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GENERALIZATION OF REDUCTION AND CLOSURE OF IDEALS

JAFAR A’ZAMI∗ AND MARYAM KHAJEPOUR

Abstract. Throughout this paper, all rings are commutative with identity and all modules

are unital. Let R be a ring and M be an R-module. Then M is called a multiplication module

provided for every submodule N of M there exists an ideal I of R such that N = IM . Also

M is said to be a comultiplication module if for every submodule N of M there exists an

ideal I of R such that N = (0 :M I). In this paper, we introduce the notions of reduction and

coreduction of submodules, integral dependence, integral codependence, integral closure and

∆-closure over multiplication and comultiplication modules.

1. Introduction

Throughout this paper, all rings are commutative with identity and all modules are unital.
Let R be a ring and M be an R-module. Then M is called a multiplication module provided
for every submodule N of M there exists an ideal I of R such that N = IM . Note that
I ⊆ (N : M) and hence N = IM ⊆ (N : M)M ⊆ N , so that N = (N : M)M . Moreover, a
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submodule N of R-module M is said to be a multiplication submodule, if for each submodule
K of M,N ∩K = (K : N)N . In this paper S(M) is the multiplicative semigroup of all finitely
generated faithful multiplication submodule of M (See section 2 for details on the definition of
the product of two submodules of M .). Let N be a submodule of an R-module M . Following
[10], we call the intersection of all prime submodules of M containing N the M -radical of N ,
denoted by M−radN or

√
N . In [10] it is shown that if N is a submodule of a finitely generated

multiplication R-module M , then M−radN =
√
(N : M)M . This result has been generalized

to an arbitrary multiplication module by El-Bast and Smith [1]. Let N be a submodule of M ,
for each ideal I of R, the residual submodule of N by I is (N :M I) = {x ∈ M : xI ⊆ N}. If M
is a multiplication module, then by [3], (N :M I) = (N : IM)M , for each ideal I of R. Also if
M is finitely generated faithful multiplication, then for ideals I, J of R, (IM : JM) = (I : J).
Since if r ∈ (IM : JM), then rJM ⊆ IM and by [1], M is cancellation, so rJ ⊆ I hence
r ∈ (I : J). The other inclusion is clear.
Reduction of ideals of local rings was first considered by D. G. Northcott and D. Rees in [12].
Suppose that I, J are ideals of R, I is a reduction of J , if I ⊆ J and there exists s ∈ N such that
IJs = Js+1. Also r ∈ R is integrally dependent on I if there exist n ∈ N and c1, c2, ..., cn ∈ R

with ci ∈ Ii, for i = 1, 2, ..., n such that rn + c1r
n−1 + ... + cn−1r + cn = 0. In this paper we

will define these concepts for submodules and we present a similar results as hold for ideals.
For any ideal b of R, the radical of b, denoted by

√
b, is defined to be the set {x ∈ R : xn ∈ b

for some n ∈ N}. For any unexplained notation and terminology we refer the reader to [8], [9],
and [12].
The concepts of integral closure of an ideal relative to a module and ∆-closure of an ideal
were introduced in [13]. In section 3 we define the concept of ∆-closure of a submodule of
a noetherian module and we present some results about this notion as in [14]. Let M be
a noetherian R-module and ∆ be a multiplicatively closed set of submodules of M . The
maximum element of

{
(NK :M K) | K ∈ ∆

}
is said to be ∆-closure of a submodule N of M .

We show some results about the ∆-closure of a submodule of a multiplication module. For
instance it is shown that if M is a faithful multiplication module and ∆ is a multiplicatively
closed set of submodules of M , such that each N ∈ ∆ is not contained in a minimal prime
submodule of M , then the integral closure of submodule N is equal to the ∆-closure of N .
An R-module M is said to be a comultiplication module if for every submodule N of M there
exists an ideal I of R such that N = (0 :M I). Also M is a comultiplication module if and
only if N = (0 :M (0 :R N)) for each submodule N of M(see [5]). In section 4 we introduce
the concepts of coreduction of submodules and integral codependence. We give some results
on coreduction over comultiplication modules.
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2. reduction and closure over multiplication modules

Definition 2.1. Let M be an R-module and N,K be submodules of M . The product of N
and K is defined as NK = (N : M)(K : M)M . (see [4] ). Note that if N = IM,K = JM for
some ideals I, J of R, then NK = (IM)(JM) = (IM : M)(JM : M)M = IJM . Therefore, if
M is multiplication, then I(NK) = (IN)K = N(IK) for each ideal I of R.

