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1. INTRODUCTION

Let S = {S;|i € I} be a family of sets. By the intersection graph I'(S) of S we mean the
graph whose vertex set is S and in which the vertices S; and S; are adjacent if and only if
SiNS; # 0, for i # j. (see [18, p. 1]). In this paper, we introduce a kind of intersection graph
of an algebraic structure. The intersection graph of algebraic structures has been studied by
several authors. As a pioneer, J. Bosak [8] in 1964, defined the graph of semigroups. Inspired
by his work, B. Csakany and G. Pollak [11] in 1969, studied the graph of subgroups of a finite
group. The intersection graphs of finite abelian groups studied by B. Zelinka [21] in 1975.
In 2009, the intersection graph of ideals of a ring, was considered by I. Chakrabarty et. al.
in [9]. S. H. Jafari and N. Jafari Rad in [12,13] in 2010 and 2011, studied the planarity of
intersection graphs of ideals of rings and domination in the intersection graph of rings and
modules, respectively. For more results on the intesection graphs of ideals see [1, 2]. In 2012,
on a graph of ideals, researched by A. Amini et. al. in [4] and also, intersection graph of
submodules of a module, introduced by S. Akbari et. al. in [3]. In 2013, the intersection
graph of a module, was considered by E. Yaraneri in [20] and in 2016, we introduce the dual
graph of the intersection graph of submodules of a module in [14]. Recently, we searched some
properties of the intersection graph and the co-intersection graph of submodules of a module,
see [15,16,17]. Motivated by previous studies on the intersection graph of algebraic structures,
in this paper, we define the small intersection graph of submodules of a module. Our main
goal is to study the connection between the algebraic properties of a module and the graph
theoretic properties of the graph associated with it.

Throughout this paper, R is a (not necessarily commutative) ring with identity and M is
a unitary left R-module. We mean from a nontrivial submodule of M is a nonzero proper
left submodule of M. A submodule N of an R-module M is called small or superfluous in M
(we write N < M), if for every submodule X C M, with N + X = M implies that X = M.
The radical of an R-module M, denoted by Rad(M), is the sum of all small submodules of
M, and also, is the intersection of all maximal submodules of M, by [5, Proposition 9.13]. A
submodule K of a nonzero module M is said to be large or essential (we write K < M), if
K N L # (0), for every nonzero proper submodule L of M. If every nonzero submodules of
M is essential in M, then M is called a uniform module. A nonzero R-module M is called
hollow, if every proper submodule of M is small in M. An R-module M is called uniserial, if
any two submodules are comparable. A nonzero R-module M is called local, if it has a unique
maximal submodule, i.e., a proper submodule which contains all other proper submodules. A
nonzero R-module M is said to be simple, if it has no nontrivial submodule. The socle of an
R-module M, denoted by Soc(M), is the sum of all simple submodules of M, and also, is the

intersection of all essential submodules of M, by [5, Proposition 9.7]. The module M is called
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semisimple if it is a direct sum of simple submodules.

Let ' be a graph with the vertex set V(I'). By order of I', we mean the number of vertices
of I" and we denoted it by |['|. A graph T is finite, if |I'| < oo, otherwise, I is infinite. If x and
y are two adjacent vertices of I', then we write x <> y. The degree of a vertex v in a graph
I, denoted by deg(v), is the number of edges incident with v. The minimum degree of T' is
0(T). Let x and y be two distinct vertices of I'. An z, y-path is a path with starting vertex x
and ending vertex y. For distinct vertices x and y, d(z,y) is the least length of an x, y-path.
If I has no such a path, then d(z,y) = co. The diameter of I'; denoted by diam(I"), is the
supremum of the set {d(x,y): x and y are distinct vertices of I'}. A cycle in a graph is a path
of length at least 3 through distinct vertices which begins and ends at the same vertex. The
girth of a graph is the length of its shortest cycle. A graph with no-cycle has infinite girth. A
graph is said to be connected, if there is a path between every pair of vertices of the graph.
A tree is a connected graph which does not contain a cycle. A star graph is a tree consisting
of one vertex adjacent to all the others. A complete graph with n distinct vertices, denoted
by K,. A complete bipartite graph with two part sizes m and n is denoted by K,,,. By a
clique in a graph I', we mean a complete subgraph of I'. A graph is said to be planar, if it
has a drawing in a plane without crossings. We say that two distinct vertices u and v of the
graph I'(M) are orthogonal, denoted by u L v, if u and v are adjacent in I'(M) and there is no
vertex w € I'(M) which be adjacent to both u and v. A graph I is called complemented, if for
each vertex v of I', there is a vertex w of I' (called a complement of v) such that v L w. By
a dominating set(DS) in a graph I', we mean a subset D of vertex set V(I') such that every
vertex in ['\D is adjacent to at least one vertex in D. A DS is called minimal dominating
set, denoted by mDS, if for any subset S of DS with S # DS, S is not a DS. The domination
number of T', written (I"), is the smallest of the cardinalities of the minimal dominating sets
of I.

