Journal of ALGEBRAIC STRUCTURES $\underset{\text { their }}{\text { tate }}$	Journal of Algebraic Structures and Their Applications ISSN: 2382-9761	(
	www.as.yazd.ac.ir	

COMMUTING CONJUGACY CLASS GRAPHS OF FINITE GROUPS

MOHAMMAD ALI SALAHSHOUR AND ALI REZA ASHRAFI*

Abstract

Suppose that G is a finite non-abelian group. Define the graph $\Gamma(G)$ with the noncentral conjugacy classes of G as vertex set and two distinct vertices A and B are adjacent if and only if there are $x \in A$ and $y \in B$ such that $x y=y x$. The graph $\Gamma(G)$ is called the commuting conjugacy class graph of G and introduced by Mohammadian et al. in [A. Mohammadian, A. Erfanian, M. Farrokhi D. G. and B. Wilkens, Triangle-free commuting conjugacy class graphs, J. Group Theory 19 (3) (2016) 1049-1061]. In this paper, the graph structure of the commuting conjugacy class graph of nilpotent groups of order n are obtained in which n is not divisible by p^{5}, for every prime factor p of n.

1. Introduction

Throughout this paper all groups and graphs are assumed to be finite. Our graph theory notations are taken from [6] and for group theory notions and notations we refer to [ITI]. Suppose that Γ is a graph with vertex set V and edge set E and ρ is an equivalence relation

DOI:10.29252/as.2020.1839
MSC(2010): Primary: 20D60, 20E45.
Keywords: Commuting conjugacy class graph, nilpotent group, p-group.
Received: 01 Jan 2019, Accepted: 22 July 2020.
*Corresponding author
on V. The partition of V constructed from ρ is denoted by Π. The quotient graph $\frac{\Gamma}{\rho}$ is a graph with vertex set Π such that two parts A and B are adjacent if and only if there exists a vertex $x \in A$ and another vertex $y \in B$ such that $x y \in E$.

Suppose that Γ_{1} and Γ_{2} are two graphs. The strong product $\Gamma_{1} \boxtimes \Gamma_{2}$ of graphs Γ_{1} and Γ_{2} is a graph with vertex set $V\left(\Gamma_{1}\right) \times V\left(\Gamma_{2}\right)$. Two distinct vertices $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ of this graph are adjacent if and only if $\left(u_{1}=v_{1}\right.$ and $\left.u_{2} v_{2} \in E\left(\Gamma_{2}\right)\right)$ or ($u_{2}=v_{2}$ and $\left.u_{1} v_{1} \in E\left(\Gamma_{1}\right)\right)$ or (u_{1} is adjacent to v_{1} and u_{2} is adjacent to v_{2}). This product was first introduced by Sabidussi in 1960 [[L2]. If the vertex sets of Γ_{1} and Γ_{2} are disjoint then the join $\Gamma_{1}+\Gamma_{2}$ is a graph with vertex set $V\left(\Gamma_{1}\right) \cup V\left(\Gamma_{2}\right)$ and two vertices $x, y \in V\left(\Gamma_{1}+\Gamma_{2}\right)$ are adjacent if and only if $\left(x y \in E\left(\Gamma_{1}\right) \cup E\left(\Gamma_{2}\right)\right)$ or $\left(x \in V\left(\Gamma_{1}\right)\right.$ and $\left.y \in V\left(\Gamma_{2}\right)\right)$ or $\left(y \in V\left(\Gamma_{1}\right)\right.$ and $\left.x \in V\left(\Gamma_{2}\right)\right)$.

There are several ways to associate a graph to an algebraic structure like groups. The commuting graph $\Delta(G)$ of a group G is one of the most important graphs defined on a group [9] with non-trivial elements of G as vertex set and two no-trivial elements x and y in G are adjacent if and only if $x y=y x$. Rapinchuk et al. [IT] applied this graph to prove that finite quotients of the multiplicative group of a finite dimensional division algebra are solvable.

Mohammadian et al. [$[8]$ introduced the commuting conjugacy class graph $\Gamma(G)$ of a non-abelian group G as a simple graph with non-central conjugacy classes of G as its vertex set and two distinct vertices A and B are adjacent if and only if there are $x \in A$ and $y \in B$ such that $x y=y x[z]$. They obtained some interesting properties of this graph among them a classification of finite groups such that $\Gamma(G)$ are triangle-free is given. It is merit to note that the commuting conjugacy class graph was initially introduced by Herzog et al. [7] in which they considered all non-trivial conjugacy classes of G as its vertex set. It is easy to see that the commuting conjugacy class graph $\Gamma(G)$ is a quotient of the induced graph $\Delta(G)$ on non-central elements of G over the set of all non-central conjugacy classes of the group G.

2. Preliminaries

The aim of this section is to present some results which are crucial in proving the main results of this paper. We start by stating the classification theorem of p-group of order p^{4} given by Burnside [4].

Theorem 2.1. If p is an odd prime, then there are 15 groups of order p^{4} up to isomorphisms. Five of those are abelian and the non-abelian groups can be found in the list below.
(1) $\left\langle a, b, c, d \mid a^{p}=b^{p}=c^{p}=d^{p}=1,[a, b]=[a, c]=[a, d]=[b, c]=[b, d]=1, d c d^{-1}=a c\right\rangle$,
(2) $\left\langle a, b \mid a^{p^{2}}=b^{p^{2}}=1, b a b^{-1}=a^{p+1}\right\rangle$,
(3) $\left\langle a, b \mid a^{p^{3}}=b^{p}=1, b a b^{-1}=a^{p^{2}+1}\right\rangle$,
(4) $\left\langle a, b, c \mid a^{p^{2}}=b^{p}=c^{p}=1, a b=b a, a c=c a, c b c^{-1}=a^{p} b\right\rangle$,
(5) $\left\langle a, b, c \mid a^{p^{2}}=b^{p}=c^{p}=1, a b=b a, b c=c b, c a c^{-1}=a^{p+1}\right\rangle$,
(6) $\left\langle a, b, c \mid a^{p^{2}}=b^{p}=c^{p}=1, a b=b a, b c=c b, c a c^{-1}=a b\right\rangle$,
(7) $\left\langle a, b, c \mid a^{p^{2}}=b^{p}=c^{p}=1, b a b^{-1}=a^{p+1}, c a c^{-1}=a b, b c=c b\right\rangle$,

