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COMMUTING CONJUGACY CLASS GRAPHS OF FINITE GROUPS

MOHAMMAD ALI SALAHSHOUR AND ALI REZA ASHRAFI∗

Abstract. Suppose thatG is a finite non-abelian group. Define the graph Γ(G) with the non-

central conjugacy classes of G as vertex set and two distinct vertices A and B are adjacent

if and only if there are x ∈ A and y ∈ B such that xy = yx. The graph Γ(G) is called

the commuting conjugacy class graph of G and introduced by Mohammadian et al. in [A.

Mohammadian, A. Erfanian, M. Farrokhi D. G. and B. Wilkens, Triangle-free commuting

conjugacy class graphs, J. Group Theory 19 (3) (2016) 1049–1061]. In this paper, the graph

structure of the commuting conjugacy class graph of nilpotent groups of order n are obtained

in which n is not divisible by p5, for every prime factor p of n.

1. Introduction

Throughout this paper all groups and graphs are assumed to be finite. Our graph theory

notations are taken from [6] and for group theory notions and notations we refer to [11].

Suppose that Γ is a graph with vertex set V and edge set E and ρ is an equivalence relation
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on V . The partition of V constructed from ρ is denoted by Π. The quotient graph Γ
ρ is a

graph with vertex set Π such that two parts A and B are adjacent if and only if there exists

a vertex x ∈ A and another vertex y ∈ B such that xy ∈ E.

Suppose that Γ1 and Γ2 are two graphs. The strong product Γ1 ⊠ Γ2 of graphs Γ1 and

Γ2 is a graph with vertex set V (Γ1)×V (Γ2). Two distinct vertices (u1, u2) and (v1, v2) of this

graph are adjacent if and only if (u1 = v1 and u2v2 ∈ E(Γ2)) or (u2 = v2 and u1v1 ∈ E(Γ1)) or

(u1 is adjacent to v1 and u2 is adjacent to v2). This product was first introduced by Sabidussi

in 1960 [12]. If the vertex sets of Γ1 and Γ2 are disjoint then the join Γ1 + Γ2 is a graph

with vertex set V (Γ1) ∪ V (Γ2) and two vertices x, y ∈ V (Γ1 + Γ2) are adjacent if and only if

(xy ∈ E(Γ1) ∪ E(Γ2)) or (x ∈ V (Γ1) and y ∈ V (Γ2)) or (y ∈ V (Γ1) and x ∈ V (Γ2)).

There are several ways to associate a graph to an algebraic structure like groups. The

commuting graph ∆(G) of a group G is one of the most important graphs defined on a

group [9] with non-trivial elements of G as vertex set and two no-trivial elements x and y in

G are adjacent if and only if xy = yx. Rapinchuk et al. [10] applied this graph to prove that

finite quotients of the multiplicative group of a finite dimensional division algebra are solvable.

Mohammadian et al. [8] introduced the commuting conjugacy class graph Γ(G) of a

non-abelian group G as a simple graph with non-central conjugacy classes of G as its vertex

set and two distinct vertices A and B are adjacent if and only if there are x ∈ A and y ∈ B

such that xy = yx [8]. They obtained some interesting properties of this graph among them

a classification of finite groups such that Γ(G) are triangle-free is given. It is merit to note

that the commuting conjugacy class graph was initially introduced by Herzog et al. [7] in

which they considered all non-trivial conjugacy classes of G as its vertex set. It is easy to see

that the commuting conjugacy class graph Γ(G) is a quotient of the induced graph ∆(G) on

non-central elements of G over the set of all non-central conjugacy classes of the group G.

2. Preliminaries

The aim of this section is to present some results which are crucial in proving the main

results of this paper. We start by stating the classification theorem of p−group of order p4

given by Burnside [4].

Theorem 2.1. If p is an odd prime, then there are 15 groups of order p4 up to isomorphisms.

Five of those are abelian and the non-abelian groups can be found in the list below.