2. Connectivity, Diameter, Girth and Planarity of I'(M)

In this section, we characterize some modules whose small intersection graphs of nontrivial
submodules are connected, complete and planar. Also, the diameter and the girth of I'(M)

are determined.

Definition 2.1. The small intersection graph of nontrivial submodules of an R-module M,
denoted by I'(M), is an undirected simple graph whose vertices are in one-to-one correspon-
dence with all nontrivial submodules of M and two distinct vertices X and Y are adjacent if
and only if X NY <« M.
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Proposition 2.2. Let M be an R-module with the graph T'(M). Then I'(M) is complete, if
one of the following holds.

(1) If M = My ® Ma, where My and My are two simple R-modules.

(2) If M is hollow.

Proof. (1) Assume that M = M; @& My such that M; and My are two simple R-modules.
Then every nontrivial submodule of M is simple. Let N and K be two distinct vertices of the
graph I'(M). Then they are the nontrivial submodules of M which are simple and minimal.
Moreover, NN K C N,K and if NN K # (0), then minimality of N and K implies that
NNK = N = K, which is a contradiction. Therefore, N N K = (0) < M, thus I'(M) is
complete.

(2) Let M be a hollow R-module. Suppose that N; and Ny are two distinct vertices of the
graph I'(M). Hence N; and N are two nonzero small submodule of M. As Ny N Ny C N;, for
i = 1,2, by [5, Proposition 5.17(1)], N1 N No < M. Therefore, I'(M) is a complete graph.

Corollary 2.3. Let M be an R-module. Then the following hold:
(1) If M is a uniserial or local R-module, then the graph T'(M) is complete.
(2) Every nonzero small submodule of M is adjacent to all other vertices of T'(M) and the

induced subgraphs on the sets of small submodules of M are cliques.

Proof. (1) Suppose that M is a uniserial R-module. Then each two nontrivial submodules of
M are comparable. Clearly, every nontrivial submodule of M is a small submodule. Hence M
is a hollow R-module. Also by [19, 41.4(2)], local R-modules are hollow and the rest follows
from Part 2 of Proposition 2.2.

(2) Obvious.

Example 2.4. (1) For every prime number p and for all n € N with n > 2, the Z-module Z»
is local, then it is hollow. Also since each two submodules of Z-module Zy,~ are comparable,
then every proper submodule of Zpe is small in Z,~. Hence for every prime number p, the
Z-module Zpe is hollow. Thus by Part 2 of Proposition 2.2, I'(Zy») and I'(Zp~) are two
complete graphs. (Clearly, I'(Zy») = K, —1.)

(2) The induced subgraph on the set of finitely generated submodules of the left Z-module Q
are cliques in the graph I'(Q). To see this, assume that X C Q and X is finitely generated.
Let X =< q1,q2,...,qn >, where ¢; € Q, for 1 <i <n. Hence X = ¢1Z+ ¢2Z + ... + ¢, Z. Now,
for Y CQ,if X +Y = Q, then as X has a spanning set {q1, q2, ..., qn }, thus {¢1, g2, ..., g } U X
is a spanning set of Q and it can be possible if X is a spanning set of Q. Hence ¥ = Q.
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Consequently, every finitely generated submodule of Q as a Z-module, is a small submodule.