$$
\begin{array}{ll}
\left\langle a, b, c \mid a^{p^{2}}=b^{p}=1,[b, c]=1, c^{p}=a^{p}, b^{-1} a b=a^{p+1}, c^{-1} a c=a b^{-1}\right\rangle & p=3 \\
\left\langle a, b, c \mid a^{p^{2}}=b^{p}=c^{p}=1, b a b^{-1}=a^{p+1}, c a c^{-1}=a^{p+1} b, c b c^{-1}=a^{p} b\right\rangle & p>3 \tag{8}
\end{array}
$$

$$
\left\langle a, b, c \mid a^{p^{2}}=b^{p}=1,[b, c]=1, c^{p}=a^{-p}, b^{-1} a b=a^{p+1}, c^{-1} a c=a b^{-1}\right\rangle \quad p=3
$$

$$
\begin{equation*}
\left\langle a, b, c \mid a^{p^{2}}=b^{p}=c^{p}=1, b a b^{-1}=a^{p+1}, c a c^{-1}=a^{d p+1} b, c b c^{-1}=a^{d p} b, d \not \equiv 0,1\right\rangle \quad p>3, \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\left\langle a, b, c \mid a^{p^{2}}=b^{p}=c^{p}=1, a b=b a, c^{-1} a c=a b, c^{-1} b c=a^{-p} b\right\rangle \quad p=3 \tag{10}
\end{equation*}
$$

$$
\left\langle a, b, c, d \mid a^{p}=b^{p}=c^{p}=d^{p}=[a, b]=[a, c]=[a, d]=[b, c]=[d, b] a^{-1}=[d, c] b^{-1}=1\right\rangle \quad p>3
$$

Define $\operatorname{Cent}(G)=\left\{C_{G}(x) \mid x \in G\right\}$. Each element of $\operatorname{Cent}(G)$ is said to be an element centralizer of G. A group G is called a $C A$-group if all proper element centralizers of G are abelian. The following theorem is crucial throughout this paper:

Theorem 2.2. Let G be a finite group. Then the following are hold:
(1) Let $[G: Z(G)]=p q r$, where p, q and r are primes not necessarily distinct. Then G is a $C A$-group. (See Baishya [3, Lemma 2.1])
(2) The group G is a $C A$-group if and only if whenever $x, y \in G \backslash Z(G)$ satisfy $x y=y x$, then $C_{G}(x)=C_{G}(y)$. (See Dolfi et al. [5, Proposition 3.2(a)])
(3) Let G be a $C A$-group. Then, for all $a, b \in G \backslash Z(G)$ either $C_{G}(a)=C_{G}(b)$ or

In [3, Proposition 2.2], Baishya proved that if p is the smallest prime divisor of $|G|$ and $|G: Z(G)|=p^{3}$, then $|\operatorname{Cent}(G)|=p^{2}+p+2$ or $p^{2}+2$. In the following lemma we prove that the condition of " p is the smallest prime divisor of $|G|$ " can be substituted by " p is a prime divisor of $|G| "$. It is merit to mention here that our proof is similar to the proof of the mentioned result of Baishya.

Lemma 2.3. Suppose that G is a finite group, $Z=Z(G)$ and $[G: Z]=p^{3}$, where p is prime. $|\operatorname{Cent}(G)|=p^{2}+2$ or $p^{2}+p+2$.

Proof. Since $[G: Z]=p^{3}$, by putting $p=q=r$ in Theorem $\mathbb{2 . 2 (1) , ~} G$ is a $C A-$ group. Suppose $x \in G \backslash Z$. Since $Z \leq C_{G}(x),\left[G: C_{G}(x)\right] \mid[G: Z]=p^{3}$. Therefore, $\left[G: C_{G}(x)\right]=1, p, p^{2}$ or p^{3}. Since $x \notin Z$ and $C_{G}(x) \neq Z$, the cases that $\left[G: C_{G}(x)\right]=1, p^{3}$ are impossible. This shows that $\left[G: C_{G}(x)\right]=p$ or p^{2}. Our main proof will consider two cases as follows:
(1) For any $x \in G \backslash Z,\left[G: C_{G}(x)\right]=p^{2}$. Fix $y \in G \backslash Z$. Suppose $\left\{C_{G}(t) \mid t \in\right.$ $\left.G \backslash C_{G}(y)\right\}=\left\{C_{G}\left(x_{1}\right), \ldots, C_{G}\left(x_{k}\right)\right\}$. For simplicity of our argument, we assume that $A_{i}=C_{G}\left(x_{i}\right) \backslash Z, 1 \leq i \leq k$. It is clear $\left|A_{1}\right|=\left|A_{2}\right|=\cdots=\left|A_{k}\right|=(p-1)|Z|$ and by Theorem $\mathbb{Z . 2}(3), A_{i}$'s are distinct and $C_{G}(y) \cap A_{i}=\emptyset, 1 \leq i \leq k$. We now prove that $G \backslash C_{G}(y)=\bigcup_{i=1}^{k} A_{i}$. It is easy to see that $A_{i} \subseteq G \backslash C_{G}(y), 1 \leq i \leq k$, then $\bigcup_{i=1}^{k} A_{i} \subseteq G \backslash C_{G}(y)$. Next we assume that $t \in G \backslash C_{G}(y)$ is arbitrary. Hence, there exists an integer s such that $1 \leq s \leq k$ and $t \in C_{G}\left(x_{s}\right) \backslash Z$ and so $t \in \bigcup_{i=1}^{k} A_{i}$.