(1) ⟨a, b, c, d | ap = bp = cp = dp = 1, [a, b] = [a, c] = [a, d] = [b, c] = [b, d] = 1, dcd−1 = ac⟩,

(2) ⟨a, b | ap2 = bp
2

= 1 , bab−1 = ap+1⟩,

(3) ⟨a, b | ap3 = bp = 1 , bab−1 = ap2+1⟩,

(4) ⟨a, b, c | ap2 = bp = cp = 1 , ab = ba, ac = ca, cbc−1 = apb⟩,

(5) ⟨a, b, c | ap2 = bp = cp = 1 , ab = ba, bc = cb, cac−1 = ap+1⟩,

(6) ⟨a, b, c | ap2 = bp = cp = 1 , ab = ba, bc = cb, cac−1 = ab⟩,
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(7) ⟨a, b, c | ap2 = bp = cp = 1 , bab−1 = ap+1, cac−1 = ab, bc = cb⟩,

(8)
⟨a, b, c | ap2 = bp = 1 , [b, c] = 1, cp = ap, b−1ab = ap+1, c−1ac = ab−1⟩ p = 3

⟨a, b, c | ap2 = bp = cp = 1 , bab−1 = ap+1, cac−1 = ap+1b, cbc−1 = apb⟩ p > 3
,

(9)
⟨a, b, c | ap2 = bp = 1 , [b, c] = 1, cp = a−p, b−1ab = ap+1, c−1ac = ab−1 ⟩ p = 3

⟨a, b, c | ap2 = bp = cp = 1 , bab−1 = ap+1, cac−1 = adp+1b, cbc−1 = adpb, d
p

̸≡ 0, 1 ⟩ p > 3
,

(10)
⟨a, b, c | ap2 = bp = cp = 1 , ab = ba, c−1ac = ab, c−1bc = a−pb⟩ p = 3

⟨a, b, c, d | ap = bp = cp = dp = [a, b] = [a, c] = [a, d] = [b, c] = [d, b]a−1 = [d, c]b−1 = 1⟩ p > 3
.

Define Cent(G) = {CG(x) | x ∈ G}. Each element of Cent(G) is said to be an element

centralizer of G. A group G is called a CA−group if all proper element centralizers of G are

abelian. The following theorem is crucial throughout this paper:

Theorem 2.2. Let G be a finite group. Then the following are hold:

(1) Let [G : Z(G)] = pqr, where p, q and r are primes not necessarily distinct. Then G is

a CA−group. (See Baishya [3, Lemma 2.1])

(2) The group G is a CA−group if and only if whenever x, y ∈ G \ Z(G) satisfy xy = yx,

then CG(x) = CG(y). (See Dolfi et al. [5, Proposition 3.2(a)])

(3) Let G be a CA−group. Then, for all a, b ∈ G \ Z(G) either CG(a) = CG(b) or

CG(a) ∩ CG(b) = Z(G). (See Abdollahi et al. [1, Remark 2.1(4)])

In [3, Proposition 2.2], Baishya proved that if p is the smallest prime divisor of |G| and
|G : Z(G)| = p3, then |Cent(G)| = p2 + p + 2 or p2 + 2. In the following lemma we prove

that the condition of “p is the smallest prime divisor of |G|” can be substituted by “p is a

prime divisor of |G|”. It is merit to mention here that our proof is similar to the proof of the

mentioned result of Baishya.

Lemma 2.3. Suppose that G is a finite group, Z = Z(G) and [G : Z] = p3, where p is prime.

|Cent(G)| = p2 + 2 or p2 + p+ 2.

