Research Paper

GENERALIZATION OF REDUCTION AND CLOSURE OF IDEALS

JAFAR A'ZAMI* AND MARYAM KHAJEPOUR

Abstract

Throughout this paper, all rings are commutative with identity and all modules are unital. Let R be a ring and M be an R-module. Then M is called a multiplication module provided for every submodule N of M there exists an ideal I of R such that $N=I M$. Also M is said to be a comultiplication module if for every submodule N of M there exists an ideal I of R such that $N=\left(0:_{M} I\right)$. In this paper, we introduce the notions of reduction and coreduction of submodules, integral dependence, integral codependence, integral closure and Δ-closure over multiplication and comultiplication modules.

1. Introduction

Throughout this paper, all rings are commutative with identity and all modules are unital. Let R be a ring and M be an R-module. Then M is called a multiplication module provided for every submodule N of M there exists an ideal I of R such that $N=I M$. Note that $I \subseteq(N: M)$ and hence $N=I M \subseteq(N: M) M \subseteq N$, so that $N=(N: M) M$. Moreover, a

[^0]MSC(2010): Primary: 13C05; Secondary: 13E15
Keywords: Integral closure, Integrally dependent, Multiplication modules, Reduction.
Received: 10 December 2019, Accepted: 10 November 2020.
*Corresponding author
submodule N of R-module M is said to be a multiplication submodule, if for each submodule K of $M, N \cap K=(K: N) N$. In this paper $S(M)$ is the multiplicative semigroup of all finitely generated faithful multiplication submodule of M (See section 2 for details on the definition of the product of two submodules of M.). Let N be a submodule of an R-module M. Following [10], we call the intersection of all prime submodules of M containing N the M-radical of N, denoted by $M-\operatorname{rad} N$ or \sqrt{N}. In 10] it is shown that if N is a submodule of a finitely generated multiplication R-module M, then $M-\operatorname{rad} N=\sqrt{(N: M)} M$. This result has been generalized to an arbitrary multiplication module by El-Bast and Smith $[1]$. Let N be a submodule of M, for each ideal I of R, the residual submodule of N by I is $\left(N:_{M} I\right)=\{x \in M: x I \subseteq N\}$. If M is a multiplication module, then by [3], $\left(N:_{M} I\right)=(N: I M) M$, for each ideal I of R. Also if M is finitely generated faithful multiplication, then for ideals I, J of $R,(I M: J M)=(I: J)$. Since if $r \in(I M: J M)$, then $r J M \subseteq I M$ and by [1], M is cancellation, so $r J \subseteq I$ hence $r \in(I: J)$. The other inclusion is clear.
Reduction of ideals of local rings was first considered by D. G. Northcott and D. Rees in 12. Suppose that I, J are ideals of R, I is a reduction of J, if $I \subseteq J$ and there exists $s \in \mathbb{N}$ such that $I J^{s}=J^{s+1}$. Also $r \in R$ is integrally dependent on I if there exist $n \in \mathbb{N}$ and $c_{1}, c_{2}, \ldots, c_{n} \in R$ with $c_{i} \in I^{i}$, for $i=1,2, \ldots, n$ such that $r^{n}+c_{1} r^{n-1}+\ldots+c_{n-1} r+c_{n}=0$. In this paper we will define these concepts for submodules and we present a similar results as hold for ideals. For any ideal \mathfrak{b} of R, the radical of \mathfrak{b}, denoted by $\sqrt{\mathfrak{b}}$, is defined to be the set $\left\{x \in R: x^{n} \in \mathfrak{b}\right.$ for some $n \in \mathbb{N}\}$. For any unexplained notation and terminology we refer the reader to [8], [9], and [12].
The concepts of integral closure of an ideal relative to a module and Δ-closure of an ideal were introduced in 13$]$. In section 3 we define the concept of Δ-closure of a submodule of a noetherian module and we present some results about this notion as in 14. Let M be a noetherian R-module and Δ be a multiplicatively closed set of submodules of M. The maximum element of $\left\{\left(N K:_{M} K\right) \mid K \in \Delta\right\}$ is said to be Δ-closure of a submodule N of M. We show some results about the Δ-closure of a submodule of a multiplication module. For instance it is shown that if M is a faithful multiplication module and Δ is a multiplicatively closed set of submodules of M, such that each $N \in \Delta$ is not contained in a minimal prime submodule of M, then the integral closure of submodule N is equal to the Δ-closure of N. An R-module M is said to be a comultiplication module if for every submodule N of M there exists an ideal I of R such that $N=\left(0:_{M} I\right)$. Also M is a comultiplication module if and only if $N=\left(0:_{M}\left(0:_{R} N\right)\right)$ for each submodule N of $M($ see [5]). In section 4 we introduce the concepts of coreduction of submodules and integral codependence. We give some results on coreduction over comultiplication modules.

2. REDUCTION AND CLOSURE OVER MULTIPLICATION MODULES

Definition 2.1. Let M be an R-module and N, K be submodules of M. The product of N and K is defined as $N K=(N: M)(K: M) M$. (see [4]). Note that if $N=I M, K=J M$ for some ideals I, J of R, then $N K=(I M)(J M)=(I M: M)(J M: M) M=I J M$. Therefore, if M is multiplication, then $I(N K)=(I N) K=N(I K)$ for each ideal I of R.

Definition 2.2. Let M be an R-module and N, K be submodules of M. We say that K is a reduction of N, if $K \subseteq N$ and there exists $s \in \mathbb{N}$ such that $K N^{s}=N^{s+1}$.