Therefore, $G \backslash C_{G}(y)=\bigcup_{i=1}^{k} A_{i}$ which implies that $\left|G \backslash C_{G}(y)\right|=\sum_{i=1}^{k}\left|A_{i}\right|=k\left|A_{i}\right|$ $=k\left|C_{G}\left(x_{i}\right) \backslash Z\right|$. Since for every $x \in G \backslash Z$ we have $\left[G: C_{G}(x)\right]=p^{2},\left[C_{G}(x): Z\right]=p$. Thus $k=\frac{\left|G \backslash C_{G}(y)\right|}{\left|C_{G}(x) \backslash Z\right|}=\frac{\left|C_{G}(y)\right|\left(p^{2}-1\right)}{|Z|(p-1)}=p^{2}+p$. This implies that $|\operatorname{Cent}(G)|=p^{2}+p+2$, as desired.
(2) There exists $x \in G \backslash Z$ such that $\left[G: C_{G}(x)\right]=p$. We first prove that $C_{G}(x)$ is unique. Suppose that $x \neq y \in G \backslash Z$ such that $\left[G: C_{G}(y)\right]=p$ and $C_{G}(x) \neq C_{G}(y)$. Since $Z \nsupseteq C_{G}(y) \nsupseteq G$ and $[G: Z]=p^{3},\left[C_{G}(y): Z\right]=p^{2}$. On the other hand, $C_{G}(x) C_{G}(y) \subseteq G$ and so $\left|C_{G}(x) C_{G}(y)\right| \leq|G|$. Thus, $\frac{\left|C_{G}(x)\right|\left|C_{G}(y)\right|}{\left|C_{G}(x) \cap C_{G}(y)\right|} \leq|G|$. By Theorem $\amalg 2(3), C_{G}(x) \cap C_{G}(y)=Z$. Hence, $\frac{\left|C_{G}(x)\right|\left|C_{G}(y)\right|}{|Z|} \leq|G|$ which implies that $p^{2} \leq p$, that is impossible. Therefore, G has exactly one element centralizer $C_{G}(x)$ of index p and other proper element centralizers are of index p^{2}. It is now easy to check that $G=\left[G \backslash C_{G}(x)\right] \cup C_{G}(x)$ and hence for every $z \in G \backslash C_{G}(x),\left[G: C_{G}(z)\right]=p^{2}$. Apply the same argument as Part (1) to prove that $|\operatorname{Cent}(G)|=\frac{\left|G \backslash C_{G}(x)\right|}{\left|C_{G}(z) \backslash Z\right|}+2=\frac{\left|C_{G}(x)\right|(p-1)}{|Z|(p-1)}$ $+2=p^{2}+2$.

This completes the proof.

3. Main Results

Suppose that $\Gamma_{1}, \ldots, \Gamma_{s}$ are graphs with mutually disjoint vertex sets. The graph union $\Gamma_{1} \cup \cdots \cup \Gamma_{s}$ is a graph with vertex set $V\left(\Gamma_{1}\right) \cup \cdots \cup V\left(\Gamma_{s}\right)$ and edge set $E\left(\Gamma_{1}\right) \cup \cdots \cup E\left(\Gamma_{s}\right)$. If all graphs $\Gamma_{i}, 1 \leq i \leq s$, are isomorphic then we will write $s \Gamma_{1}$ as $\Gamma_{1} \cup \cdots \cup \Gamma_{s}$. The aim of this section is to obtain the structure of the commuting conjugacy class graph of a nilpotent group.

Theorem 3.1. Suppose that G is a non-abelian finite group with center $Z=Z(G)$ and $\frac{G}{Z} \cong Z_{p} \times Z_{p}$, where p is prime. Then $p\left||Z|\right.$ and $\Gamma(G)=(p+1) K_{n}$, where $n=\frac{(p-1)|Z|}{p}$.

Proof. Suppose $C_{G}(x)$ is a proper centralizer of G. Since $\left|\frac{G}{Z(G)}\right|=p^{2}, C_{G}(x)=\langle Z, x\rangle$ and so it is abelian. Therefore, the group G is a $C A$-group. We now apply Theorem $\overline{L 2}(3)$ to prove that for any $x, y \in G \backslash Z$,

$$
\begin{equation*}
C_{G}(x)=C_{G}(y) \quad \text { and } \quad C_{G}(x) \cap C_{G}(y)=Z \tag{1}
\end{equation*}
$$

Since $\frac{G}{Z}$ is abelian, $C_{G}(x)$ is normal in G and so for any $y \in C_{G}(x), y^{G} \subseteq C_{G}(x)$. Furthermore, G is a $C A$-group and so by Theorem $\amalg 2(2)$ if $y \in C_{G}(x) \backslash Z$ and $y \notin x^{G}$ then $C_{G}(y)=C_{G}(x)$ which implies that $\left|y^{G}\right|=\left|x^{G}\right|$. Obviously, $|G|=p^{2}|Z|$ and hence for any $x \in G \backslash Z, Z \supsetneqq C_{G}(x) \supsetneqq G$. Thus $\left|C_{G}(x)\right|=p|Z|$ and $\left|x^{G}\right|=p$. This proves that the number of non-central conjugacy classes of G contained in $C_{G}(x)$ is $n=\frac{(p-1)|Z|}{p}$. Note that if
$C_{G}(x) \neq C_{G}(y)$ then by the Equation \mathbb{l}, there are no conjugacy classes a^{G} and b^{G} contained in $C_{G}(x)$ and $C_{G}(y)$, respectively, such that $a^{G} b^{G} \in E(\Gamma(G))$.