Then it follows from Part 2 of Corollary 2.3.

Lemma 2.5. Let M be an R-module. If K is a finitely generated or a semisimple submodule

of M contained in Rad(M), then K < M.

Proof. First assume that K is a finitely generated submodule of M. Then see Part(a) of [6,
Proposition 3.2.9]. Now, suppose that K is a semisimple submodule of M. Then Soc(K) = K
and since K C Rad(M), Soc(K) C Soc(Rad(M)). Also by [10, 2.8(9)], Soc(Rad(M)) < M.
Therefore, by [5, Proposition 5.17(1)], K < M.

Let © be a non-empty set (class) of R-modules. An R-module M is said to be finitely
cogenerated by ), or finitely Q2-cogenerated, if there is a monomorphism M — Il;<pw; = @i<pw;

with finitely many w; € Q2 and k € N.

Proposition 2.6. Let M be an R-module with the graph T'(M) and Rad(M) # (0). Then the
following conditions hold:

(1) If X is a nontrivial submodule of M which is direct summand of M with (0) # Rad(X) <
M, then T'(M) contains at least one cycle of length 3.

(2) If K is a nontrivial finitely generated or semisimple submodule of M contained in Rad(M ),
then d(K, Rad(M)) =1 and d(K,N) =1 for every nontrivial submodule N of M.

(3) If M is a uniform R-module with Soc(M) # (0) or a finitely cogenerated by a set, then
d(Rad(M), Soc(M)) = 1.

Proof. (1) Since X is a direct summand of M, there exists a submodule Y of M such
that X @Y = M. Then Rad(X) @& Rad(Y) = Rad(M). Since Rad(X) C X and
X NRad(Y) C XNY = (0), by the modularity condition, X N Rad(M) = Rad(X). Then
XNRad(M) < M. Also, Rad(X) = X NRad(X) < M and Rad(X) = Rad(X)N Rad(M) <
M and we have d(X, Rad(M)) = 1, d(X, Rad(X)) = 1 and d(Rad(X), Rad(M)) = 1. Hence
(X, Rad(X), Rad(M) is a cycle. Consequently, the graph I'(M) contains at least one cycle of
length 3.

(2) Suppose that K is a nontrivial finitely generated or semisimple submodule of M. Then by
Lemma 2.5, K < M. Since K C Rad(M), K = KN Rad(M) < M and since KN N C K,
K NN < M for every other nontrivial submodule N of M. Hence d(K, Rad(M)) = 1 and
d(K,N)=1.

(3) We consider the nontrivial submodule Soc(Rad(M)) of M. Suppose that M is a
uniform R-module, then Rad(M) < M and Soc(M) < M. Hence by [5, Corollary 9.9],
Soc(Rad(M)) = Rad(M)NSoc(M) # (0). Also, if M is a finitely cogenerated R-module, then
by [19, 21.3], Soc(M) is finitely generated and essential in M and again Soc(Rad(M)) # (0).
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Thus Soc(Rad(M)) is a vertex of the graph I'(M). Since by [10, 2.8 (9)], Soc(Rad(M)) < M,
we have Rad(M) N Soc(M) < M. Therefore, d(Rad(M), Soc(M)) = 1.

Corollary 2.7. Let M be an R-module with the graph T'(M). If M has at least one nonzero
small submodule, then T'(M) is a connected graph and diam(T'(M)) < 2.

Corollary 2.8. Let M be an R-module with Rad(M) # (0). ThenT'(M) is a connected graph,
if one of the following holds.
(1) The module M is finitely generated.

(2) There exists a nontrivial finitely generated or semisimple submodule of M contained in

Rad(M).

Proof. Part 1 is obvious and Part 2 follows from Lemma 2.5 and Corollary 2.7.

Theorem 2.9. Let M be an R-module with graph T'(M). If 6(T'(M)) > 1, then I'(M) is
connected and diam(I'(M)) < 3.