Proof. Since [G : Z] = p3, by putting p = q = r in Theorem 2.2(1), G is a CA−group. Suppose

x ∈ G \ Z. Since Z ≤ CG(x), [G : CG(x)] | [G : Z] = p3. Therefore, [G : CG(x)] = 1, p, p2 or

p3. Since x ̸∈ Z and CG(x) ̸= Z, the cases that [G : CG(x)] = 1, p3 are impossible. This shows

that [G : CG(x)] = p or p2. Our main proof will consider two cases as follows:

(1) For any x ∈ G \ Z, [G : CG(x)] = p2. Fix y ∈ G \ Z. Suppose {CG(t) | t ∈
G \ CG(y)} = {CG(x1), . . . , CG(xk)}. For simplicity of our argument, we assume that

Ai = CG(xi) \ Z, 1 ≤ i ≤ k. It is clear |A1| = |A2| = · · · = |Ak| = (p − 1)|Z| and
by Theorem 2.2(3), Ai’s are distinct and CG(y) ∩ Ai = ∅, 1 ≤ i ≤ k. We now prove

that G \ CG(y) =
∪k

i=1Ai. It is easy to see that Ai ⊆ G \ CG(y), 1 ≤ i ≤ k, then∪k
i=1Ai ⊆ G \ CG(y). Next we assume that t ∈ G \ CG(y) is arbitrary. Hence, there

exists an integer s such that 1 ≤ s ≤ k and t ∈ CG(xs) \ Z and so t ∈
∪k

i=1Ai.
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Therefore, G \ CG(y) =
∪k

i=1Ai which implies that |G \ CG(y)| =
∑k

i=1 |Ai| = k|Ai|
= k|CG(xi) \ Z|. Since for every x ∈ G \ Z we have [G : CG(x)] = p2, [CG(x) : Z] = p.

Thus k = |G\CG(y)|
|CG(x)\Z| =

|CG(y)|(p2−1)
|Z|(p−1) = p2 + p. This implies that |Cent(G)| = p2 + p+2,

as desired.

(2) There exists x ∈ G \ Z such that [G : CG(x)] = p. We first prove that CG(x) is

unique. Suppose that x ̸= y ∈ G \ Z such that [G : CG(y)] = p and CG(x) ̸= CG(y).

Since Z � CG(y) � G and [G : Z] = p3, [CG(y) : Z] = p2. On the other hand,

CG(x)CG(y) ⊆ G and so |CG(x)CG(y)| ≤ |G|. Thus, |CG(x)||CG(y)|
|CG(x)∩CG(y)| ≤ |G|. By Theorem

2.2(3), CG(x) ∩ CG(y) = Z. Hence, |CG(x)||CG(y)|
|Z| ≤ |G| which implies that p2 ≤ p,

that is impossible. Therefore, G has exactly one element centralizer CG(x) of index

p and other proper element centralizers are of index p2. It is now easy to check that

G = [G \ CG(x)] ∪ CG(x) and hence for every z ∈ G \ CG(x), [G : CG(z)] = p2. Apply

the same argument as Part (1) to prove that |Cent(G)| = |G\CG(x)|
|CG(z)\Z| + 2 = |CG(x)|(p−1)

|Z|(p−1)

+ 2 = p2 + 2.

This completes the proof.

3. Main Results

Suppose that Γ1, . . . , Γs are graphs with mutually disjoint vertex sets. The graph union

Γ1 ∪ · · · ∪ Γs is a graph with vertex set V (Γ1) ∪ · · · ∪ V (Γs) and edge set E(Γ1) ∪ · · · ∪E(Γs).

If all graphs Γi, 1 ≤ i ≤ s, are isomorphic then we will write sΓ1 as Γ1 ∪ · · · ∪ Γs. The aim of

this section is to obtain the structure of the commuting conjugacy class graph of a nilpotent

group.

Theorem 3.1. Suppose that G is a non-abelian finite group with center Z = Z(G) and

G
Z
∼= Zp × Zp, where p is prime. Then p | |Z| and Γ(G) = (p+ 1)Kn, where n = (p−1)|Z|

p .

Proof. Suppose CG(x) is a proper centralizer of G. Since | G
Z(G) | = p2, CG(x) = ⟨Z, x⟩ and so

it is abelian. Therefore, the group G is a CA−group. We now apply Theorem 2.2(3) to prove

that for any x, y ∈ G \ Z,

(1) CG(x) = CG(y) and CG(x) ∩ CG(y) = Z.