Next we assume that G has exactly s distinct centralizers of order $p|Z|$. Then by Equation (1) $s=p+1$. Therefore, $\Gamma(G)=(p+1) K_{n}$, where $n=\frac{(p-1)|Z|}{p}$.

Corollary 3.2. If G is a non-abelian $p-$ group of order p^{n} and $|Z(G)|=p^{n-2}$, p is prime and $n \geq 3$, then $\Gamma(G)=(p+1) K_{p^{n-3}(p-1)}$.

Theorem 3.3. Suppose that G is a non-abelian group with center Z such that $\left|\frac{G}{Z}\right|=p^{3}$, for a prime p. Then one of the following is satisfied:
(1) If $\frac{G}{Z}$ is abelian then $\Gamma(G)=K_{m} \cup p^{2} K_{n}$ or $\left(p^{2}+p+1\right) K_{n}$, where $m=\frac{\left(p^{2}-1\right)|Z|}{p}$ and $n=\frac{(p-1)|Z|}{p^{2}}$.
(2) If $\frac{G}{Z}$ is non-abelian then $\Gamma(G)=K_{m} \cup k p K_{n_{1}} \cup(p-k) K_{n_{2}},(k p+1) K_{n_{1}} \cup(p+1-k) K_{n_{2}}$, $K_{m} \cup p K_{n_{2}},\left(p^{2}+p+1\right) K_{n_{1}}$ or $K_{n_{1}} \cup(p+1) K_{n_{2}}$, where $m=\frac{\left(p^{2}-1\right)|Z|}{p}, n_{1}=\frac{(p-1)|Z|}{p^{2}}$, $n_{2}=\frac{(p-1)|Z|}{p}, 1 \leq k \leq p$.

Proof. Since $\left|\frac{G}{Z(G)}\right|=p^{3}$, by Theorem $\overline{L .2(1)}$ the group G is a $C A-$ group and by Theorem [2.2(3), for any $x, y \in G \backslash Z$,

$$
\begin{equation*}
C_{G}(x)=C_{G}(y) \quad \text { and } \quad C_{G}(x) \cap C_{G}(y)=Z \tag{2}
\end{equation*}
$$

Now, we have the following two different cases:
(1) Suppose that $\frac{G}{Z}$ is abelian. Then for every $x \in G \backslash Z, C_{G}(x)$ is normal in G and so for any $y \in C_{G}(x), y^{G} \subseteq C_{G}(x)$. Moreover, G is a $C A$-group and so by Theorem $\overline{L 2(2)}$ if $y \in C_{G}(x) \backslash Z$ and $y \notin x^{G}$ then $C_{G}(y)=C_{G}(x)$ and $\left|y^{G}\right|=\left|x^{G}\right|$. It is clear that $|G|=p^{3}|Z|$ and so for every $x \in G \backslash Z, Z \supsetneqq C_{G}(x) \supsetneqq G$. Then $\left|C_{G}(x)\right|=p|Z|$ or $p^{2}|Z|$. If $\left|C_{G}(x)\right|=p^{2}|Z|$, then $\left|x^{G}\right|=p$. So, the number of non-central conjugacy classes of G contained in $C_{G}(x)$ is $m=\frac{\left(p^{2}-1\right)|Z|}{p}$. If $\left|C_{G}(x)\right|=p|Z|$, then $\left|x^{G}\right|=p^{2}$. Hence the number of non-central conjugacy classes of G contained in $C_{G}(x)$ is $n=\frac{(p-1)|Z|}{p^{2}}$. Note that if $C_{G}(x) \neq C_{G}(y)$ then by Equation [ひ, there are no conjugacy classes a^{G} and b^{G} contained in $C_{G}(x)$ and $C_{G}(y)$, respectively, such that $a^{G} b^{G} \in E(\Gamma(G))$.