Proof. Let A and B be two non-adjacent vertices of I'(M). Since 6(I'(M)) > 1, there exist
submodules A; and Bj such that AN A; < M and BN By <« M. Now, if A1 N By <« M, then
A+ Ay & By < B is a path of length 3. Otherwise A <+ A; N By < B is a path of length 2.
It follows that I'(M) is a connected graph and diam(I'(M)) < 3.

Proposition 2.10. Let M be a semisimple R-module such that it is not simple. Then the
following statements hold:

(1) The graph I'(M) has no isolated vertex.

(2) The graph I'(M) is connected and diam(I'(M)) < 3.

Proof. (1) Suppose that M is semisimple. Let X be a vertex of the graph I'(M). Since M
is semisimple, then by Theorem 9.6 Part (e) of [5, p. 117], every submodule of M is a direct
summand of M. Thus there exists a submodule Y of M such that M = X &Y. Hence
X NY = (0) <« M and thus there exists an edge between vertex X of I'(M) and another
vertex of this graph. Then X is not an isolated vertex. Consequently, I'(M) has no isolated
vertex.

(2) By Theorem 2.9 and Part 1.

Example 2.11. Consider the Z-module Z3g, which is semisimple. Then the graph I'(Zsg) is
connected and diam(I'(Zsp)) = 3. (see Fig.1)
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<3> <5>

Fig. 1. T'(Z3o)

For a module M, we use S(M) which denotes the set of all the nonzero small submodules

of M.

Theorem 2.12. Let M be an R-module and |S(M)| > 1. IfT'(M) is a tree, then IT'(M) = K;
or I'(M) is a star graph.

Proof. Assume that I'(M) is a tree. Then |S(M)| < 2. Otherwise, let X and Y be two
nonzero small submodules of M. Thus (X, X NY.,Y) is a cycle of length 3, a contradiction.
Since |S(M)| > 1, then |S(M)| = 1. Hence M has only one nonzero small submodule. Let
S € S(M). For every vertex V of I'(M), if V. = S, then I'(M) = K; and if V # S, as
VNS <« M, we deduce I'(M) = K,. Now, let Q = {v; : v; # s,i € I}. Then every two
arbitrary distinct vertices v; and vj, ¢ # j, are not adjacent and for ¢ # j, v; <+ S <> v is a

path and thus I'(M) is star graph, and the proof is complete.

Theorem 2.13. Let M be an R-module with the graph I'(M). If |S(M)| > 2, then I'(M)
contains at least one cycle and grith(I'(M)) = 3.

Proof. Suppose that |S(M)| > 2. Then M has at least two different nonzero small submodules,
say My and M. Since My N My C M;, for i = 1,2, by [5, Proposition 5.17(1)], M1 N My < M.
Moreover My N (My N Ma) < M and My N (M N My) < M. We consider two possible cases
for M7 N Ms.

Case 1: If My N Ma # (0), then d(My, Ms) = 1, d(My, My N My) = 1 and d(Ma, My N M) = 1.
Hence (M7, MiNMa, M>) is a cycle of length 3. Also by [5, Proposition 5.17(2)], M;+ My < M
and since M; N (My + M) < M and My N (My + My) < M, (My, My + Ma, Ms) is a cycle
of length 3. Similarly, (M; N Ms, My, My + Ms) and (My N My, My, My + Ms) are cycles of
length 3 and M7 <> M7 + My <> My <> M1 N My <> M is a cycle of length 4.
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Case 2: If My N My = (0), then (My, My + Ma, Ms) is a cycle of length 3 in the graph I'(M).
Therefore, I'(M) contains at least one cycle and so grith(I'(M)) = 3.

To prove the next results, we need a celebrated theorem due to Kuratowski.

Theorem 2.14. ([5, Theorem 10.30]) A graph is planar if and only if it contains no

subdivision of either K5 or K3 3.

Theorem 2.15. Let M be an R-module with the graph T'(M). Then the following conditions
hold:

(1) If |[S(M)| =1 or |S(M)| = 2, and the intersection of every pair of non-small submodules
of M is a non-small submodule, then I'(M) is a planar graph.

(2) If |S(M)| > 3, then I'(M) is not a planar graph.