Definition 2.2. Let M be an R-module and N,K be submodules of M . We say that K is a
reduction of N , if K ⊆ N and there exists s ∈ N such that KN s = N s+1.

Definition 2.3. Let M be an R-module and N,K be submodules of M such that K is a
reduction of N . The least integer s such that KN s = N s+1 is said to be the reduction number
of N with respect to K and is denoted by rK(N).

Proposition 2.4. Let M be a multiplication R-module, N,K be submodules of M and I, J be
ideals of R. Then:
1) If K is a reduction of N , then IK is a reduction of IN .
2) If I is a reduction of J , then IN is a reduction of JN .
3) If I is a reduction of J and K is a reduction of N , then IK is a reduction of JN .
4) If K ⊆ N and (K : M) is a reduction of (N : M), then K is a reduction of N .
5) If M is finitely generated faithful and K is a reduction of N , then (K : M) is a reduction
of (N : M).
6) If N ∈ S(M) and K is a reduction of N , then N = K.

Proof. 1,2,3 and 4 are easy.
5. Since M is finitely generated faithful multiplication, it is cancellation by [1]. So the result
is obtained.
6. Let N = IM,K = JM for some ideals I, J of R. Since N ∈ S(M), for each n ∈ N, Nn ∈
S(M). Assume that KN s = N s+1, for some s ∈ N, then JN s = JIsM = Is+1M = IIsM =

IN s. Therefore by [11, theorem 6.1 ], J = I ,and so K = JM = IM = N .

Proposition 2.5. Let M be an R-module and N,K,L be submodules of M . Then:
1) If K is a reduction of N , then for every m ∈ N and for each j ≥ rK(N) we have KmN j =

Nm+j.
2) If M is multiplication and K is a reduction of N , then

√
K =

√
N .

3) If K is a reduction of N and N is a reduction of L, then K is a reduction of L.
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Proof. 1. Suppose that K is a reduction of N and s = rK(N). Set I = (K : M) and
J = (N : M). Then we have the following relations:

KmN j = ImJ jM = Im−1J j−sIJsM = Im−1J j−sJs+1M

= Im−1J j+1M = . . . = IJ j+m−1M = J j+m−s−1IJsM

= J j+m−s−1Js+1M = J j+mM = Nm+j .

2. Let K = IM and N = JM , so by [1, theorem 2.12],
√
N =

√
JM =

√
JsM =

√
N s =

√
KN s−1

√
IM · Js−1M =

√
IJs−1M ⊆

√
IM =

√
K.

The other inclusion is clear.
3. Let KN s = N s+1 and NLt = Lt+1, for some s, t ∈ N. Therefore, by 1 we have the following:

KLts+s = K(Lt+1)s = K(NLt)s = KN sLts = N s+1Lts = Lts+s+1.

Lemma 2.6. Let M be an R-module and K,N,L be submodules of M , such that K is a
reduction of N and L. Then K is a reduction of N + L.

Proof. Let I = (K : M), J = (N : M) and l = (L : M). By assumption there exist natural
numbers s, t, such that KN s = N s+1 and KLt = Lt+1 . Consequently we have the following
relations:

K(N + L)t+s = I(J + l)t+sM = I

t+s∑
i=0

J ilt+s−iM

=
s∑

i=0

J ilt+s−iIM +
t+s∑
i=s

J ilt+s−iIM

=
s∑

i=0

J ilt+s−i+1M +
t+s∑
i=s

lt+s−iJ i+1M

=

t+s+1∑
i=0

J ilt+s+1−iM = (J + l)t+s+1M = (N + L)t+s+1.
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Definition 2.7. Let M be an R-module and K be a submodule of M . If φ is the set of all
submodules of M such that K is a reduction of them, then by Lemma 2.6, φ has a unique
maximal element, that we say K∗. Indeed K∗ =

∑
ki∈φ

Ki.

Proposition 2.8. Let (R,m) be a local ring, M be a faithful multiplication R-module and
N,K be submodules of M such that K ⊆ N . Then K is a reduction of N , if and only if
K +NM ′ is a reduction of N , where M ′ = mM .