Since G
Z is abelian, CG(x) is normal in G and so for any y ∈ CG(x), y

G ⊆ CG(x). Fur-

thermore, G is a CA−group and so by Theorem 2.2(2) if y ∈ CG(x) \ Z and y ̸∈ xG then

CG(y) = CG(x) which implies that |yG| = |xG|. Obviously, |G| = p2|Z| and hence for any

x ∈ G \ Z, Z � CG(x) � G. Thus |CG(x)| = p|Z| and |xG| = p. This proves that the

number of non-central conjugacy classes of G contained in CG(x) is n = (p−1)|Z|
p . Note that if
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CG(x) ̸= CG(y) then by the Equation 1, there are no conjugacy classes aG and bG contained

in CG(x) and CG(y), respectively, such that aGbG ∈ E(Γ(G)).

Next we assume that G has exactly s distinct centralizers of order p|Z|. Then by Equation

1, s = p+ 1. Therefore, Γ(G) = (p+ 1)Kn, where n = (p−1)|Z|
p .

Corollary 3.2. If G is a non-abelian p−group of order pn and |Z(G)| = pn−2, p is prime and

n ≥ 3, then Γ(G) = (p+ 1)Kpn−3(p−1).

Theorem 3.3. Suppose that G is a non-abelian group with center Z such that |GZ | = p3, for

a prime p. Then one of the following is satisfied:

(1) If G
Z is abelian then Γ(G) = Km ∪ p2Kn or (p2 + p + 1)Kn, where m = (p2−1)|Z|

p and

n = (p−1)|Z|
p2

.

(2) If G
Z is non-abelian then Γ(G) = Km∪kpKn1∪(p−k)Kn2, (kp+1)Kn1∪(p+1−k)Kn2,

Km ∪ pKn2, (p
2 + p+ 1)Kn1 or Kn1 ∪ (p+ 1)Kn2, where m = (p2−1)|Z|

p , n1 =
(p−1)|Z|

p2
,

n2 =
(p−1)|Z|

p , 1 ≤ k ≤ p.

Proof. Since | G
Z(G) | = p3, by Theorem 2.2(1) the group G is a CA−group and by Theorem

2.2(3), for any x, y ∈ G \ Z,

(2) CG(x) = CG(y) and CG(x) ∩ CG(y) = Z.

Now, we have the following two different cases:

(1) Suppose that G
Z is abelian. Then for every x ∈ G \Z, CG(x) is normal in G and so for

any y ∈ CG(x), y
G ⊆ CG(x). Moreover, G is a CA−group and so by Theorem 2.2(2)

if y ∈ CG(x) \ Z and y ̸∈ xG then CG(y) = CG(x) and |yG| = |xG|. It is clear that

|G| = p3|Z| and so for every x ∈ G\Z, Z � CG(x) � G. Then |CG(x)| = p|Z| or p2|Z|.
If |CG(x)| = p2|Z|, then |xG| = p. So, the number of non-central conjugacy classes of

G contained in CG(x) is m = (p2−1)|Z|
p . If |CG(x)| = p|Z|, then |xG| = p2. Hence the

number of non-central conjugacy classes of G contained in CG(x) is n = (p−1)|Z|
p2

. Note

that if CG(x) ̸= CG(y) then by Equation 2, there are no conjugacy classes aG and bG

contained in CG(x) and CG(y), respectively, such that aGbG ∈ E(Γ(G)).

Next we assume that G has exactly s1 distinct element centralizers of order p2|Z|
and s2 distinct element centralizers of order p|Z|. Therefore, by Equations 2 we have

(p2 + p+ 1)(p− 1)|Z| = (s1(p+ 1) + s2)(p− 1)|Z|. Hence, s1(p+ 1) + s2 = p2 + p+ 1.