Definition 2.3. Let M be an R-module and N, K be submodules of M such that K is a reduction of N. The least integer s such that $K N^{s}=N^{s+1}$ is said to be the reduction number of N with respect to K and is denoted by $r_{K}(N)$.

Proposition 2.4. Let M be a multiplication R-module, N, K be submodules of M and I, J be ideals of R. Then:

1) If K is a reduction of N, then $I K$ is a reduction of $I N$.
2) If I is a reduction of J, then $I N$ is a reduction of $J N$.
3) If I is a reduction of J and K is a reduction of N, then $I K$ is a reduction of $J N$.
4) If $K \subseteq N$ and $(K: M)$ is a reduction of $(N: M)$, then K is a reduction of N.
5) If M is finitely generated faithful and K is a reduction of N, then $(K: M)$ is a reduction of $(N: M)$.
6) If $N \in S(M)$ and K is a reduction of N, then $N=K$.

Proof. $1,2,3$ and 4 are easy.
5. Since M is finitely generated faithful multiplication, it is cancellation by [1]. So the result is obtained.
6. Let $N=I M, K=J M$ for some ideals I, J of R. Since $N \in S(M)$, for each $n \in \mathbb{N}, N^{n} \in$ $S(M)$. Assume that $K N^{s}=N^{s+1}$, for some $s \in \mathbb{N}$, then $J N^{s}=J I^{s} M=I^{s+1} M=I I^{s} M=$ $I N^{s}$. Therefore by [11, theorem 6.1$], J=I$, and so $K=J M=I M=N$.

Proposition 2.5. Let M be an R-module and N, K, L be submodules of M. Then:

1) If K is a reduction of N, then for every $m \in \mathbb{N}$ and for each $j \geq r_{K}(N)$ we have $K^{m} N^{j}=$ N^{m+j}.
2) If M is multiplication and K is a reduction of N, then $\sqrt{K}=\sqrt{N}$.
3) If K is a reduction of N and N is a reduction of L, then K is a reduction of L.

Proof. 1. Suppose that K is a reduction of N and $s=r_{K}(N)$. Set $I=(K: M)$ and $J=(N: M)$. Then we have the following relations:

$$
\begin{aligned}
K^{m} N^{j} & =I^{m} J^{j} M=I^{m-1} J^{j-s} I J^{s} M=I^{m-1} J^{j-s} J^{s+1} M \\
& =I^{m-1} J^{j+1} M=\ldots=I J^{j+m-1} M=J^{j+m-s-1} I J^{s} M \\
& =J^{j+m-s-1} J^{s+1} M=J^{j+m} M=N^{m+j}
\end{aligned}
$$

2. Let $K=I M$ and $N=J M$, so by [1, theorem 2.12],

$$
\begin{aligned}
\sqrt{N} & =\sqrt{J} M=\sqrt{J^{s}} M=\sqrt{N^{s}}=\sqrt{K N^{s-1}} \\
\sqrt{I M \cdot J^{s-1} M} & =\sqrt{I J^{s-1} M} \subseteq \sqrt{I M}=\sqrt{K} .
\end{aligned}
$$

The other inclusion is clear.
3. Let $K N^{s}=N^{s+1}$ and $N L^{t}=L^{t+1}$, for some $s, t \in \mathbb{N}$. Therefore, by 1 we have the following:

$$
K L^{t s+s}=K\left(L^{t+1}\right)^{s}=K\left(N L^{t}\right)^{s}=K N^{s} L^{t s}=N^{s+1} L^{t s}=L^{t s+s+1}
$$

Lemma 2.6. Let M be an R-module and K, N, L be submodules of M, such that K is a reduction of N and L. Then K is a reduction of $N+L$.

Proof. Let $I=(K: M), J=(N: M)$ and $l=(L: M)$. By assumption there exist natural numbers s, t, such that $K N^{s}=N^{s+1}$ and $K L^{t}=L^{t+1}$. Consequently we have the following relations:

$$
\begin{aligned}
K(N+L)^{t+s} & =I(J+l)^{t+s} M=I \sum_{i=0}^{t+s} J^{i} l^{t+s-i} M \\
& =\sum_{i=0}^{s} J^{i} l^{t+s-i} I M+\sum_{i=s}^{t+s} J^{i} l^{t+s-i} I M \\
& =\sum_{i=0}^{s} J^{i} l^{t+s-i+1} M+\sum_{i=s}^{t+s} l^{t+s-i} J^{i+1} M \\
& =\sum_{i=0}^{t+s+1} J^{i} l^{t+s+1-i} M=(J+l)^{t+s+1} M=(N+L)^{t+s+1} .
\end{aligned}
$$

Definition 2.7. Let M be an R-module and K be a submodule of M. If φ is the set of all submodules of M such that K is a reduction of them, then by Lemma 2.6, φ has a unique maximal element, that we say K^{*}. Indeed $K^{*}=\sum_{k_{i} \in \varphi} K_{i}$.

Proposition 2.8. Let (R, \mathfrak{m}) be a local ring, M be a faithful multiplication R-module and N, K be submodules of M such that $K \subseteq N$. Then K is a reduction of N, if and only if $K+N M^{\prime}$ is a reduction of N, where $M^{\prime}=\mathfrak{m} M$.