Proof. We know that M ′ = mM is the only maximal submodule of M , also by [1, 2.8, 3.1],
M is cyclic and finitely generated cancellation R-module. First we assume that K +NM ′ is
a reduction of N . Then there exists s ∈ N, such that (K + NM ′)N s = N s+1. Set K = IM

and N = JM . Hence we have the following:

(IM + J mM)JsM = Js+1M

IJsM + Js+1mM = Js+1M

IJs + Js+1m = Js+1.

Now from [8, lemma 18.1.8], we deduce that IJs = Js+1.
Consequently, KN s = IJsM = Js+1M = N s+1. Now let KN s = N s+1, for some s ∈ N. So

we have the following:

(K +NM ′)N s = KN s +N s+1M ′ = N s+1 +N s+1M ′ = N s+1.

Definition 2.9. Let M be an R-module and N be a submodule of M . An element x ∈ R is
said to be integrally dependent on N , if there exists n ∈ N such that xnM ⊆

n∑
i=1

xn−iN i.

Theorem 2.10. Let M be a multiplication R-module and N = IM be a submodule of M . An
element x of R is integrally dependent on N , if and only if N is a reduction of K = N + xM .

Proof. Let x ∈ R be integrally dependent on N and so xnM ⊆
n∑

i=1
xn−iN i for some n ∈ N.

We claim that NKn−1 = Kn, because

NKn−1 = I(I +Rx)n−1M ⊆ (I +Rx)nM = Kn
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and also

Kn = (I +Rx)nM =
n∑

i=0

Ii(Rx)n−iM = (Rx)nM + I(Rx)n−1M + · · ·+ InM

= I(Rxn−1M + I1Rxn−2M + I2Rxn−3 + · · ·+ In−1M) + (Rx)nM

⊆ I(I +Rx)n−1M +
n∑

i=1

xn−iN i

= I(I +Rx)n−1M + I(Rxn−1 + IRxn−2 + · · ·+ In−1)M

= I(I +Rx)n−1M + I(I +Rx)n−1M

= I(I +Rx)n−1M = NKn−1.

For the converse, suppose that N = IM be a reduction of N + xM , so there exists a
natural number n such that I(I + Rx)nM = (I + Rx)n+1M . So I(

∑n
i=0 I

ixn−i)M =

(
∑n+1

i=0 Iixn+1−i)M . Therefore, (
∑n

i=0 I
i+1xn−i)M = (

∑n+1
i=0 Iixn+1−i)M , and it means

xn+1M ⊆ (
∑n+1

i=1 Iixn+1−i)M .

Theorem 2.11. Let M be a multiplication R-module and N = IM , K = JM be submodules
of M such that N ⊆ K. If each element of J is integrally dependent on N , then N is a
reduction of K

Proof. Suppose that each element of J is integrally dependent on N . Then by 2.10, for every
x ∈ J , the R-module N is a reduction of (I + Rx)M . So there exists a number nx ∈ N, such
that I(I + Rx)nxM = (I + Rx)nx+1M . Set n =

∑
x∈J

nx where x is a generator of J . Hence

I(I + J)nM = (I + J)n+1M and so NKn = Kn+1.

Corollary 2.12. Let M be a finitely generated faithful multiplication R-module, N = IM be
a submodule of M and J = {x ∈ R: x is integrally dependent on N}. Set N̄ = JM , then
ĪM = N̄ ⊆ N∗, where Ī = {x ∈ R: x is integrally dependent on I}.

Proof. It is clear from 2.11, that N̄ = JM ⊆ N∗.
Assume that x ∈ Ī, so there exist ci ∈ Ii for i = 0, 1, ..., n such that

∑n
i=0 cix

n−i = 0, then
xn ∈

∑n
i=1 x

n−iIi and so xnM ⊆
∑n

i=1 x
n−iIiM =

∑n
i=1 x

n−iN i. Therefore, x ∈ J . For the
reverse inclusion suppose that x ∈ J so there exists n ∈ N such that xnM ⊆

