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GENERALIZED STONE RESIDUATED LATTICES

SAEED RASOULI

Abstract. This paper introduces and investigates the notion of a generalized Stone resid-

uated lattice. It is observed that a residuated lattice is generalized Stone if and only if it is

quasicomplemented and normal. Also, it is proved that a finite residuated lattice is gener-

alized Stone if and only if it is normal. A characterization for generalized Stone residuated

lattices is given by means of the new notion of α-filters. Finally, it is shown that each non-unit

element of a directly indecomposable generalized Stone residuated lattice is a dense element.

1. Introduction

Distributive pseudocomplemented lattices form an important class of distributive lattices.
[1, Problem 70] asked a question inspired by M. H. Stone: “What is the most general pseu-
docomplemented distributive lattice in which x∗ ∨ x∗∗ = 1 identically?” The first solution to
this problem belongs to [11] who gave the name “Stone lattices” to this class of lattices. They
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characterized stone lattices as distributive pseudocomplemented lattices in which any pair of
incomparable minimal prime ideals is comaximal or equivalently each prime ideal contains a
unique minimal prime ideal. According to [10, Lemma III.6.3 ], a distributive pseudocom-
plemented lattice is a Stone lattice if and only if its skeleton is a subalgebra of it. As a
generalization of distributive pseudocomplemented lattices [24] studied lattices which are just
pseudocomplemented. It is easy to see that a distributive lattice is pseudocomplemented if
and only if each its annulet is a principal ideal. By this motivation [25] and [22, 23] generalized
pseudocomplemented distributive lattices, the so-called quasicomplemented lattices. Also, [12]
introduced the notion of generalized Stone lattices. Motivated by characterization of Stone
lattices, [5] studied distributive lattices with 0 in which each prime ideal contains a unique
minimal prime ideal under the name “normal lattices”. He characterized generalized Stone
lattices [5, Theorem 5.6] by means of normal and quasicomplemented distributive lattices with
0. The notion of α-ideals is introduced in [6] and proved that a distributive lattice is a general-
ized Stone lattice if and only if each prime ideal contains a unique prime α-ideal. This work is
greatly motivated by the above works and a desire to extend these investigations to residuated
lattices. The notion of generalized Stone residuated lattices is introduced and investigated.
Our findings show that the results obtained by [5, 6] can also be reproduced via generalized
Stone residuated lattices.

The paper is organized as follows. In Sec. 2, some definitions and facts about quasicomple-
mented and normal residuated lattices that we use in the sequel are recalled. The results in
the this section are original, excepting those that we cite from the other papers. In Sec. 3, the
notion of generalized Stone residuated lattices are introduced and characterized. It is observed
that a residuated lattice is generalized Stone if and only if it is quasicomplemented and normal
(Corollary 3.10). Also, it is proved that a finite residuated lattice is generalized Stone if and
only if it is normal (Corollary 3.11). It is shown that a residuated lattice is generalized Stone if
and only if any prime filter of it contains a unique prime α-filter (Theorem 3.14). This section
ends with an explanation, elucidating that each non-unit element of a directly indecomposable
generalized Stone residuated lattice is a dense element (Corollary 3.17).

2. Residuated lattices

In this section, we recall some definitions, properties and results relative to residuated
lattices which will be used in the following. The results in the this section are original,
excepting those that we cite from the other papers.

An algebra A = (A;∨,∧,�,→, 0, 1) is called a residuated lattice if ℓ(A) = (A;∨,∧, 0, 1)
is a bounded lattice, (A;�, 1) is a commutative monoid and (�,→) is an adjoint pair. A
residuated lattice A is called non-degenerate if 0 6= 1. For a residuated lattice A and a ∈ A we
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put ¬a := a → 0 and an := a�· · ·�a (n times), for any integer n. An element a ∈ A is called
idempotent if a2 = a. The set of idempotent elements of A is denoted by id(A). The class of
residuated lattices is equational and so it forms a variety. For a survey of residuated lattices
we refer to [8].

Remark 2.1. [4, Proposition 2.6] Let A be a residuated lattice. The following conditions are
satisfied for any x, y, z ∈ A:

r1 x� (y ∨ z) = (x� y) ∨ (x� z);
r2 x ∨ (y � z) ≥ (x ∨ y)� (x ∨ z).