Next we assume that G has exactly s_{1} distinct element centralizers of order $p^{2}|Z|$ and s_{2} distinct element centralizers of order $p|Z|$. Therefore, by Equations [] we have $\left(p^{2}+p+1\right)(p-1)|Z|=\left(s_{1}(p+1)+s_{2}\right)(p-1)|Z|$. Hence, $s_{1}(p+1)+s_{2}=p^{2}+p+1$. On the other hand, by the proof of Lemma [2.3, $s_{1}=0$ or 1 . So $s_{2}=p^{2}+p+1$ or p^{2} and the proof of this case is completed.
(2) Suppose that $\frac{G}{Z}$ is non-abelian. Since $|G|=p^{3}|Z|$, it is easy to see that for all $x \in G \backslash Z$, $Z \supsetneqq C_{G}(x) \supsetneqq G$. This shows that $\left|C_{G}(x)\right|=p|Z|$ or $p^{2}|Z|$.
(a) $\left|C_{G}(x)\right|=p^{2}|Z|$. It is clear that $Z \triangleleft G$ and so $\frac{C_{G}(x)}{Z} \leq \frac{G}{Z}$. Since $\left|\frac{G}{Z}\right|=p^{3}$ and $\left|\frac{C_{G}(x)}{Z}\right|=p^{2}, C_{G}(x) \triangleleft G$. Hence $y^{G} \subseteq C_{G}(x)$, for every element $y \in C_{G}(x) \backslash Z$. Also G is a $C A$-group, so by Theorem $\amalg .2(2)$ if $y \in C_{G}(x) \backslash Z$ and $y \notin x^{G}$ then $C_{G}(y)=C_{G}(x)$ and $\left|y^{G}\right|=\left|x^{G}\right|=p$. Thus the number of distinct non-central conjugacy classes of G contained in $C_{G}(x)$ is $m=\frac{\left(p^{2}-1\right)|Z|}{p}$.
(b) $\left|C_{G}(x)\right|=p|Z|$. If $C_{G}(x)$ is a normal subgroup of G, then $y^{G} \subseteq C_{G}(x)$, for every element $y \in C_{G}(x) \backslash Z$. Since G is a $C A$-group, by Theorem $\mathbb{Z . 2 (2)}$ if $y \in C_{G}(x) \backslash Z$ and $y \notin x^{G}$ then $C_{G}(y)=C_{G}(x)$ and $\left|y^{G}\right|=\left|x^{G}\right|=p^{2}$. Thus, the number of distinct non-central conjugacy classes of G contained in $C_{G}(x)$ is $n_{1}=\frac{(p-1)|Z|}{p^{2}}$. Next, we assume that $C_{G}(x)$ is not normal in G. Since $\frac{G}{Z}$ is a p-group of order $p^{3}, \frac{C_{G}(x)}{Z} \supsetneqq N_{\frac{G}{Z}}\left(\frac{C_{G}(x)}{Z}\right) \supsetneqq \frac{G}{Z}$ and $\left|N_{\frac{G}{Z}}\left(\frac{C_{G}(x)}{Z}\right)\right|=p^{2}$. On the other hand, $Z \supsetneqq C_{G}(x) \supsetneqq G$. So, $N_{\frac{G}{Z}}\left(\frac{C_{G}(x)}{Z}\right)=\frac{N_{G}\left(C_{G}(x)\right)}{Z}$ and $\left[G: N_{G}\left(C_{G}(x)\right)\right]$ $=p$. Thus, the number of conjugates of $C_{G}(x)$ in G is p. But G is a $C A$-group and by Theorem [2.2(2) if $y \in C_{G}(x) \backslash Z$ and $y \notin x^{G}$ then $C_{G}(y)=C_{G}(x),\left|y^{G}\right|$ $=\left|x^{G}\right|=p^{2}$ and $\left|C_{G}(x) \cap y^{G}\right|=\left|C_{G}(x) \cap x^{G}\right|=p$. Thus, the number of distinct non-central conjugacy classes of G is $n_{2}=\frac{(p-1)|Z|}{p}$.
Note that if $C_{G}(x) \neq C_{G}(y)$ then by Equation there are no conjugacy classes a^{G} and b^{G} contained in $C_{G}(x)$ and $C_{G}(y)$, respectively, such that $a^{G} b^{G} \in E(\Gamma(G))$. Assume that s_{1} denotes the number of distinct element centralizers of order $p^{2}|Z|$, s_{2} is the number of distinct normal element centralizers of order $p|Z|$ and s_{3} is the number of distinct element centralizers of order $p|Z|$ containing p conjugates. By Equations [], $\left(p^{2}+p+1\right)(p-1)|Z|=\left(s_{1}(p+1)+s_{2}+s_{3} p\right)(p-1)|Z|$ and hence $s_{1}(p+1)+s_{2}+s_{3} p=p^{2}+p+1$. On the other hand, the proof of Lemma 2.3 shows that $s_{1}=0$ or 1 . Suppose $s_{1}=1$. Then, $s_{2}+s_{3} p=p^{2}$ and so $p \mid s_{2}$. Therefore, $s_{2}=k p$ and $s_{3}=p-k$ in which $0 \leq k \leq p$. If $k=0$, then $\Gamma(G)=K_{m} \cup p K_{n_{2}}$. But $\Gamma(G)=K_{m} \cup k p K_{n_{1}} \cup(p-k) K_{n_{2}}, 1 \leq k \leq p$. Next we assume that $s_{1}=0$. Then $s_{2}+s_{3} p=p^{2}+p+1$ and so $p \mid s_{2}-1$. Therefore, $s_{2}=k^{\prime} p+1$ and $s_{3}=p+1-k^{\prime}$ in which $0 \leq k^{\prime} \leq p+1$. If $k^{\prime}=0$ or $p+1$, then $\Gamma(G)=K_{n_{1}} \cup(p+1) K_{n_{2}}$ or $\left(p^{2}+p+1\right) K_{n_{1}}$. On the other hand, $\Gamma(G)=\left(k^{\prime} p+1\right) K_{n_{1}} \cup\left(p+1-k^{\prime}\right) K_{n_{2}}$, where $1 \leq k^{\prime} \leq p, m=\frac{\left(p^{2}-1\right)|Z|}{p}$, $n_{1}=\frac{(p-1)|Z|}{p^{2}}$ and $n_{2}=\frac{(p-1)|Z|}{p}$.

Hence the result.

Corollary 3.4. Let G be a non abelian p-group of order p^{n} and $|Z(G)|=p^{n-3}$, where p is prime and $n \geq 4$. Then one of the following are satisfied:
(1) If $\frac{G}{Z}$ is abelian then $\Gamma(G)=K_{p^{n-4}\left(p^{2}-1\right)} \cup p^{2} K_{p^{n-5}(p-1)}$ or $\left(p^{2}+p+1\right) K_{p^{n-5}(p-1)}$.
(2) If $\frac{G}{Z}$ is non-abelian then $\Gamma(G)=K_{p^{n-4}\left(p^{2}-1\right)} \cup p K_{p^{n-4}(p-1)},\left(p^{2}+p+1\right) K_{p^{n-5}(p-1)}$, $K_{p^{n-5}(p-1)} \cup(p+1) K_{p^{n-4}(p-1)}, K_{p^{n-4}\left(p^{2}-1\right)} \cup k p K_{p^{n-5}(p-1)} \cup(p-k) K_{p^{n-4}(p-1)}$ or $(k p+$ 1) $K_{p^{n-5}(p-1)} \cup(p+1-k) K_{p^{n-4}(p-1)}$, where $1 \leq k \leq p$.

Proof. Apply Corollary [3].

Corollary 3.5. Let G be a non-abelian p-group of order p^{4}. Then the commuting conjugacy class graph of G has the form $(p+1) K_{p(p-1)}$ or $K_{\left(p^{2}-1\right)} \cup p K_{(p-1)}$.