On the other hand, by the proof of Lemma 2.3, s1 = 0 or 1. So s2=p2 + p + 1 or p2

and the proof of this case is completed.

(2) Suppose that G
Z is non-abelian. Since |G| = p3|Z|, it is easy to see that for all x ∈ G\Z,

Z � CG(x) � G. This shows that |CG(x)| = p|Z| or p2|Z|.
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(a) |CG(x)| = p2|Z|. It is clear that Z ▹ G and so CG(x)
Z ≤ G

Z . Since
∣∣G
Z

∣∣ = p3 and∣∣∣CG(x)
Z

∣∣∣ = p2, CG(x) ▹ G. Hence yG ⊆ CG(x), for every element y ∈ CG(x) \ Z.

Also G is a CA−group, so by Theorem 2.2(2) if y ∈ CG(x) \ Z and y ̸∈ xG then

CG(y) = CG(x) and |yG| = |xG| = p. Thus the number of distinct non-central

conjugacy classes of G contained in CG(x) is m = (p2−1)|Z|
p .

(b) |CG(x)| = p|Z|. If CG(x) is a normal subgroup of G, then yG ⊆ CG(x), for

every element y ∈ CG(x) \ Z. Since G is a CA−group, by Theorem 2.2(2) if

y ∈ CG(x) \ Z and y ̸∈ xG then CG(y) = CG(x) and |yG| = |xG| = p2. Thus,

the number of distinct non-central conjugacy classes of G contained in CG(x) is

n1 = (p−1)|Z|
p2

. Next, we assume that CG(x) is not normal in G. Since G
Z is a

p−group of order p3, CG(x)
Z � NG

Z
(CG(x)

Z ) � G
Z and |NG

Z
(CG(x)

Z )| = p2. On the

other hand, Z � CG(x) � G. So, NG
Z
(CG(x)

Z ) = NG(CG(x))
Z and [G : NG(CG(x))]

= p. Thus, the number of conjugates of CG(x) in G is p. But G is a CA−group

and by Theorem 2.2(2) if y ∈ CG(x) \ Z and y ̸∈ xG then CG(y) = CG(x), |yG|
= |xG| = p2 and |CG(x) ∩ yG| = |CG(x) ∩ xG| = p. Thus, the number of distinct

non-central conjugacy classes of G is n2 =
(p−1)|Z|

p .

Note that if CG(x) ̸= CG(y) then by Equation 2 there are no conjugacy classes

aG and bG contained in CG(x) and CG(y), respectively, such that aGbG ∈ E(Γ(G)).

Assume that s1 denotes the number of distinct element centralizers of order p2|Z|,
s2 is the number of distinct normal element centralizers of order p|Z| and s3 is the

number of distinct element centralizers of order p|Z| containing p conjugates. By

Equations 2, (p2 + p + 1)(p − 1)|Z| = (s1(p + 1) + s2 + s3p)(p − 1)|Z| and hence

s1(p + 1) + s2 + s3p = p2 + p + 1. On the other hand, the proof of Lemma 2.3 shows

that s1 = 0 or 1. Suppose s1 = 1. Then, s2 + s3p = p2 and so p | s2. Therefore,

s2 = kp and s3 = p − k in which 0 ≤ k ≤ p. If k = 0, then Γ(G) = Km ∪ pKn2 . But

Γ(G) = Km ∪ kpKn1 ∪ (p − k)Kn2 , 1 ≤ k ≤ p. Next we assume that s1 = 0. Then

s2+s3p = p2+p+1 and so p | s2−1. Therefore, s2 = k′p+1 and s3 = p+1−k′ in which

0 ≤ k′ ≤ p+1. If k′ = 0 or p+1, then Γ(G) = Kn1 ∪ (p+1)Kn2 or (p2+p+1)Kn1 . On

the other hand, Γ(G) = (k′p+1)Kn1∪(p+1−k′)Kn2 , where 1 ≤ k′ ≤ p, m = (p2−1)|Z|
p ,

n1 =
(p−1)|Z|

p2
and n2 =

(p−1)|Z|
p .