∑n
i=1 x

n−iN i =∑n
i=1 x

n−iIiM , by [1], M is cancellation and so xn ∈
∑n

i=1 x
n−iIi. Therefore, there exist

ci ∈ Ii for i = 1, ..., n such that xn =
∑n

i=1 cix
n−i, hence

∑n
i=0 cix

n−i = 0, so x ∈ Ī. We show
that Ī = J and so N̄ = JM = ĪM .
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3. ∆-closure of a submodule of multiplication modules

In this section M is a noetherian R-module. If M is a multiplication R-module and N is a
submodule of M , then by [3], for each ideal I of R, (N :M I) = (N : IM)M . Moreover, for
each submodule K = JM of M , by considering the definition of product of submodules (N :M

K) = (N : K)M . Since (N :M K) = (N :M JM) = (N :M J) = (N : JM)M = (N : K)M .

Definition 3.1. Let M be a noetherian R-module, and ∆ be a multiplicatively closed set
of submodules of M . Then the set

{
(NK :M K) | K ∈ ∆

}
has a maximum element. Since

(NK :M K) ⊆ (NLK :M LK) and (NL :M L) ⊆ (NLK :M LK), it follows that the maximum
element of this set is unique. We show this maximum element with N∆ and we call it the
∆-closure of N .

Lemma 3.2. Let M be an R-module, N,K be submodules of M and ∆ be a multiplicatively
closed set of submodules of M . Then:
1) N ⊆ N∆.
2) If N ⊆ K, then N∆ ⊆ K∆.
3) N∆K∆ ⊆ (NK)∆.
4) IN∆ ⊆ (IN)∆, for each ideal I of R.

Proof. Proofs of 1 and 2 are easy.
3. Let m = xy ∈ N∆K∆. Then there exist submodules L1 and L2 of M such that xL1 ⊆ NL1

and yL2 ⊆ KL2. Consequently xyL1L2 ⊆ KNL1L2 and so xy ∈ (KNL1L2 :M L1L2) ⊆
(KN)∆.
4. IN∆ = I(NK :M K), for suitable submodule K of M . So IN∆ ⊆ (INK :M K) ⊆ (IN)∆.

Lemma 3.3. Suppose that M is an R-module, N is a submodule of M and ∆ is a multiplica-
tively closed set of submodules of M . Then for each K ∈ ∆, N∆ = (N∆K :M K).

Proof. Obviously N∆ ⊆ (N∆K :M K). Let m ∈ (N∆K :M K) and N∆ = (NL :M L), for
suitable L ∈ ∆. So mK ⊆ N∆K = (NL :M L)K ⊆ (NLK :M L). Therefore, m ∈ ((NLK :M

L) :M K) = (NLK :M LK) ⊆ N∆.

Proposition 3.4. Let M be an R-module, ∆ be a multiplicatively closed set of submodules of
M and {Ni}i∈I be a family of submodules of M . Then:
1)(∩i∈INi)∆ ⊆ ∩i∈I(Ni)∆.
2)(N∆)∆ = N∆.
3)
∑

i∈I(Ni)∆ ⊆ (
∑

i∈I Ni)∆.
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Proof. 1. For each i ∈ I,∩i∈INi ⊆ Ni, so for each i ∈ I, (∩i∈INi)∆ ⊆ (Ni)∆ and hence
(∩i∈INi)∆ ⊆ ∩i∈I(Ni)∆.
2. It is clear by 3.3.
3. Ni ⊆

∑
i∈I Ni, for each i ∈ I, so

∑
i∈I(Ni)∆ ⊆ (

∑
i∈I Ni)∆.

Corollary 3.5. Let M be an R-module, N be a submodule of M and ∆ be a multiplicatively
closed subset of submodules of M . Then:
1)((N : I)M)∆ ⊆ (N∆ :M I), for each ideal I of R.
2) (IN)∆ = (IN∆)∆, for each ideal I of R.
3) (N∆ :M K∆) = (N∆ :M K), for each submodule K ∈ ∆.

Proof. 1. Since I(N : I)M ⊆ N , so by 3.2 we have

I((N : I)M)∆ ⊆ (I(N : I)M)∆ ⊆ N∆

thus ((N : I)M)∆ ⊆ (N∆ :M I).
2. IN ⊆ IN∆ ⊆ (IN)∆, so by 3.2 and 3.4

(IN)∆ ⊆ (IN∆)∆ ⊆ ((IN)∆)∆ = (IN)∆.