Proof. Since $|G|=p^{4}, p$ is prime, $|Z(G)|=p$ or p^{2}. If $|Z(G)|=p^{2}$, then by Corollary $3.2 \Gamma(G)$ $=(p+1) K_{p(p-1)}$. In other case, $|Z(G)|=p$ and by Corollary B.4, $\Gamma(G)=K_{\left(p^{2}-1\right)} \cup p K_{(p-1)}$, as desired.

If G is isomorphic to one of the first six groups in Theorem [2.I, then the commuting conjugacy class graph of G will be isomorphic to $(p+1) K_{p(p-1)}$. In other cases, the commuting conjugacy class graph of G is isomorphic to $K_{\left(p^{2}-1\right)} \cup p K_{(p-1)}$.

Suppose that G and H are two non-abelian finite groups. Define two graphs $\Delta_{1}(G, H)$ and $\Delta_{2}(G, H)$ as follows:

$$
\begin{aligned}
V\left(\Delta_{1}(G, H)\right) & =\left\{(x, y)^{G \times H} \mid x^{G} \in V(\Gamma(G)) \text { and } y \in Z(H)\right\}, \\
E\left(\Delta_{1}(G, H)\right) & =\left\{(x, y)^{G \times H}(a, b)^{G \times H} \mid x=a \text { or } x^{G} a^{G} \in E(\Gamma(G))\right\}, \\
V\left(\Delta_{2}(G, H)\right) & =\left\{(x, y)^{G \times H} \mid y^{H} \in V(\Gamma(H)) \text { and } x \in Z(G)\right\}, \\
E\left(\Delta_{2}(G, H)\right) & =\left\{(x, y)^{G \times H}(a, b)^{G \times H} \mid y=b \text { or } y^{H} b^{H} \in E(\Gamma(H))\right\} .
\end{aligned}
$$

Set $\Delta_{1}=\Delta_{1}(G, H), \Delta_{2}=\Delta_{2}(G, H)$ and $\Delta_{3}=\Delta_{3}(G, H)=\Gamma(G) \boxtimes \Gamma(H)$. We also define two sets A and B as follows:

$$
\begin{aligned}
& A=\left\{(x, y)^{G \times H}(a, b)^{G \times H} \mid(x, y)^{G \times H} \in V\left(\Delta_{3}\right),(a, b)^{G \times H} \in V\left(\Delta_{1}\right),\left(x=a \vee x^{G} a^{G} \in E(\Gamma(G))\right)\right\} \\
& B=\left\{(x, y)^{G \times H}(a, b)^{G \times H} \mid(x, y)^{G \times H} \in V\left(\Delta_{3}\right),(a, b)^{G \times H} \in V\left(\Delta_{2}\right),\left(y=b \vee y^{H} b^{H} \in E(\Gamma(H))\right)\right\} .
\end{aligned}
$$

Define our third graph operation \uplus as follows:

$$
\begin{aligned}
V\left(\Delta_{3} \uplus\left(\Delta_{1}+\Delta_{2}\right)\right) & =V\left(\Delta_{3}\right) \cup V\left(\Delta_{1}+\Delta_{2}\right), \\
E\left(\Delta_{3} \uplus\left(\Delta_{1}+\Delta_{2}\right)\right) & =E\left(\Delta_{3}\right) \cup E\left(\Delta_{1}+\Delta_{2}\right) \cup A \cup B .
\end{aligned}
$$

We now obtain the graph structure of the Cartesian product of two groups.
Theorem 3.6. Let G and H be two non-abelian group. Then the commuting conjugacy class graph of $G \times H$ can be computed as $\Gamma(G \times H)=\Delta_{3}(G, H) \uplus\left[\Delta_{1}(G, H)+\Delta_{2}(G, H)\right]$.

Proof. It is easy to see that an element (a, b) is central in $G \times H$ if and only if a is central in G and b is central in H. We partition the non-central conjugacy classes of $G \times H$ as follows:
(1) The conjugacy classes $(x, y)^{G \times H}$ such that $y \in Z(H)$ and $x \notin Z(G)$. Choose two non-central conjugacy classes $(x, y)^{G \times H}$ and $(a, b)^{G \times H}$ of $G \times H$. These vertices are adjacent in $\Gamma(G \times H)$ if and only if $x=a$ or $x^{G} a^{G} \in E(\Gamma(G))$. This means that $(x, y)^{G \times H}(a, b)^{G \times H} \in E\left(\Delta_{1}(G, H)\right)$.
(2) The conjugacy classes $(x, y)^{G \times H}$ such that $x \in Z(G)$ and $y \notin Z(H)$. A similar argument as part (1) shows that $(x, y)^{G \times H}(a, b)^{G \times H} \in E\left(\Delta_{2}(G, H)\right)$.
(3) The conjugacy classes $(x, y)^{G \times H}$ such that $x \notin Z(G)$ and $y \notin Z(H)$. Suppose that $(x, y)^{G \times H}$ and $(a, b)^{G \times H}$ are two adjacent vertices of $\Gamma(G \times H)$. Then $(x=a$ and $\left.y^{H} b^{H} \in E(\Gamma(H))\right)$ or $\left(y=b\right.$ and $\left.x^{G} a^{G} \in E(\Gamma(G))\right)$ or $\left(x^{G} a^{G} \in E(\Gamma(G))\right.$ and $y^{H} b^{H} \in$ $E(\Gamma(H)))$. Therefore, $(x, y)^{G \times H}(a, b)^{G \times H} \in \Delta_{3}(G, H)$.
Suppose $(x, y)^{G \times H} \in V\left(\Delta_{1}\right)$ and $(a, b)^{G \times H} \in V\left(\Delta_{2}\right)$. Then by our definition, $y \in Z(H)$ and $a \in Z(G)$. Hence each vertex of Δ_{1} is adjacent with each vertex of Δ_{2}. We now assume that $(x, y)^{G \times H} \in V\left(\Delta_{3}\right)$ and $(a, b)^{G \times H} \in V\left(\Delta_{1}+\Delta_{2}\right)$. Without loss of generality, we can assume that $(a, b)^{G \times H} \in V\left(\Delta_{1}\right)$. It is clear that $b \in Z(H)$ and so $b y=y b$. Since $a, x \notin Z(G), a=x$ or $x^{G} a^{G} \in E(\Gamma(G))$. This proves that $(x, y)^{G \times H}(a, b)^{G \times H} \in A$ which completes the proof.