Proof. (1) According to assumption, if [S(M)| = 1, then I'(M) is a star graph which is planar
and if |S(M)| = 2, then by the definition of planar graph, I'(M) is planar.

(2) Suppose that |S(M)| > 3. Then M has at least three different nonzero small submodules,
say M1, My and Ms. A similar argument in the proof of Theorem 2.13 shows that M7, My, Ms,
My + My, My + M3 and My + Ms are adjacent vertices in the graph I'(M). Therefore, I'(M)
contains at least one subgraph of the complete graph K5 such as the subgraph induced on the
set {My, My, M3, My + My, My + M3z} which is a complete graph K5. Hence, by Theorem 2.13,
['(M) is not a planar graph.

Example 2.16. We Consider Zsg as a Zgp-module. The vertex < 10 > of the graph I'(Zay)
is the only nonzero small submodule of Zsy. The graph I'(Zyg) is connected and planar with
diam(T'(Z20)) = 2 and girth(I'(Za)) = 3. (see Fig.2)

<10>

O
<2> <5> <4>

Fig. 2. F(Zzo)
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3. Orthogonal Vertices and Domination of I'(M)

In this section, we study the orthogonal vertices of I'(M) and their relationship with the
nonzero small submodules of M and also we introduce some modules whose small intersection
graphs are complemented. We obtain some results on the domination of I'(M) and study the

condition under which the domination number of I'(M) is finite.

Two distinct vertices X and Y of the graph I'(M) are orthogonal, denoted by X 1 Y, if
X NY < M and there is no vertex Z € I'(M) such that XN Z < M and Y NZ <« M.

Proposition 3.1. Let M be an R-module with |S(M)| > 2 and |I'(M)| > 3. Then the following
conditions hold:

(1) Every two small submodules of M cannot be orthogonal vertices to each other.

(2) The graph I'(M) has at least one triangle.

(8) For |T(M)| =n and |S(M)| = 2, if we take m equal to the number of the triangles of this
graph, then (n —2) <m < %n(n —1)(n—2).

Proof. (1) Suppose that N and K are two nonzero small submodules of M, then NNK <« M
and for any vertex L € T'(M), since NNLC Nand KNLC K, NNL< M and KNL <« M.
Thus L is adjacent to both N and K. Therefore, they cannot be orthogonal vertices to each
other.

(2) It is obvious.

(3) Let |I'(M)| = n, where n > 3 and |S(M)| = 2. Then the number of the submodules of
M, which are non-small in M, is equal to n — 2. Now we consider C'(k,r) for the number of
possible combinations of r objects from a set of k objects. Hence, if we choose two vertices
of the triangles are small submodules, then the number of the triangles is at least equal to
n—2,1) = n — 2. Also, the number of the triangles in this graph is at most equal to
n—2,1)+2C(n —2,2) + C(n — 2,3) = tn(n — 1)(n — 2). Therefore, (n —2) < m <
tn(n—1)(n—2). g

C(
c(

Theorem 3.2. Let M be an R-module. Then the following are equivalent:

(1) The graph I'(M) has no triangle.

(2) Every two adjacent vertices of the graph T'(M) are orthogonal vertices.

(8) The module M has at most one nonzero small submodule such that the intersection of

every pair of the non-small nontrivial submodules of M is non-small.

Proof. (1) = (2) Let A and B be two adjacent vertices of the graph I'(M) which are not
orthogonal vertices. Then by the definition of orthogonality, there exists another vertex C

of the graph I'(M) which is adjacent to both A and B, then there exists a cycle of the form
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(A, B,C). This means that there is a triangle in the graph I'(M), a contradiction.

(2) = (3) Assume that every two adjacent vertices of the graph I'(M) are orthogonal vertices.
Let there exist at least two nonzero small submodules S7 and Sy of M. Since S1 NSy <€ M,
they are adjacent vertices of the graph I'(M) and also S; L S;. However, by Proposition
3.1(1), they cannot be orthogonal to each other, a contradiction.