Proof. We know that $M^{\prime}=\mathfrak{m} M$ is the only maximal submodule of M, also by [1, 2.8, 3.1], M is cyclic and finitely generated cancellation R-module. First we assume that $K+N M^{\prime}$ is a reduction of N. Then there exists $s \in \mathbb{N}$, such that $\left(K+N M^{\prime}\right) N^{s}=N^{s+1}$. Set $K=I M$ and $N=J M$. Hence we have the following:

$$
\begin{aligned}
(I M+J \mathfrak{m} M) J^{s} M & =J^{s+1} M \\
I J^{s} M+J^{s+1} \mathfrak{m} M & =J^{s+1} M \\
I J^{s}+J^{s+1} \mathfrak{m} & =J^{s+1}
\end{aligned}
$$

Now from [8, lemma 18.1.8], we deduce that $I J^{s}=J^{s+1}$.
Consequently, $K N^{s}=I J^{s} M=J^{s+1} M=N^{s+1}$. Now let $K N^{s}=N^{s+1}$, for some $s \in \mathbb{N}$. So we have the following:

$$
\left(K+N M^{\prime}\right) N^{s}=K N^{s}+N^{s+1} M^{\prime}=N^{s+1}+N^{s+1} M^{\prime}=N^{s+1} .
$$

Definition 2.9. Let M be an R-module and N be a submodule of M. An element $x \in R$ is said to be integrally dependent on N, if there exists $n \in \mathbb{N}$ such that $x^{n} M \subseteq \sum_{i=1}^{n} x^{n-i} N^{i}$.

Theorem 2.10. Let M be a multiplication R-module and $N=I M$ be a submodule of M. An element x of R is integrally dependent on N, if and only if N is a reduction of $K=N+x M$.

Proof. Let $x \in R$ be integrally dependent on N and so $x^{n} M \subseteq \sum_{i=1}^{n} x^{n-i} N^{i}$ for some $n \in \mathbb{N}$. We claim that $N K^{n-1}=K^{n}$, because

$$
N K^{n-1}=I(I+R x)^{n-1} M \subseteq(I+R x)^{n} M=K^{n}
$$

and also

$$
\begin{aligned}
K^{n}=(I+R x)^{n} M & =\sum_{i=0}^{n} I^{i}(R x)^{n-i} M=(R x)^{n} M+I(R x)^{n-1} M+\cdots+I^{n} M \\
& =I\left(R x^{n-1} M+I^{1} R x^{n-2} M+I^{2} R x^{n-3}+\cdots+I^{n-1} M\right)+(R x)^{n} M \\
& \subseteq I(I+R x)^{n-1} M+\sum_{i=1}^{n} x^{n-i} N^{i} \\
& =I(I+R x)^{n-1} M+I\left(R x^{n-1}+I R x^{n-2}+\cdots+I^{n-1}\right) M \\
& =I(I+R x)^{n-1} M+I(I+R x)^{n-1} M \\
& =I(I+R x)^{n-1} M=N K^{n-1} .
\end{aligned}
$$

For the converse, suppose that $N=I M$ be a reduction of $N+x M$, so there exists a natural number n such that $I(I+R x)^{n} M=(I+R x)^{n+1} M$. So $I\left(\sum_{i=0}^{n} I^{i} x^{n-i}\right) M=$ $\left(\sum_{i=0}^{n+1} I^{i} x^{n+1-i}\right) M$. Therefore, $\left(\sum_{i=0}^{n} I^{i+1} x^{n-i}\right) M=\left(\sum_{i=0}^{n+1} I^{i} x^{n+1-i}\right) M$, and it means $x^{n+1} M \subseteq\left(\sum_{i=1}^{n+1} I^{i} x^{n+1-i}\right) M$.

Theorem 2.11. Let M be a multiplication R-module and $N=I M, K=J M$ be submodules of M such that $N \subseteq K$. If each element of J is integrally dependent on N, then N is a reduction of K

Proof. Suppose that each element of J is integrally dependent on N. Then by 2.10 , for every $x \in J$, the R-module N is a reduction of $(I+R x) M$. So there exists a number $n_{x} \in \mathbb{N}$, such that $I(I+R x)^{n_{x}} M=(I+R x)^{n_{x}+1} M$. Set $n=\sum_{x \in J} n_{x}$ where x is a generator of J. Hence $I(I+J)^{n} M=(I+J)^{n+1} M$ and so $N K^{n}=K^{n+1}$.

Corollary 2.12. Let M be a finitely generated faithful multiplication R-module, $N=I M$ be a submodule of M and $J=\{x \in R: x$ is integrally dependent on $N\}$. Set $\bar{N}=J M$, then $\bar{I} M=\bar{N} \subseteq N^{*}$, where $\bar{I}=\{x \in R: x$ is integrally dependent on $I\}$.

Proof. It is clear from 2.11, that $\bar{N}=J M \subseteq N^{*}$.
Assume that $x \in \bar{I}$, so there exist $c_{i} \in I^{i}$ for $i=0,1, \ldots, n$ such that $\sum_{i=0}^{n} c_{i} x^{n-i}=0$, then $x^{n} \in \sum_{i=1}^{n} x^{n-i} I^{i}$ and so $x^{n} M \subseteq \sum_{i=1}^{n} x^{n-i} I^{i} M=\sum_{i=1}^{n} x^{n-i} N^{i}$. Therefore, $x \in J$. For the reverse inclusion suppose that $x \in J$ so there exists $n \in \mathbb{N}$ such that $x^{n} M \subseteq \sum_{i=1}^{n} x^{n-i} N^{i}=$ $\sum_{i=1}^{n} x^{n-i} I^{i} M$, by [1], M is cancellation and so $x^{n} \in \sum_{i=1}^{n} x^{n-i} I^{i}$. Therefore, there exist $c_{i} \in I^{i}$ for $i=1, \ldots, n$ such that $x^{n}=\sum_{i=1}^{n} c_{i} x^{n-i}$, hence $\sum_{i=0}^{n} c_{i} x^{n-i}=0$, so $x \in \bar{I}$. We show that $\bar{I}=J$ and so $\bar{N}=J M=\bar{I} M$.