Lemma 3.7. Let H be arbitrary and let G be a non-abelian group. Then $\Gamma(G)$ and $\Delta_{1}(G, H)$ have the same number of connected components.

Proof. Choose two vertices x^{G} and a^{G} from different components of $\Gamma(G)$ and $b, y \in Z(H)$. Then $(x, y)^{G \times H}$ and $(a, b)^{G \times H}$ are different vertices of $\Delta_{1}(G, H)$. By definition of Δ_{1}, $(x, y)^{G \times H}(a, b)^{G \times H} \in E\left(\Delta_{1}(G, H)\right)$ if and only if $x^{G} a^{G} \in E(\Gamma(G))$, proving the lemma.

Lemma 3.8. If H is an arbitrary finite group and G is a finite group such that $\Gamma(G)=m K_{n}$. Then $\Delta_{1}(G, H)=m K_{n|Z(H)|}$.

Proof. Since $\Gamma(G)=m K_{n}, G$ has exactly $m n$ non-central conjugacy classes, and since $Z(H)$ is abelian, $G \times Z(H)$ has exactly $m n|Z(H)|$ conjugacy classes. Note that by definition $\left|V\left(\Delta_{1}\right)\right|=$ $m n|Z(H)|$. Choose $(x, y)^{G \times H}$ and $(a, b)^{G \times H}$ from a connected component of $\Delta_{1}(G, H)$. If $x=a$ then $(x, y)^{G \times H}(a, b)^{G \times H} \in E\left(\Delta_{1}(G, H)\right)$. Suppose $x \neq a$. Since x^{G} and a^{G} are in a connected component of $\Gamma(G)$ and connected components of $\Gamma(G)$ are isomorphic to K_{n}, $x^{G} a^{G} \in E(\Gamma(G))$. Therefore, $(x, y)^{G \times H}(a, b)^{G \times H} \in E\left(\Delta_{1}(G, H)\right)$. By Lemma ${ }^{3} .2$, the number of connected components of $\Gamma(G)$ and $\Delta_{1}(G, H)$ are m and since $\left|V\left(\Delta_{1}(G, H)\right)\right|=m n|Z(H)|$, $\Delta_{1}(G, H)=m K_{n|Z(H)|}$.

Corollary 3.9. If G and H are two groups such that $\Gamma(G)=\bigcup_{i \in I} m_{i} K_{n_{i}}$ and $\Gamma(H)=$ $\bigcup_{j \in J} m_{j}^{\prime} K_{n_{j}^{\prime}}$, then $\Delta_{1}(G, H)=\bigcup_{i \in I} m_{i} K_{n_{i}|Z(H)|}$ and $\Delta_{2}(G, H)=\bigcup_{j \in J} m_{j}^{\prime} K_{n_{j}^{\prime}|Z(G)|}$.

Lemma 3.10. If G and H are two groups such that $\Gamma(G)=m_{1} K_{n_{1}}$ and $\Gamma(H)=m_{2} K_{n_{2}}$, then $\Delta_{3}(G, H)=m_{1} m_{2} K_{n_{1} n_{2}}$.

Proof. We know that $\Delta_{3}(G, H)=\Gamma(G) \boxtimes \Gamma(H)$. Define A to be a subgraph of Δ_{3} containing all vertices of the form $\left(x^{G}, y^{H}\right) \in V\left(\Delta_{3}(G, H)\right)$ such that x^{G},s will induce a connected component in $\Gamma(G)$ and y^{H} 's will induce another component in $\Gamma(H)$. It is easy to see that $|V(A)|=n_{1} n_{2}$. We prove that A is a connected subgraph of $\Delta_{3}(G, H)$. To do this, we assume that $\left(x^{G}, y^{H}\right)$ and $\left(a^{G}, b^{H}\right)$ are two arbitrary vertices in A. Then we have one of the following cases:
(1) $x^{G}=a^{G}$ and $y^{H} \neq b^{H}$.
(2) $x^{G} \neq a^{G}$ and $y^{H}=b^{H}$.
(3) $x^{G} \neq a^{G}$ and $y^{H} \neq b^{H}$.

Since connected components of $\Gamma(G)$ and $\Gamma(H)$ are $K_{n_{1}}$ and $K_{n_{2}}$, respectively, by definition of $\Delta_{3},\left(x^{G}, y^{H}\right)\left(a^{G}, b^{H}\right) \in E\left(\Delta_{3}(G, H)\right)$. We now show that the subgraph A is a connected component of Δ_{3}. To see this, we assume that $\left(x^{G}, y^{H}\right)$ is an arbitrary vertex of A and $\left(c^{G}, d^{H}\right)$ is a vertex in $\Delta_{3} \backslash A$. It is clear that $\left\{x^{G}, c^{G}\right\}$ is not contained in a connected component of $\Gamma(G)$ or $\left\{y^{H}, d^{H}\right\}$ is not contained in a connected component of $\Gamma(H)$. Therefore, $x^{G} c^{G} \notin E(\Gamma(G))$ or $y^{H} d^{H} \notin E(\Gamma(H))$ and so by definition of $\Delta_{3},\left(x^{G}, y^{H}\right)\left(c^{G}, d^{H}\right) \notin E\left(\Delta_{3}\right)$. This proves that A is a connected component of Δ_{3}. Thus, $A=K_{n_{1} n_{2}}$. Since $\left|V\left(\Delta_{3}\right)\right|=m_{1} m_{2} n_{1} n_{2}$, $\Delta_{3}(G, H)=m_{1} m_{2} K_{n_{1} n_{2}}$. This completes the proof.