3.It is clear that (N∆ :M K∆) ⊆ (N∆ :M K), since by 3.2, K ⊆ K∆. Moreover, K(N∆ :M

K) ⊆ N∆, so by 3.2 and 3.3

K∆(N∆ :M K) ⊆ (K(N∆ :M K))∆ ⊆ (N∆K :M K)∆ = (N∆)∆ = N∆

hence (N∆ :M K) ⊆ (N∆ :M K∆).

Lemma 3.6. Suppose that M is an R-module, N is a submodule of M and ∆ is a multiplica-
tively closed set of submodules of M . Then for each K ∈ ∆, N∆ = (N∆K :M K) = ((NK)∆ :M

K).

Proof. N∆ = (N∆K :M K) ⊆ (N∆K∆ :M K) ⊆ ((NK)∆ :M K). Now let m ∈ ((NK)∆ :M

K), then mK ⊆ (NK)∆ = (NKL :M L) for suitable submodule L of M . Hence mKL ⊆ NKL

and so m ∈ (NKL :M KL) ⊆ N∆.

Theorem 3.7. Let M be a faithful multiplication module and N = IM be a submodule of M .
If ∆ is a multiplicatively closed set of submodules of M . Then N̄ ⊆ N∆.
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Proof. Let x ∈ N̄ = ĪM . Then x = im for some i ∈ Ī and N is a reduction of (I +Ri)M , by
2.10 and 2.12. For some n ∈ N, we have

I(I +Ri)nM = (I +Ri)n+1M = (I +Ri)n(I +Ri)M = (I +Ri)nIM + (I +Ri)niM.

So iM(I + Ri)n ⊆ (I + Ri)nIM , it follows that i ∈ ((I + Ri)nIM :R (I + Ri)nM). Set
(I + Ri)nM = K. Therefore, i ∈ (KN :R K) and so iK ⊆ KN and iKM ⊆ KNM = KN .
Consequently im ∈ (KN :M K) ⊆ N∆.

Theorem 3.8. Let R be a noetherian ring, M be a faithful multiplication R-module, ∆ be a
multiplicatively closed set of submodules of M , and Λ be the set of all submodules of M that are
not contained in any minimal prime submodules. If ∆ ⊆ Λ, then N̄ = N∆ for each submodule
N of M .

Proof. Let N = IM for some ideal I of R, Λ1 be the set of all ideals of R that are not contained
in any minimal prime ideal, and ∆1 = {J ⊴ R; JM ∈ ∆}. By [1, 2.11, 3.1], ∆1 ⊆ Λ1, so by
[13, 3.2], for each ideal I of R, I∆1 ⊆ Ī. We claim that N∆ = I∆1M and therefore, by 2.12

N∆ = I∆1M ⊆ ĪM = N̄ .

Assume that m ∈ I∆1M , so m = im1 and i ∈ I∆1 = (IJ : J) for some ideal J of R. Thus
iJM ⊆ IJM , so m = im1 ∈ (IJM : JM)M ⊆ (IJM :M JM) = (NK :M K) ⊆ N∆, where
K = JM ∈ ∆. On the other hand since M is finitely generated faithful multiplication, we
have

N∆ = (NK :M K) = (NK : K)M = (IJM : JM)M = (IJ : J)M ⊆ I∆1M

Theorem 3.9. With the conditions of Theorem 3.8, if L,K ∈ ∆ and NK = LK, then N = L.

Proof. Let M be a faithful multiplication R-module and N,L,K be submodules of M such
that NK = LK. Then (NK)∆ = (LK)∆. Suppose that m ∈ N̄ = ĪM . Hence m = xm′ for
some x ∈ Ī. By 2.10 and 2.12 N is a reduction of (I + Rx)M and there exists n ∈ N, such
that I(I + Rx)nM = (I + Rx)n+1M . Now as we show in 3.7 x(I + Rx)nM ⊆ I(I + Rx)nM

and so for all K ∈ ∆,

xK(I +Rx)nM ⊆ K(I +Rx)nIM.
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Therefore,

x ∈ (NK(I +Rx)n : K(I +Rx)nM) ⊂ ((NK)∆(I +Rx)nM :R K(I +Rx)nM)

= ((LK)∆(I +Rx)nM :R K(I +Rx)nM).