3. Δ-Closure of a submodule of multiplication modules

In this section M is a noetherian R-module. If M is a multiplication R-module and N is a submodule of M, then by [3], for each ideal I of $R,\left(N:_{M} I\right)=(N: I M) M$. Moreover, for each submodule $K=J M$ of M, by considering the definition of product of submodules $\left(N:_{M}\right.$ $K)=(N: K) M$. Since $\left(N:_{M} K\right)=\left(N:_{M} J M\right)=\left(N:_{M} J\right)=(N: J M) M=(N: K) M$.

Definition 3.1. Let M be a noetherian R-module, and Δ be a multiplicatively closed set of submodules of M. Then the set $\left\{\left(N K:_{M} K\right) \mid K \in \Delta\right\}$ has a maximum element. Since $\left(N K:_{M} K\right) \subseteq\left(N L K:_{M} L K\right)$ and $\left(N L:_{M} L\right) \subseteq\left(N L K:_{M} L K\right)$, it follows that the maximum element of this set is unique. We show this maximum element with N_{Δ} and we call it the Δ-closure of N.

Lemma 3.2. Let M be an R-module, N, K be submodules of M and Δ be a multiplicatively closed set of submodules of M. Then:

1) $N \subseteq N_{\Delta}$.
2) If $N \subseteq K$, then $N_{\Delta} \subseteq K_{\Delta}$.
3) $N_{\Delta} K_{\Delta} \subseteq(N K)_{\Delta}$.
4) $I N_{\Delta} \subseteq(I N)_{\Delta}$, for each ideal I of R.

Proof. Proofs of 1 and 2 are easy.
3. Let $m=x y \in N_{\Delta} K_{\Delta}$. Then there exist submodules L_{1} and L_{2} of M such that $x L_{1} \subseteq N L_{1}$ and $y L_{2} \subseteq K L_{2}$. Consequently $x y L_{1} L_{2} \subseteq K N L_{1} L_{2}$ and so $x y \in\left(K N L_{1} L_{2}:_{M} L_{1} L_{2}\right) \subseteq$ $(K N)_{\Delta}$.
4. $I N_{\Delta}=I\left(N K:_{M} K\right)$, for suitable submodule K of M. So $I N_{\Delta} \subseteq\left(I N K:_{M} K\right) \subseteq(I N)_{\Delta}$.

Lemma 3.3. Suppose that M is an R-module, N is a submodule of M and Δ is a multiplicatively closed set of submodules of M. Then for each $K \in \Delta, N_{\Delta}=\left(N_{\Delta} K:_{M} K\right)$.

Proof. Obviously $N_{\Delta} \subseteq\left(N_{\Delta} K:_{M} K\right)$. Let $m \in\left(N_{\Delta} K:_{M} K\right)$ and $N_{\Delta}=\left(N L:_{M} L\right)$, for suitable $L \in \Delta$. So $m K \subseteq N_{\Delta} K=\left(N L:_{M} L\right) K \subseteq\left(N L K:_{M} L\right)$. Therefore, $m \in\left(\left(N L K:_{M}\right.\right.$ $\left.L):_{M} K\right)=\left(N L K:_{M} L K\right) \subseteq N_{\Delta}$.

Proposition 3.4. Let M be an R-module, Δ be a multiplicatively closed set of submodules of M and $\left\{N_{i}\right\}_{i \in I}$ be a family of submodules of M. Then:

1) $\left(\cap_{i \in I} N_{i}\right)_{\Delta} \subseteq \cap_{i \in I}\left(N_{i}\right)_{\Delta}$.
2) $\left(N_{\Delta}\right)_{\Delta}=N_{\Delta}$.
3) $\sum_{i \in I}\left(N_{i}\right)_{\Delta} \subseteq\left(\sum_{i \in I} N_{i}\right)_{\Delta}$.

Proof. 1. For each $i \in I, \cap_{i \in I} N_{i} \subseteq N_{i}$, so for each $i \in I,\left(\cap_{i \in I} N_{i}\right)_{\Delta} \subseteq\left(N_{i}\right)_{\Delta}$ and hence $\left(\cap_{i \in I} N_{i}\right)_{\Delta} \subseteq \cap_{i \in I}\left(N_{i}\right)_{\Delta}$.
2. It is clear by 3.3 .
3. $N_{i} \subseteq \sum_{i \in I} N_{i}$, for each $i \in I$, so $\sum_{i \in I}\left(N_{i}\right)_{\Delta} \subseteq\left(\sum_{i \in I} N_{i}\right)_{\Delta \cdot}$.

Corollary 3.5. Let M be an R-module, N be a submodule of M and Δ be a multiplicatively closed subset of submodules of M. Then:

1) $((N: I) M)_{\Delta} \subseteq\left(N_{\Delta}:_{M} I\right)$, for each ideal I of R.
2) $(I N)_{\Delta}=\left(I N_{\Delta}\right)_{\Delta}$, for each ideal I of R.
3) $\left(N_{\Delta}:_{M} K_{\Delta}\right)=\left(N_{\Delta}:_{M} K\right)$, for each submodule $K \in \Delta$.