(3) = (1) Suppose that M has no nonzero small submodule. Since the intersection of every pair
of the non-small nontrivial submodules of M is non-small, I'(M) has no triangle. Moreover,
Let S be the only nonzero small submodule of M. Then for every three arbitrary vertices My,
My and M3 of the graph I'(M), at least two of them are non- small. Let S = M;. As MyN Ms;
is non-small submodules of M, then My <> S <> Mj is a path. Also if S # M;, for i = 1,2, 3.
Since M; N M is non-small submodules of M, for ¢,5 = 1,2,3 and ¢ # j, then My, M> and
M3 are not adjacent vertices in the graph I'(M). Therefore, there is no triangle in the graph
I'(M). o

Corollary 3.3. Let M be an R-module and V', W be two submodules of M such that M =
V+W. If Rad(M) = (0) and V L W in I'(M), then M =V & W.

Proof. Suppose that V and W are two submodules of M such that M = V 4+ W. Since
V L W in the graph I'(M), then VNW <« M. Hence VW C Rad(M). Thus VW = (0).
Consequently, M =V & W.

Theorem 3.4. Let M be an R-module, then the following statements hold:
(1) If M is a semisimple R-module which is not simple, then the graph I'(M) is complemented.
(2) If M is a finitely generated R-module with Rad(M) # (0), then the graph T'(M) is not

complemented.

Proof. (1) Suppose that M is a semisimple R-module. Let N be a vertex of the graph I'(M).
Then, by part 1 of proposition 2.10, I'(M) has no isolated vertex. Hence there exists a vertex
K of I'(M) such that d(N,K) = 1. Since M has no nonzero small submodule, there is no
vertex L of I'(M) such that LN N < M and LN K < M. Therefore, I'(M) is a complemented
graph.

(2) Since M is a finitely generated R-module, (0) # Rad(M) < M. We consider two possible
cases for Rad(M).

Case 1: If Rad(M) is a simple submodule of M, since Rad(M) = N;crM;, where M; is the
maximal submodules of M, for all i € I, we choose N = M;cr_(13M;. Then (My, N, Rad(M))
is a triangle in the graph I'(M). Therefore, the graph I'(M) is not complemented.

Case 2: If Rad(M) is not a simple submodule of M, then there exists a nontrivial submodule
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X of M which X C Rad(M), then by [5, Proposition 5.17(1)], X < M. Thus for each vertex
Y of I'(M), (X,Y, Rad(M)) is a triangle of this graph. Consequently, the graph I'(M/) is not

complemented.

Example 3.5. Let n = pi1po...pr, where p; is a prime number, for all ¢ = 1,2, ...,k and k € N.
Then Z,, = Zy, ®Zp, & ... B Ly, is a semisimple Z-module and I'(Z,,) is a complemented graph.

Proposition 3.6. Let M =V @ W be a finitely generated R-module such that Rad(V') # (0)
and Rad(W) # (0). Then the following conditions hold:

(1) The vertices V- and W are not orthogonal in the graph T'(M).

(2) The graph T'(M) is not planar.

(8) The graph I'(M) is not complemented.

Proof. (1) Suppose that M =V @& W. Then VN W = (0) < M and since M is a finitely
generated R-module, Rad(M) < M. Hence by [5, Proposition 5.17(1)], V N Rad(M) < M
and W N Rad(M) < M. Thus I'(M) has a triangle of the form (V, Rad(M), W). Therefore,
by Theorem 3.2(2), the vertices V' and W are not orthogonal in the graph I'(M).

(2) Let M =V @&W. Then Rad(M) = Rad(V) & Rad(W) and Rad(V)NRad(W) = (0) < M.
Also Rad(V) € V and V N Rad(W) C VNW = (0), and so the modularity condition,
implies that V' N Rad(M) = Rad(V) and similarly, W N Rad(M) = Rad(W). Moreover,
V N Rad(V) = Rad(V) < M, W N Rad(W) = Rad(W) < M, V N Rad(M) = Rad(V) < M,
WNRad(M) = Rad(W) < M, Rad(V)NRad(M) = Rad(V) < M and Rad(W)N Rad(M) =
Rad(W) < M. Hence V., W, Rad(V'), Rad(W) and Rad(M) are adjacent vertices in the graph
['(M). Therefore, the set {V, W, Rad(V'), Rad(W), Rad(M)} induces a complete subgraph Kj
in I'(M). Hence, by Theorem 2.13, I'(M) is not a planar graph.

