rx)^{n})$$

$$= (N :_{M} \sum_{i=0}^{n} I^{i}(Rx)^{n-i})$$

$$= \bigcap_{i=0}^{n} (N :_{M} I^{i}(Rx)^{n-i})$$

$$= \bigcap_{i=0}^{n} ((N :_{M} I^{i}) :_{M} (Rx)^{n-i})$$

$$= \bigcap_{i=0}^{n} (C(N^{i+1}) :_{M} (Rx)^{n-i})$$

$$\subseteq (0 :_{M} x^{n})$$

$$\subseteq (0 :_{M} x^{n+1}).$$

Consequently

$$mx^{n+1} = 0.$$

Now from (4.1), (4.2), we conclude that

$$mI^{n+1} + mI^{n}(Rx) + \dots + mI(Rx)^{n} + mx^{n+1} = 0.$$

Hence $m \in (0:_M (I + Rx)^{n+1})) = C(K^{n+1}).$

Conversely, let N be a correduction of K and $C(NK^{n-1}) = C(K^n)$ for some $n \in \mathbb{N}$. Therefore,

$$(0:_M I(I+Rx)^{n-1}) = (0:_M (I+Rx)^n).$$

We claim that

$$\bigcap_{i=1}^{n} (C(N^{i}):_{M} x^{n-i}) \subseteq (0:_{M} x^{n}).$$

Let $m \in \bigcap_{i=1}^{n} (C(N^i))_{M} x^{n-i}$. Then for each $i = 1, \dots, n$,

$$m \in (C(N^i):_M x^{n-i}) = ((0:_M I^i):_M x^{n-i})) = (0:_M I^i x^{n-i})$$

and so $mI^{i}(Rx)^{n-i}=0$ for each $i=1,\ldots,n$. Consequently

(4.3)
$$mI^{n} + mI^{n-1}Rx + \dots + mI(Rx)^{n-1} = 0.$$

Hence $m \in (0:_M I(I+Rx)^{n-1}) = (0:_M (I+Rx)^n)$ and this follows that

(4.4)
$$mI^{n} + mI^{n-1}Rx + \dots + mI(Rx)^{n-1} + m(Rx)^{n} = 0.$$

Now from (4.3) and (4.4), we conclude that $mx^n = 0$ and so $m \in (0:_M x^n)$. \square

Corollary 4.9. Let R be a noetherian ring, M be a comultiplication R-module and $K \subseteq N$ be submodules of M. Then:

- 1) If each element of Ann(K) is integrally codependent on N, then N is a coreduction of K.
- 2) If $J = \{x \in R: x \text{ is integrally codependent on } N\}$, then $\underline{N} \subseteq (0:_M J)$

Proof. 1) Let each element of Ann(K) be integrally codependent on N. Then $N=(0:_MI)$ is a coreduction of $(0:_MI+Rx)$ for every $x\in Ann(K)$ and so N is a coreduction of $(0:_MI+Ann(K))=(0:_MI)\cap (0:_MAnn(K))=N\cap K=K$.

2) It is clear from 1 and 4.6. \square

5. Acknowledgments

The authors are deeply grateful to the referee for a very careful reading of the manuscript and many valuable suggestions.

References

- [1] Z. Abd El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra., 16 No. 4 (1988) 755-779.
- [2] M. M. Ali, Idempotent and nilpotent submodules of multiplication modules, for associated primes of local cohomology modules, Comm. Algebra., 36 No. 12 (2008) 4620-4642.
- [3] M. M. Ali, Residual submodules of multiplication modules, Beitr. Algebra Geom., 46 No. 2 (2005) 405-422.
- [4] H. Ansari-Toroghy and F. Farshadifar, Product and dual product of submodules, Far. East. J. Math. Sci., 25 No. 3 (2007) 447-455.
- [5] H. Ansari-Toroghy and F. Farshadifar, The dual notion of multiplication modules, Taiwanese J. Math., 11
 No. 4 (2007) 1189-1201.
- [6] R. Ameri, On the prime submodules of multiplication modules, Int. J. Math. Math. Sci., No. 27 (2003) 1715-1724.
- [7] A. Barnard, Multiplication modules, Manuscripta Math., 71 No. 1 (1981) 174-178.
- [8] M.P. Brodmann and R.Y. Sharp, Local cohomology; an algebraic introduction with geometric applications, Cambridge University Press, Cambridge, 1998.
- [9] H. Matsumura, Commutative ring theory, Cambridge University press, Cambridge, UK, 1986.
- [10] R. L. McCasland and M. E. Moore, On radicals of submodules of finitely generated modules, Canad. Math. Bull., 29 (1986) 37-39.
- [11] A. G. Naoum and A.S. Mijbass, Weak cancellation modules, Kyungpook Math. J., 37 (1997) 73-82.
- [12] D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Cambridge Philos. Soc., 50 (1954) 145-158.
- [13] L. J. Ratliff, Jr., Δ closure of ideals and rings, Trans. Amer. Math. Soc., 313 (1989) 221-247.

[14] Y. Tiras, Integral closure of an ideal relative to a module and Δ - closure, Trans. Amer. Math. Soc., 21 (1997) 381-386.

J. Azami

Department of Mathematics, Faculty of Science University of mohaghegh Ardabili, Ardabil, Iran jafar.azami@gmail.com

M. Khajepour

Department of Mathematics, Faculty of Science University of mohaghegh Ardabili, Ardabil, Iran maryamkhajepour@uma.ac.ir