Proof. 1. Since $I(N: I) M \subseteq N$, so by 3.2 we have

$$
I((N: I) M)_{\Delta} \subseteq(I(N: I) M)_{\Delta} \subseteq N_{\Delta}
$$

thus $((N: I) M)_{\Delta} \subseteq\left(N_{\Delta}:_{M} I\right)$.
2. $I N \subseteq I N_{\Delta} \subseteq(I N)_{\Delta}$, so by 3.2 and 3.4

$$
(I N)_{\Delta} \subseteq\left(I N_{\Delta}\right)_{\Delta} \subseteq\left((I N)_{\Delta}\right)_{\Delta}=(I N)_{\Delta}
$$

3.It is clear that $\left(N_{\Delta}:_{M} K_{\Delta}\right) \subseteq\left(N_{\Delta}:_{M} K\right)$, since by $3.2, K \subseteq K_{\Delta}$. Moreover, $K\left(N_{\Delta}:_{M}\right.$ $K) \subseteq N_{\Delta}$, so by 3.2 and 3.3

$$
K_{\Delta}\left(N_{\Delta}:_{M} K\right) \subseteq\left(K\left(N_{\Delta}:_{M} K\right)\right)_{\Delta} \subseteq\left(N_{\Delta} K:_{M} K\right)_{\Delta}=\left(N_{\Delta}\right)_{\Delta}=N_{\Delta}
$$

hence $\left(N_{\Delta}:_{M} K\right) \subseteq\left(N_{\Delta}:_{M} K_{\Delta}\right)$.

Lemma 3.6. Suppose that M is an R-module, N is a submodule of M and Δ is a multiplicatively closed set of submodules of M. Then for each $K \in \Delta, N_{\Delta}=\left(N_{\Delta} K:_{M} K\right)=\left((N K)_{\Delta}:_{M}\right.$ $K)$.

Proof. $N_{\Delta}=\left(N_{\Delta} K:_{M} K\right) \subseteq\left(N_{\Delta} K_{\Delta}:_{M} K\right) \subseteq\left((N K)_{\Delta}:_{M} K\right)$. Now let $m \in\left((N K)_{\Delta}:_{M}\right.$ $K)$, then $m K \subseteq(N K)_{\Delta}=\left(N K L:_{M} L\right)$ for suitable submodule L of M. Hence $m K L \subseteq N K L$ and so $m \in\left(N K L:_{M} K L\right) \subseteq N_{\Delta}$.

Theorem 3.7. Let M be a faithful multiplication module and $N=I M$ be a submodule of M. If Δ is a multiplicatively closed set of submodules of M. Then $\bar{N} \subseteq N_{\Delta}$.

Proof. Let $x \in \bar{N}=\bar{I} M$. Then $x=i m$ for some $i \in \bar{I}$ and N is a reduction of $(I+R i) M$, by 2.10 and 2.12. For some $n \in \mathbb{N}$, we have

$$
I(I+R i)^{n} M=(I+R i)^{n+1} M=(I+R i)^{n}(I+R i) M \quad=(I+R i)^{n} I M+(I+R i)^{n} i M .
$$

So $i M(I+R i)^{n} \subseteq(I+R i)^{n} I M$, it follows that $i \in\left((I+R i)^{n} I M:_{R}(I+R i)^{n} M\right)$. Set $(I+R i)^{n} M=K$. Therefore, $i \in\left(K N:_{R} K\right)$ and so $i K \subseteq K N$ and $i K M \subseteq K N M=K N$. Consequently $i m \in\left(K N:_{M} K\right) \subseteq N_{\Delta}$.

Theorem 3.8. Let R be a noetherian ring, M be a faithful multiplication R-module, Δ be a multiplicatively closed set of submodules of M, and Λ be the set of all submodules of M that are not contained in any minimal prime submodules. If $\Delta \subseteq \Lambda$, then $N=N_{\Delta}$ for each submodule N of M.

Proof. Let $N=I M$ for some ideal I of R, Λ_{1} be the set of all ideals of R that are not contained in any minimal prime ideal, and $\Delta_{1}=\{J \unlhd R ; J M \in \Delta\}$. By [1], 2.11, 3.1], $\Delta_{1} \subseteq \Lambda_{1}$, so by [13, 3.2], for each ideal I of $R, I_{\Delta_{1}} \subseteq \bar{I}$. We claim that $N_{\Delta}=I_{\Delta_{1}} M$ and therefore, by 2.12

$$
N_{\Delta}=I_{\Delta_{1}} M \subseteq \bar{I} M=\bar{N} .
$$

Assume that $m \in I_{\Delta_{1}} M$, so $m=i m_{1}$ and $i \in I_{\Delta_{1}}=(I J: J)$ for some ideal J of R. Thus $i J M \subseteq I J M$, so $m=i m_{1} \in(I J M: J M) M \subseteq\left(I J M:_{M} J M\right)=\left(N K:_{M} K\right) \subseteq N_{\Delta}$, where $K=J M \in \Delta$. On the other hand since M is finitely generated faithful multiplication, we have

$$
N_{\Delta}=\left(N K:_{M} K\right)=(N K: K) M=(I J M: J M) M=(I J: J) M \subseteq I_{\Delta_{1}} M
$$