Now by 3.6

m = xm′ ∈ ((LK)∆(I +Rx)nM :M K(I +Rx)nM)

= (L∆K(I +Rx)nM :M K(I +Rx)nM)

= L∆ = L̄.

Consequently N̄ ⊆ L̄. In the similar way we can prove that L̄ ⊆ N̄ .

Theorem 3.10. Let ∆, N and K be as in theorem 3.8. The following are equivalent:
1) NL = KL for some L ∈ ∆;
2) NT = KT for every T ∈ ∆;
3) N̄ = K̄.

Proof. 1 → 2) Suppose that m ∈ NT = IJM , where N = IM and T = JM . Then m = xm′,
where x ∈ IJ . Hence NT is a reduction of (IJ +Rx)M and so there exists s ∈ N, such that

x(IJ +Rx)sM ⊆ IJ(IJ +Rx)sM.

Let L = lM . Then xl(IJ +Rx)sM ⊆ IJl(IJ +Rx)sM and we have the following relations:

xL(IJ +Rx)sM ⊆ TNL(IJ +Rx)sM = TKL(IJ +Rx)sM.

This shows that x ∈ (TKL(IJ +Rx)sM :R L(IJ +Rx)sM) and m ∈ (TKL(IJ +Rx)sM :M

L(IJ +Rx)sM) ⊆ (TK)∆ = TK. Similary, we prove that TK ⊆ NT

2 → 3) By 3.9.
3 → 1) N̄ = N∆ = (NT1 :M T1) = K∆ = (KT2 :M T2) for some T1, T2 ∈ ∆. Set L = T1T2.
Clearly L ∈ ∆ and NL = (NL :M L)L = (KL :M L)L = KL because (NT1T2 :M T1T2) =

(NL :M L) ⊆ N∆ = N̄ = K̄ and N∆ = (NT1 :M T1) ⊆ (NT1T2 :M T1T2). Consequently
(NL :M L) = N∆ = K∆ = (KL :M L).
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4. Coreduction over comultiplication modules

Definition 4.1. Let M be an R-module and N,K be submodules of M . The coproduct of
N and K is defined in [4] as C(NK) = (0 :M Ann(N)Ann(K)). It is easy to see that if M is
comultiplication and N = (0 :M I),K = (0 :M J), then C(NK) = (0 :M IJ).

Definition 4.2. Let M be an R-module and N,K be submodules of M such that N ⊆ K.
We say that K is a coreduction of N , if there exists a natural number s such that (0 :M

Ann(K)Anns(N)) = (0 :M Anns+1(N)). We denote it by C(KN s) = C(N s+1). The least
integer s such that C(KN s) = C(N s+1) is said to be the coreduction number of N with respect
to K and is denoted by rK(N).

Lemma 4.3. Let M be an R-module and N ⊆ K be submodules of M such that K is a
coreduction of N . Then for any m ∈ N and any j ≥ rk(N); C(KmN j) = C(Nm+j).

Proof. Let I = Ann(K), J = Ann(N) and rk(N) = s. Then we have the following:

C(KmN j) = (0 :M ImJ j) = (0 :M IJsIm−1J j−s)

=
(
(0 :M IJs) :M Im−1J j−s

)
=
(
(0 :M Js+1) :M Im−1J j−s

)
= (0 :M Im−1J j+1) = . . . = (0 :M IJ j+m−1)

= ((0 :M IJs) :M J j+m−1−s) = (0 : Js+1J j+m−1−s)

= (0 :M J j+m) = C(Nm+j).

Lemma 4.4. Let M be an R-module and L ⊆ N ⊆ K be submodules of M . If K is a
coreduction of N and N is a coreduction of L then K is a coreduction of L.

Proof. Easy.

Lemma 4.5. Let M be an R-module and a submodule K of M be a coreduction of submodules
N and L of M . Then K is a coreduction of N ∩ L.

Proof. Let K = (0 :M I), N = (0 :M J), L = (0 :M l). By assumption N ⊆ K and L ⊆ K and
so N ∩ L ⊆ K. Also we have C(KLt) = C(Lt+1), C(KN s) = C(N s+1), for suitable s, t ∈ N.
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So we have:

C(K(N ∩ L)t+s) = C((0 :M I)
(
(0 :M J) ∩ (0 :M l)

)t+s
)

= C((0 :M I)
(
0 :M (J + l)t+s

)
)

=
(
0 :M I(J + l)t+s

)
= (0 :M

t+s∑
i=0

IJ ilt+s−i)

=

(
0 :M

t+s+1∑
i=0

J ilt+s+1−i

)

=

t+s+1∩
i=0

(0 :M J ilt+s+1−i) = C((N ∩ L)t+s+1).