Hence the result.

Corollary 3.4. Let G be a non abelian p−group of order pn and |Z(G)| = pn−3, where p is

prime and n ≥ 4. Then one of the following are satisfied:

(1) If G
Z is abelian then Γ(G) = Kpn−4(p2−1) ∪ p2Kpn−5(p−1) or (p2 + p+ 1)Kpn−5(p−1).



Alg. Struc. Appl. Vol. 2 No. 1 (2020) 135-145. 141

(2) If G
Z is non-abelian then Γ(G) = Kpn−4(p2−1) ∪ pKpn−4(p−1), (p2 + p + 1)Kpn−5(p−1),

Kpn−5(p−1)∪ (p+1)Kpn−4(p−1), Kpn−4(p2−1)∪kpKpn−5(p−1)∪ (p−k)Kpn−4(p−1) or (kp+

1)Kpn−5(p−1) ∪ (p+ 1− k)Kpn−4(p−1), where 1 ≤ k ≤ p.

Proof. Apply Corollary 3.3.

Corollary 3.5. Let G be a non-abelian p−group of order p4. Then the commuting conjugacy

class graph of G has the form (p+ 1)Kp(p−1) or K(p2−1) ∪ pK(p−1).

Proof. Since |G| = p4, p is prime, |Z(G)| = p or p2. If |Z(G)| = p2, then by Corollary 3.2 Γ(G)

= (p+ 1)Kp(p−1). In other case, |Z(G)| = p and by Corollary 3.4, Γ(G) = K(p2−1) ∪ pK(p−1),

as desired.

If G is isomorphic to one of the first six groups in Theorem 2.1, then the commuting

conjugacy class graph of G will be isomorphic to (p+1)Kp(p−1). In other cases, the commuting

conjugacy class graph of G is isomorphic to K(p2−1) ∪ pK(p−1).

Suppose that G and H are two non-abelian finite groups. Define two graphs ∆1(G,H) and

∆2(G,H) as follows:

V (∆1(G,H)) =
{
(x, y)G×H | xG ∈ V (Γ(G)) and y ∈ Z(H)

}
,

E(∆1(G,H)) =
{
(x, y)G×H(a, b)G×H | x = a or xGaG ∈ E(Γ(G))

}
,

V (∆2(G,H)) =
{
(x, y)G×H | yH ∈ V (Γ(H)) and x ∈ Z(G)

}
,

E(∆2(G,H)) =
{
(x, y)G×H(a, b)G×H | y = b or yHbH ∈ E(Γ(H))

}
.

Set ∆1 = ∆1(G,H), ∆2 = ∆2(G,H) and ∆3 = ∆3(G,H) = Γ(G) ⊠ Γ(H). We also define

two sets A and B as follows:

A =

{
(x, y)G×H(a, b)G×H | (x, y)G×H ∈ V (∆3), (a, b)

G×H ∈ V (∆1),
(
x = a ∨ xGaG ∈ E(Γ(G))

)}
B =

{
(x, y)G×H(a, b)G×H | (x, y)G×H ∈ V (∆3), (a, b)

G×H ∈ V (∆2),
(
y = b ∨ yHbH ∈ E(Γ(H))

)}
.

Define our third graph operation ⊎ as follows:

V (∆3 ⊎ (∆1 +∆2)) = V (∆3) ∪ V (∆1 +∆2),

E(∆3 ⊎ (∆1 +∆2)) = E(∆3) ∪ E(∆1 +∆2) ∪A ∪B.

We now obtain the graph structure of the Cartesian product of two groups.