Theorem 3.9. With the conditions of Theorem 3.8, if $L, K \in \Delta$ and $\overline{N K}=\overline{L K}$, then $\bar{N}=\bar{L}$.
Proof. Let M be a faithful multiplication R-module and N, L, K be submodules of M such that $\overline{N K}=\overline{L K}$. Then $(N K)_{\Delta}=(L K)_{\Delta}$. Suppose that $m \in \bar{N}=\bar{I} M$. Hence $m=x m^{\prime}$ for some $x \in \bar{I}$. By 2.10 and $2.12 N$ is a reduction of $(I+R x) M$ and there exists $n \in \mathbb{N}$, such that $I(I+R x)^{n} M=(I+R x)^{n+1} M$. Now as we show in $3.7 x(I+R x)^{n} M \subseteq I(I+R x)^{n} M$ and so for all $K \in \Delta$,

$$
x K(I+R x)^{n} M \subseteq K(I+R x)^{n} I M .
$$

Therefore,

$$
\begin{aligned}
x \in\left(N K(I+R x)^{n}: K(I+R x)^{n} M\right) & \subset\left((N K)_{\Delta}(I+R x)^{n} M:_{R} K(I+R x)^{n} M\right) \\
& =\left((L K)_{\Delta}(I+R x)^{n} M:_{R} K(I+R x)^{n} M\right) .
\end{aligned}
$$

Now by 3.6

$$
\begin{aligned}
m & =x m^{\prime} \in\left((L K)_{\Delta}(I+R x)^{n} M:_{M} K(I+R x)^{n} M\right) \\
& =\left(L_{\Delta} K(I+R x)^{n} M:_{M} K(I+R x)^{n} M\right) \\
& =L_{\Delta}=\bar{L}
\end{aligned}
$$

Consequently $\bar{N} \subseteq \bar{L}$. In the similar way we can prove that $\bar{L} \subseteq \bar{N}$.

Theorem 3.10. Let Δ, N and K be as in theorem 3.8. The following are equivalent:

1) $N L=K L$ for some $L \in \Delta$;
2) $\overline{N T}=\overline{K T}$ for every $T \in \Delta$;
3) $\bar{N}=\bar{K}$.

Proof. $1 \rightarrow 2$) Suppose that $m \in \overline{N T}=\overline{I J} M$, where $N=I M$ and $T=J M$. Then $m=x m^{\prime}$, where $x \in \overline{I J}$. Hence $N T$ is a reduction of $(I J+R x) M$ and so there exists $s \in \mathbb{N}$, such that

$$
x(I J+R x)^{s} M \subseteq I J(I J+R x)^{s} M
$$

Let $L=l M$. Then $x l(I J+R x)^{s} M \subseteq I J l(I J+R x)^{s} M$ and we have the following relations:

$$
x L(I J+R x)^{s} M \subseteq T N L(I J+R x)^{s} M=T K L(I J+R x)^{s} M
$$

This shows that $x \in\left(T K L(I J+R x)^{s} M:_{R} L(I J+R x)^{s} M\right)$ and $m \in\left(T K L(I J+R x)^{s} M:_{M}\right.$ $\left.L(I J+R x)^{s} M\right) \subseteq(T K)_{\Delta}=\overline{T K}$. Similary, we prove that $\overline{T K} \subseteq \overline{N T}$
$2 \rightarrow 3$) By 3.9.
$3 \rightarrow 1) \bar{N}=N_{\Delta}=\left(N T_{1}:_{M} T_{1}\right)=K_{\Delta}=\left(K T_{2}:_{M} T_{2}\right)$ for some $T_{1}, T_{2} \in \Delta$. Set $L=T_{1} T_{2}$.
Clearly $L \in \Delta$ and $N L=\left(N L:_{M} L\right) L=\left(K L:_{M} L\right) L=K L$ because $\left(N T_{1} T_{2}:_{M} T_{1} T_{2}\right)=$ $\left(N L:_{M} L\right) \subseteq N_{\Delta}=\bar{N}=\bar{K}$ and $N_{\Delta}=\left(N T_{1}:_{M} T_{1}\right) \subseteq\left(N T_{1} T_{2}:_{M} T_{1} T_{2}\right)$. Consequently $\left(N L:_{M} L\right)=N_{\Delta}=K_{\Delta}=\left(K L:_{M} L\right)$.

4. Coreduction over comultiplication modules

Definition 4.1. Let M be an R-module and N, K be submodules of M. The coproduct of N and K is defined in [4] as $C(N K)=\left(0:_{M} \operatorname{Ann}(N) \operatorname{Ann}(K)\right)$. It is easy to see that if M is comultiplication and $N=\left(0:_{M} I\right), K=\left(0:_{M} J\right)$, then $C(N K)=\left(0:_{M} I J\right)$.

Definition 4.2. Let M be an R-module and N, K be submodules of M such that $N \subseteq K$. We say that K is a coreduction of N, if there exists a natural number s such that $\left(0:_{M}\right.$ $\left.\operatorname{Ann}(K) A n n^{s}(N)\right)=\left(0:_{M} A n n^{s+1}(N)\right)$. We denote it by $C\left(K N^{s}\right)=C\left(N^{s+1}\right)$. The least integer s such that $C\left(K N^{s}\right)=C\left(N^{s+1}\right)$ is said to be the coreduction number of N with respect to K and is denoted by $r_{K}(N)$.

Lemma 4.3. Let M be an R-module and $N \subseteq K$ be submodules of M such that K is a coreduction of N. Then for any $m \in \mathbb{N}$ and any $j \geq r_{k}(N) ; C\left(K^{m} N^{j}\right)=C\left(N^{m+j}\right)$.