Definition 4.6. Let K be a submodule of R-module M and φ be the set of all submodules
of M such that K is a coreduction of them. By the previous lemma φ has a unique minimum
element. We denote it by K. Indeed K =

∩
Ki∈φ

Ki.

Definition 4.7. Let M be an R-module and N be a submodule of M . An element x ∈ R is
said to be integrally codependent on N , if there exists n ∈ N, such that

n∩
i=1

(C(N i) :M xn−i) ⊆

(0 :M xn).

Theorem 4.8. Let M be a comultiplication R-module and N = (0 :M I) be a submodule of
M . Then an element x ∈ R is integrally codependent on N , if and only if N is a coreduction
of K = (0 :M I +Rx).

Proof. Let x be integrally codependent on N . Then there exists n ∈ N such that
n∩

i=1
(C(N i) :M

xn−i) ⊆ (0 :M xn). We prove that C(NKn) = C(Kn+1).

C(Kn+1) = (0 :M (I +Rx)n+1) ⊆ (0 :M I(I +Rx)n) = C(NKn).

Now suppose that m ∈ C(NKn) = (0 :M I(I+Rx)n). Then mI(I+Rx)n = 0 and this follows
that:

mIn+1 +mInRx+ · · ·+mIRxn = 0.(4.1)
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On the other hand:

m ∈ (0 :M I(I +Rx)n) =
(
(0 :M I) :M (I +Rx)n

)
= (N :M (I +Rx)n)

= (N :M

n∑
i=0

Ii(Rx)n−i)

=
n∩

i=0

(
N :M Ii(Rx)n−i

)
=

n∩
i=0

(
(N :M Ii) :M (Rx)n−i

)
=

n∩
i=0

(
C(N i+1) :M (Rx)n−i

)
⊆ (0 :M xn)

⊆ (0 :M xn+1).

Consequently

mxn+1 = 0.(4.2)

Now from(4.1),(4.2), we conclude that

mIn+1 +mIn(Rx) + · · ·+mI(Rx)n +mxn+1 = 0.

Hence m ∈
(
0 :M (I +Rx)n+1)

)
= C(Kn+1).

Conversely, let N be a coreduction of K and C(NKn−1) = C(Kn) for some n ∈ N. Therefore,

(0 :M I(I +Rx)n−1) = (0 :M (I +Rx)n).

We claim that
n∩

i=1

(C(N i) :M xn−i) ⊆ (0 :M xn).

Let m ∈
n∩

i=1
(C(N i) :M xn−i). Then for each i = 1, . . . , n,

m ∈ (C(N i) :M xn−i) = ((0 :M Ii) :M xn−i)) = (0 :M Iixn−i)

and so mIi(Rx)n−i = 0 for each i = 1, . . . , n. Consequently

mIn +mIn−1Rx+ · · ·+mI(Rx)n−1 = 0.(4.3)

Hence m ∈ (0 :M I(I +Rx)n−1) =
(
0 :M (I +Rx)n

)
and this follows that

mIn +mIn−1Rx+ · · ·+mI(Rx)n−1 +m(Rx)n = 0.(4.4)
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Now from (4.3) and (4.4), we conclude that mxn = 0 and so m ∈ (0 :M xn).

Corollary 4.9. Let R be a noetherian ring, M be a comultiplication R-module and K ⊆ N

be submodules of M . Then:
1) If each element of Ann(K) is integrally codependent on N , then N is a coreduction of K.
2) If J = {x ∈ R: x is integrally codependent on N}, then N ⊆ (0 :M J)

Proof. 1) Let each element of Ann(K) be integrally codependent on N . Then N = (0 :M I)

is a coreduction of (0 :M I + Rx) for every x ∈ Ann(K) and so N is a coreduction of
(0 :M I +Ann(K)) = (0 :M I) ∩ (0 :M Ann(K)) = N ∩K = K.
2) It is clear from 1 and 4.6.
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