(3) Take M =V @& W in Theorem 3.4(2).

Let I" be a graph with the vertex set V(I') and DS be a dominating set of the graph I". For
a ring R, we define v(I'(R)) = 0, if R is a field and also for an R-module M, v(I'(M)) = 0, if
M is simple. In this paper, a subset S of the vertex set of the graph I'(M) is a DS if and only
if for any nontrivial submodule N of M there is a K in S such that NN K < M.

Lemma 3.7. Let M be an R-module with |I'(M)| > 2, then the following hold:

(1) If S is a subset of the vertex set of the graph T'(M) such that S either contains at least
one small submodule of M or there exists a verter X € S which X NY = (0), for every vertex
Y eVIT(M))\S. Then S is a DS in T'(M).

(2) If M has at least one nonzero small submodule, then for each nonzero small submodules
X of M, {X}is a mDS and v(I'(M)) = 1.
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Theorem 3.8. Let M be an R-module and M = N @& K, where N and K are two simple
R-modules. Then v(I'(M)) = 1.

Proof. Suppose that M = N & K, such that N and K are two simple R-modules. Then by
Part 1 of Proposition 2.2, I'(M) is a complete graph. Let X be an arbitrary vertex of the
graph I'(M). Then for any distinct vertex Y of I'(M), X NY <« M, thus {X} is a mDS and

V(I(M)) = 1. g

The following example shows that the Theorem 3.8 may not be hold for any semisimple

module with three simple direct summand.

Example 3.9. We can see easily that in the graph I'(Zsp), two minimal dominating sets
{<2><3><5>}and {< 6 >,< 10 >,< 15 >} have the smallest of the cardinalities,
hence v(I'(Z30)) = 3.

Corollary 3.10. Let M be an R-module with nontrivial submodule Rad(M) and |I'(M)| > 2.
If M is a uniserial, hollow or local R-module, then every subset of the vertex set of the graph
(M) is a DS in I'(M) and v(I'(M)) = 1.

Example 3.11. Let R = F[z,y]/(z,y)?, where F is an infinite field and = and y are indeter-
minates. Then S = (x,y) is the only maximal ideal of R. Thus S = J(R), which J(R) is the
Jacobson radical of the ring R, and since R is a finitely generated, J(R) < R. Hence I < R

for every proper ideal I of R. Thus R is a hollow. Therefore, the set S = {(z,y)} is a mDS in
I['(R) and y(T'(R)) = 1.

Corollary 3.12. Let M be an R-module with Rad(M) # (0) and S be a subset of the vertex set
of the graph I'(M). Then S = DS(I'(M)) and v(I'(M)) = 1, if one of the following condition
holds:

(1) The module M is finitely generated with Rad(M) € S.

(2) There exists a nontrivial submodule N of M which is direct summand of M with
d(N,Rad(M)) =1 and Rad(N) € S.

(3) If K is a nontrivial finitely generated or semisimple submodule of M contained in Rad(M).
(4) If M is a uniform R-module with Soc(M) # (0) and Soc(Rad(M)) € S.

Proof. (1) Since M is a finitely generated R-module, Rad(M) < M, and Rad(M) € S. Then,
by Part 2 of Lemma 3.7, S = DS(I'(M)) and v(I'(M)) = 1.

(2) Since N is a direct summand of M, there exists a submodule K of M such that NoK = M.
Then Rad(N)® Rad(K) = Rad(M). Since Rad(N) C N and NN Rad(K) C NNK = (0), by
the modularity condition, N N Rad(M) = Rad(N). Since d(N, Rad(M)) =1, NN Rad(M) <
M. Then Rad(N) < M and since Rad(N) € S, it follows from Part 2 of Lemma 3.7.
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(3) By Lemma 2.5 and Part 2 of Lemma 3.7.
(4) By [10, 2.8(9)] and Part 2 of Lemma 3.7.
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