Corollary 3.11. If G and H are two groups such that $\Gamma(G)=\bigcup_{i \in I} m_{i} K_{n_{i}}$ and $\Gamma(H)=$ $\bigcup_{j \in J} m_{j}^{\prime} K_{n_{j}^{\prime}}$, then $\Delta_{3}(G, H)=\bigcup_{\substack{i \in J \\ j \in J}} m_{i} m_{j}^{\prime} K_{n_{i} n_{j}^{\prime}}$.

Corollary 3.12. If G and H are two p-groups such that $\Gamma(G)=\bigcup_{i \in I} m_{i} K_{n_{i}}$ and $\Gamma(H)=$ $\bigcup_{j \in J} m_{j}^{\prime} K_{n_{j}^{\prime}}$, then $\Gamma(G \times H)=\left(\bigcup_{\substack{i \in I \\ j \in J}} m_{i} m_{j}^{\prime} K_{n_{i} n_{j}^{\prime}}\right) \uplus\left(\bigcup_{i \in I} m_{i} K_{n_{i}|Z(H)|}+\bigcup_{j \in J} m_{j}^{\prime} K_{n_{j}^{\prime}|Z(G)|}\right)$.

Corollary 3.13. If H is abelian and G is a non-abelian group, then $\Gamma(G \times H) \cong \Delta_{1}(G, H) \cong$ $\Delta_{2}(H, G)$.

Proof. By Theorem E2.6, the non-central conjugacy classes of $G \times H$ have the form $(x, y)^{G \times H}$ such that $y \in Z(H)=H$ and $x \notin Z(G)$. Obviously, two vertices $(x, y)^{G \times H}$ and $(a, b)^{G \times H}$ are adjacent if and only if $x=a$ or $x^{G} a^{G} \in E(\Gamma(G))$, i.e. $\Gamma(G \times H)=\Delta_{1}(G, H)$.

Corollary 3.14. If H is a abelian group and G is a $p-$ group such that $\Gamma(G)=\bigcup_{i \in I} m_{i} K_{n_{i}}$ then $\Gamma(G \times H)=\bigcup_{i \in I} m_{i} K_{n_{i}|H|}$.

As a simple example based on these results, we can see that $\Gamma\left(D_{8}\right)=3 K_{1}, \Gamma\left(D_{8} \times Z_{3}\right)=3 K_{3}$ and $\Gamma\left(D_{8} \times D_{8}\right)=9 K_{1} \uplus\left(3 K_{2}+3 K_{2}\right)$.

4. Concluding Remarks

In this paper, the commuting conjugacy class graph of a group G in which $\left|\frac{G}{Z(G)}\right|=p^{3}$ is completely characterized. As a consequence of our result it is proved that the commuting conjugacy class graph of a group of order p^{4} has one of the form $(p+1) K_{p(p-1)}$ or $K_{\left(p^{2}-1\right)} \cup$ $p K_{(p-1)}$. As a consequence of Theorem [3.6, we have:

Theorem 4.1. Suppose that G is a finite nilpotent group of order n in which n is not divisible by p^{5}, for every prime factor p of n. Then the commuting conjugacy class graph $\Gamma(G)$ can be obtained from the strong products, joins and the graph operation \uplus on some complete graphs.

5. Acknowledgments

The authors wish to sincerely thank the referees for several useful comments. The research of the second authors is partially supported by the University of Kashan under grant No 364988/189.

References

[1] A. Abdollahi, S. M. Jafarian Amiri and A. M. Hassanabadi, Groups with specific number of centralizers, Houston J. Math., 33 No. 1 (2007) 43-57.
[2] R. Baer, Groups with preassigned central and central quotient group, Trans. Amer. Math. Soc., 44 (1938) 387-412.
[3] S. J. Baishya, On finite groups with specific number of centralizers, Int. Elec. J. Algebra, 13 (2013) 53-62.
[4] W. Burnside, Theory of Groups of Finite Order, Cambridge University Press, Cambridge, 1897.
[5] S. Dolfi, M. Herzog and E. Jabara, Finite groups whose noncentral commuting elements have centralizers of equal size, Bull. Aust. Math. Soc., 82 (2010) 293-304.
[6] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[7] M. Herzog, P. Longobardi and M. Maj, On a commuting graph on conjugacy classes of groups, Comm. Algebra, 37 No. 10 (2009) 3369-3387.
[8] A. Mohammadian, A. Erfanian, M. Farrokhi D. G. and B. Wilkens, Triangle-free commuting conjugacy class graphs, J. Group Theory, 19 No. 3 (2016) 1049-1061.
[9] B. H. Neumann, A problem of Paul Erdös on groups, J. Aust. Math. Soc. Ser. A, 21 (1976) 467-472.
[10] A. S. Rapinchuk, Y. Segev and G. M. Seitz, Finite quotient of the multiplicative group of a finite dimensional division algebra are solvable, J. Amer. Math. Soc., 15 (2002) 929-978.
[11] D. J. S. Robinson, A Course in the Theory of Groups, 2nd ed., Springer, Berlin, 1982.
[12] G. Sabidussi, Graph multiplication, Math. Z., 72 (1960) 446-457.
[13] The GAP Team, GAP-Groups, Algorithms and Programming, Version 4.7.5, 2014, http://www.gapsystem.org/.

Mohammad Ali Salahshour

Department of Pure Mathematics, Faculty of Mathematical Sciences,
University of Kashan, Kashan 87317-53153, I. R. Iran
salahshour@iausk.ac.ir

Ali Reza Ashrafi

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 87317-53153, I. R. Iran
ashrafi@kashanu.ac.ir