Proof. Let $I=\operatorname{Ann}(K), J=\operatorname{Ann}(N)$ and $r_{k}(N)=s$. Then we have the following:

$$
\begin{aligned}
C\left(K^{m} N^{j}\right) & =\left(0:_{M} I^{m} J^{j}\right)=\left(0:_{M} I J^{s} I^{m-1} J^{j-s}\right) \\
& =\left(\left(0:_{M} I J^{s}\right):_{M} I^{m-1} J^{j-s}\right) \\
& =\left(\left(0:_{M} J^{s+1}\right):_{M} I^{m-1} J^{j-s}\right) \\
& =\left(0:_{M} I^{m-1} J^{j+1}\right)=\ldots=\left(0:_{M} I J^{j+m-1}\right) \\
& =\left(\left(0:_{M} I J^{s}\right):_{M} J^{j+m-1-s}\right)=\left(0: J^{s+1} J^{j+m-1-s}\right) \\
& =\left(0:_{M} J^{j+m}\right)=C\left(N^{m+j}\right) .
\end{aligned}
$$

Lemma 4.4. Let M be an R-module and $L \subseteq N \subseteq K$ be submodules of M. If K is a coreduction of N and N is a coreduction of L then K is a coreduction of L.

Proof. Easy.

Lemma 4.5. Let M be an R-module and a submodule K of M be a coreduction of submodules N and L of M. Then K is a coreduction of $N \cap L$.

Proof. Let $K=\left(0:_{M} I\right), N=\left(0:_{M} J\right), L=\left(0:_{M} l\right)$. By assumption $N \subseteq K$ and $L \subseteq K$ and so $N \cap L \subseteq K$. Also we have $C\left(K L^{t}\right)=C\left(L^{t+1}\right), C\left(K N^{s}\right)=C\left(N^{s+1}\right)$, for suitable $s, t \in \mathbb{N}$.

So we have:

$$
\begin{aligned}
C\left(K(N \cap L)^{t+s}\right) & =C\left(\left(0:_{M} I\right)\left(\left(0:_{M} J\right) \cap\left(0:_{M} l\right)\right)^{t+s}\right) \\
& =C\left(\left(0:_{M} I\right)\left(0:_{M}(J+l)^{t+s}\right)\right) \\
& =\left(0:_{M} I(J+l)^{t+s}\right) \\
& =\left(0:_{M} \sum_{i=0}^{t+s} I J^{i} l^{t+s-i}\right) \\
& =\left(0:_{M} \sum_{i=0}^{t+s+1} J^{i} l^{t+s+1-i}\right) \\
& =\bigcap_{i=0}^{t+s+1}\left(0:_{M} J^{i} l^{t+s+1-i}\right)=C\left((N \cap L)^{t+s+1}\right) .
\end{aligned}
$$

Definition 4.6. Let K be a submodule of R-module M and φ be the set of all submodules of M such that K is a coreduction of them. By the previous lemma φ has a unique minimum element. We denote it by \underline{K}. Indeed $\underline{K}=\bigcap_{K_{i} \in \varphi} K_{i}$.

Definition 4.7. Let M be an R-module and N be a submodule of M. An element $x \in R$ is said to be integrally codependent on N, if there exists $n \in \mathbb{N}$, such that $\bigcap_{i=1}^{n}\left(C\left(N^{i}\right):_{M} x^{n-i}\right) \subseteq$ $\left(0:_{M} x^{n}\right)$.

Theorem 4.8. Let M be a comultiplication R-module and $N=\left(0:_{M} I\right)$ be a submodule of M. Then an element $x \in R$ is integrally codependent on N, if and only if N is a coreduction of $K=\left(0:_{M} I+R x\right)$.

Proof. Let x be integrally codependent on N. Then there exists $n \in \mathbb{N}$ such that $\bigcap_{i=1}^{n}\left(C\left(N^{i}\right):_{M}\right.$ $\left.x^{n-i}\right) \subseteq\left(0:_{M} x^{n}\right)$. We prove that $C\left(N K^{n}\right)=C\left(K^{n+1}\right)$.

$$
C\left(K^{n+1}\right)=\left(0:_{M}(I+R x)^{n+1}\right) \subseteq\left(0:_{M} I(I+R x)^{n}\right)=C\left(N K^{n}\right) .
$$

Now suppose that $m \in C\left(N K^{n}\right)=\left(0:_{M} I(I+R x)^{n}\right)$. Then $m I(I+R x)^{n}=0$ and this follows that:

$$
\begin{equation*}
m I^{n+1}+m I^{n} R x+\cdots+m I R x^{n}=0 \tag{4.1}
\end{equation*}
$$

On the other hand:

$$
\begin{aligned}
m \in\left(0:_{M} I(I+R x)^{n}\right) & =\left(\left(0:_{M} I\right):_{M}(I+R x)^{n}\right) \\
& =\left(N:_{M}(I+R x)^{n}\right) \\
& =\left(N:_{M} \sum_{i=0}^{n} I^{i}(R x)^{n-i}\right) \\
& =\bigcap_{i=0}^{n}\left(N:_{M} I^{i}(R x)^{n-i}\right) \\
& =\bigcap_{i=0}^{n}\left(\left(N:_{M} I^{i}\right):_{M}(R x)^{n-i}\right) \\
& =\bigcap_{i=0}^{n}\left(C\left(N^{i+1}\right):_{M}(R x)^{n-i}\right) \\
& \subseteq\left(0:_{M} x^{n}\right) \\
& \subseteq\left(0:_{M} x^{n+1}\right)
\end{aligned}
$$