Theorem 3.6. Let G and H be two non-abelian group. Then the commuting conjugacy class

graph of G×H can be computed as Γ(G×H) = ∆3(G,H) ⊎ [∆1(G,H) + ∆2(G,H)].
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Proof. It is easy to see that an element (a, b) is central in G×H if and only if a is central in

G and b is central in H. We partition the non-central conjugacy classes of G×H as follows:

(1) The conjugacy classes (x, y)G×H such that y ∈ Z(H) and x ̸∈ Z(G). Choose two

non-central conjugacy classes (x, y)G×H and (a, b)G×H of G × H. These vertices are

adjacent in Γ(G × H) if and only if x = a or xGaG ∈ E(Γ(G)). This means that

(x, y)G×H(a, b)G×H ∈ E(∆1(G,H)).

(2) The conjugacy classes (x, y)G×H such that x ∈ Z(G) and y ̸∈ Z(H). A similar argu-

ment as part (1) shows that (x, y)G×H(a, b)G×H ∈ E(∆2(G,H)).

(3) The conjugacy classes (x, y)G×H such that x ̸∈ Z(G) and y ̸∈ Z(H). Suppose that

(x, y)G×H and (a, b)G×H are two adjacent vertices of Γ(G × H). Then (x = a and

yHbH ∈ E(Γ(H))) or (y = b and xGaG ∈ E(Γ(G))) or (xGaG ∈ E(Γ(G)) and yHbH ∈
E(Γ(H))). Therefore, (x, y)G×H(a, b)G×H ∈ ∆3(G,H).

Suppose (x, y)G×H ∈ V (∆1) and (a, b)G×H ∈ V (∆2). Then by our definition, y ∈ Z(H) and

a ∈ Z(G). Hence each vertex of ∆1 is adjacent with each vertex of ∆2. We now assume that

(x, y)G×H ∈ V (∆3) and (a, b)G×H ∈ V (∆1 +∆2). Without loss of generality, we can assume

that (a, b)G×H ∈ V (∆1). It is clear that b ∈ Z(H) and so by = yb. Since a, x ̸∈ Z(G), a = x

or xGaG ∈ E(Γ(G)). This proves that (x, y)G×H(a, b)G×H ∈ A which completes the proof.

Lemma 3.7. Let H be arbitrary and let G be a non-abelian group. Then Γ(G) and ∆1(G,H)

have the same number of connected components.

Proof. Choose two vertices xG and aG from different components of Γ(G) and b, y ∈ Z(H).

Then (x, y)G×H and (a, b)G×H are different vertices of ∆1(G,H). By definition of ∆1,

(x, y)G×H(a, b)G×H ∈ E(∆1(G,H)) if and only if xGaG ∈ E(Γ(G)), proving the lemma.

Lemma 3.8. If H is an arbitrary finite group and G is a finite group such that Γ(G) = mKn.

Then ∆1(G,H) = mKn|Z(H)|.

Proof. Since Γ(G) = mKn, G has exactly mn non-central conjugacy classes, and since Z(H) is

abelian, G×Z(H) has exactly mn|Z(H)| conjugacy classes. Note that by definition |V (∆1)| =
mn|Z(H)|. Choose (x, y)G×H and (a, b)G×H from a connected component of ∆1(G,H). If

x = a then (x, y)G×H(a, b)G×H ∈ E(∆1(G,H)). Suppose x ̸= a. Since xG and aG are in

a connected component of Γ(G) and connected components of Γ(G) are isomorphic to Kn,

xGaG ∈ E(Γ(G)). Therefore, (x, y)G×H(a, b)G×H ∈ E(∆1(G,H)). By Lemma 3.7, the number

of connected components of Γ(G) and ∆1(G,H) are m and since |V (∆1(G,H))| = mn|Z(H)|,
∆1(G,H) = mKn|Z(H)|.
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Corollary 3.9. If G and H are two groups such that Γ(G) =
∪

i∈I miKni and Γ(H) =∪
j∈J m

′
jKn′

j
, then ∆1(G,H) =

∪
i∈I miKni|Z(H)| and ∆2(G,H) =

∪
j∈J m

′
jKn′

j |Z(G)|.