Consequently

$$
\begin{equation*}
m x^{n+1}=0 . \tag{4.2}
\end{equation*}
$$

Now from(4.1),(4.2), we conclude that

$$
m I^{n+1}+m I^{n}(R x)+\cdots+m I(R x)^{n}+m x^{n+1}=0 .
$$

Hence $\left.m \in\left(0:_{M}(I+R x)^{n+1}\right)\right)=C\left(K^{n+1}\right)$.
Conversely, let N be a coreduction of K and $C\left(N K^{n-1}\right)=C\left(K^{n}\right)$ for some $n \in \mathbb{N}$. Therefore,

$$
\left(0:_{M} I(I+R x)^{n-1}\right)=\left(0:_{M}(I+R x)^{n}\right) .
$$

We claim that

$$
\bigcap_{i=1}^{n}\left(C\left(N^{i}\right):_{M} x^{n-i}\right) \subseteq\left(0:_{M} x^{n}\right)
$$

Let $m \in \bigcap_{i=1}^{n}\left(C\left(N^{i}\right):_{M} x^{n-i}\right)$. Then for each $i=1, \ldots, n$,

$$
\left.m \in\left(C\left(N^{i}\right):_{M} x^{n-i}\right)=\left(\left(0:_{M} I^{i}\right):_{M} x^{n-i}\right)\right)=\left(0:_{M} I^{i} x^{n-i}\right)
$$

and so $m I^{i}(R x)^{n-i}=0$ for each $i=1, \ldots, n$. Consequently

$$
\begin{equation*}
m I^{n}+m I^{n-1} R x+\cdots+m I(R x)^{n-1}=0 \tag{4.3}
\end{equation*}
$$

Hence $m \in\left(0:_{M} I(I+R x)^{n-1}\right)=\left(0:_{M}(I+R x)^{n}\right)$ and this follows that

$$
\begin{equation*}
m I^{n}+m I^{n-1} R x+\cdots+m I(R x)^{n-1}+m(R x)^{n}=0 \tag{4.4}
\end{equation*}
$$

Now from (4.3) and (4.4), we conclude that $m x^{n}=0$ and so $m \in\left(0:_{M} x^{n}\right)$.

Corollary 4.9. Let R be a noetherian ring, M be a comultiplication R-module and $K \subseteq N$ be submodules of M. Then:

1) If each element of $\operatorname{Ann}(K)$ is integrally codependent on N, then N is a coreduction of K.
2) If $J=\{x \in R: x$ is integrally codependent on $N\}$, then $\underline{N} \subseteq\left(0:_{M} J\right)$

Proof. 1) Let each element of $\operatorname{Ann}(K)$ be integrally codependent on N. Then $N=\left(0:_{M} I\right)$ is a coreduction of $\left(0:_{M} I+R x\right)$ for every $x \in \operatorname{Ann}(K)$ and so N is a coreduction of $\left(0:_{M} I+\operatorname{Ann}(K)\right)=\left(0:_{M} I\right) \cap\left(0:_{M} \operatorname{Ann}(K)\right)=N \cap K=K$.
2) It is clear from 1 and 4.6.

5. Acknowledgments

The authors are deeply grateful to the referee for a very careful reading of the manuscript and many valuable suggestions.

References

[1] Z. Abd El-Bast and P. F. Smith, , Multiplication modules, Comm. Algebra., 16 No. 4 (1988) 755-779.
[2] M. M. Ali, Idempotent and nilpotent submodules of multiplication modules, for associated primes of local cohomology modules, Comm. Algebra., 36 No. 12 (2008) 4620-4642.
[3] M. M. Ali, Residual submodules of multiplication modules, Beitr. Algebra Geom., 46 No. 2 (2005) 405-422.
[4] H. Ansari-Toroghy and F. Farshadifar, Product and dual product of submodules, Far. East. J. Math. Sci., 25 No. 3 (2007) 447-455.
[5] H. Ansari-Toroghy and F. Farshadifar, The dual notion of multiplication modules, Taiwanese J. Math., 11 No. 4 (2007) 1189-1201.
[6] R. Ameri, On the prime submodules of multiplication modules, Int. J. Math. Math. Sci., No. 27 (2003) 1715-1724.
[7] A. Barnard, Multiplication modules, Manuscripta Math., 71 No. 1 (1981) 174-178.
[8] M.P. Brodmann and R.Y. Sharp, Local cohomology; an algebraic introduction with geometric applications, Cambridge University Press, Cambridge, 1998.
[9] H. Matsumura, Commutative ring theory, Cambridge University press, Cambridge, UK, 1986.
[10] R. L. McCasland and M. E. Moore, On radicals of submodules of finitely generated modules, Canad. Math. Bull., 29 (1986) 37-39.
[11] A. G. Naoum and A.S. Mijbass, Weak cancellation modules, Kyungpook Math. J., 37 (1997) 73-82.
[12] D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Cambridge Philos. Soc., 50 (1954) 145-158.
[13] L. J. Ratliff, Jr., Δ - closure of ideals and rings, Trans. Amer. Math. Soc., 313 (1989) 221-247.
[14] Y. Tiras, Integral closure of an ideal relative to a module and Δ - closure, Trans. Amer. Math. Soc., 21 (1997) 381-386.

J. Azami

Department of Mathematics, Faculty of Science
University of mohaghegh Ardabili, Ardabil, Iran
jafar.azami@gmail.com
M. Khajepour

Department of Mathematics, Faculty of Science
University of mohaghegh Ardabili, Ardabil, Iran
maryamkhajepour@uma.ac.ir

[^0]: DOI: 10.22034/as. 2020.1957