Lemma 3.10. If G and H are two groups such that Γ(G) = m1Kn1 and Γ(H) = m2Kn2, then

∆3(G,H) = m1m2Kn1n2.

Proof. We know that ∆3(G,H) = Γ(G)⊠Γ(H). Define A to be a subgraph of ∆3 containing all

vertices of the form (xG, yH) ∈ V (∆3(G,H)) such that xG’s will induce a connected component

in Γ(G) and yH ’s will induce another component in Γ(H). It is easy to see that |V (A)| = n1n2.

We prove that A is a connected subgraph of ∆3(G,H). To do this, we assume that (xG, yH)

and (aG, bH) are two arbitrary vertices in A. Then we have one of the following cases:

(1) xG = aG and yH ̸= bH .

(2) xG ̸= aG and yH = bH .

(3) xG ̸= aG and yH ̸= bH .

Since connected components of Γ(G) and Γ(H) are Kn1 and Kn2 , respectively, by definition

of ∆3, (x
G, yH)(aG, bH) ∈ E(∆3(G,H)). We now show that the subgraph A is a connected

component of ∆3. To see this, we assume that (xG, yH) is an arbitrary vertex of A and (cG, dH)

is a vertex in ∆3\A. It is clear that {xG, cG} is not contained in a connected component of Γ(G)

or {yH , dH} is not contained in a connected component of Γ(H). Therefore, xGcG ̸∈ E(Γ(G))

or yHdH ̸∈ E(Γ(H)) and so by definition of ∆3, (xG, yH)(cG, dH) ̸∈ E(∆3). This proves

that A is a connected component of ∆3. Thus, A = Kn1n2 . Since |V (∆3)| = m1m2n1n2,

∆3(G,H) = m1m2Kn1n2 . This completes the proof.

Corollary 3.11. If G and H are two groups such that Γ(G) =
∪

i∈I miKni and Γ(H) =∪
j∈J m

′
jKn′

j
, then ∆3(G,H) =

∪
i∈I
j∈J

mim
′
jKnin′

j
.

Corollary 3.12. If G and H are two p−groups such that Γ(G) =
∪

i∈I miKni and Γ(H) =∪
j∈J m

′
jKn′

j
, then Γ(G×H) =

(∪
i∈I
j∈J

mim
′
jKnin′

j

)
⊎
(∪

i∈I miKni|Z(H)| +
∪

j∈J m
′
jKn′

j |Z(G)|

)
.

Corollary 3.13. If H is abelian and G is a non-abelian group, then Γ(G×H) ∼= ∆1(G,H) ∼=
∆2(H,G).

Proof. By Theorem 3.6, the non-central conjugacy classes of G×H have the form (x, y)G×H

such that y ∈ Z(H) = H and x ̸∈ Z(G). Obviously, two vertices (x, y)G×H and (a, b)G×H are

adjacent if and only if x = a or xGaG ∈ E(Γ(G)), i.e. Γ(G×H) = ∆1(G,H).

Corollary 3.14. If H is a abelian group and G is a p−group such that Γ(G) =
∪

i∈I miKni

then Γ(G×H) =
∪

i∈I miKni|H|.
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As a simple example based on these results, we can see that Γ(D8) = 3K1, Γ(D8×Z3) = 3K3

and Γ(D8 ×D8) = 9K1 ⊎ (3K2 + 3K2).

4. Concluding Remarks

In this paper, the commuting conjugacy class graph of a group G in which | G
Z(G) | = p3

is completely characterized. As a consequence of our result it is proved that the commuting

conjugacy class graph of a group of order p4 has one of the form (p+ 1)Kp(p−1) or K(p2−1) ∪
pK(p−1). As a consequence of Theorem 3.6, we have:

Theorem 4.1. Suppose that G is a finite nilpotent group of order n in which n is not divisible

by p5, for every prime factor p of n. Then the commuting conjugacy class graph Γ(G) can be

obtained from the strong products, joins and the graph operation ⊎ on some complete graphs.
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