Example 2.2. [19, Example 2.1] Let A6 = {0, a, b, c, d, 1} be a lattice whose Hasse diagram
is given by Figure 1. Routine calculation shows that A6 = (A6;∨,∧,�,→, 0, 1) is a residuated
lattice where the commutative operation “� ” is given by Table 1 and the operation “ → ” is
defined by x → y =

∨
{a ∈ A6|x� a ≤ y}, for any x, y ∈ A6.

� 0 a b c d 1

0 0 0 0 0 0 0

a a a 0 a a

b a 0 a b

c c c c

d d d

1 1

Table 1

0

c
a

b
d

1

Figure 1

Example 2.3. [15, Example 2.2] Let A7 = {0, a, b, c, d, e, 1} be a lattice whose Hasse diagram
is given by Figure 2. Routine calculation shows that A7 = (A7;∨,∧,�,→, 0, 1) is a residuated
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lattice where the commutative operation “� ” is given by Table 2 and the operation “ → ” is
defined by x → y =

∨
{a ∈ A7|x� a ≤ y}, for any x, y ∈ A7.

� 0 a b c d e 1

0 0 0 0 0 0 0 0

a a a a a a a

b b a b a b

c a a c c

d b c d

e e e

1 1

Table 2

0

a

b c

d e

1

Figure 2

Let A be a residuated lattice. A non-void subset F of A is called a filter of A if x, y ∈ F

implies x� y ∈ F and x∨ y ∈ F for any x ∈ F and y ∈ A. The set of filters of A is denoted by
F(A). A filter F of A is called proper if F 6= A. Clearly, F is a proper filter if and only if 0 /∈ F .
For any subset X of A the filter of A generated by X is denoted by F(X). For each x ∈ A,
the filter generated by {x} is denoted by F(x) and called principal filter. The set of principal
filters is denoted by PF(A). For the basic facts concerning filters of a residuated lattice we
refer to [20, 14, 18].Following [10, §5.7] a complete lattice A is called a frame if it satisfies the
join infinite distributive law (JID) i.e., for any a ∈ A and S ⊆ A, a ∧

∨
S =

∨
{a ∧ s | s ∈ S}.

Following [4, Theorem 3.17] (F(A);∩,⊻, {1}, A) is a frame in which ⊻F = F(∪F), for any
F ⊆ F(A).
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Example 2.4. Consider the residuated lattice A6 from Example 2.2 and the residuated lattice
A7 from Example 2.3. The set of their filters is presented in Table 3.

filters

A6 {1}, {d, 1}, {a, b, d, 1}, {c, d, 1}, A6

A7 {1}, {b, d, 1}, {e, 1}, {a, b, c, d, e, 1}, A7

Table 3

The following proposition has a routine verification.

Proposition 2.5. Let A be a residuated lattice and F be a filter of A. The following assertions
hold for any x, y ∈ A:

(1) F(F, x) := F ⊻ F(x) = {a ∈ A|f � xn ≤ a, ∃f ∈ F ∧ ∃n ∈ N};
(2) x ≤ y implies F(F, y) ⊆ F(F, x).
(3) F(F, x) ∩ F(F, y) = F(F, x ∨ y);
(4) F(x) ⊻ F(y) = F(x� y);
(5) PF(A) is a sublattice of F(A).

A proper filter of a residuated lattice A is called maximal if it is a maximal element in the
set of all proper filters. The set of all maximal filters of A is denoted by Max(A). A proper
filter P of A is called prime, if for any x, y ∈ A, x ∨ y ∈ P implies x ∈ P or y ∈ P . The
set of all prime filters of A is denoted by Spec(A). Since F(A) is a distributive lattice, so
Max(A) ⊆ Spec(A). By Zorn’s lemma follows that any proper filter is contained in a maximal
filter and so in a prime filter. A prime filter P is called minimal prime if P is a minimal
element in the set of prime filters. The set of minimal prime filters of A is denoted by Min(A).
For the basic facts concerning minimal prime filters of a residuated lattice we refer to [19, 17].

Example 2.6. Consider the residuated lattice A6 from Example 2.2 and the residuated lattice
A7 from Example 2.3. By Example 2.4, the set of their maximal, prime and minimal prime
filters is presented in Table 4.

Proposition 2.7. In a residuated lattice any prime filter contains a minimal prime filter.

Proof. It follows by [15, Corollary 3.25].

Let A be a residuated lattice. For any subset X of A, we write X⊥ = {a ∈ A|a∨x = 1, ∀x ∈
X} and we set
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prime filters

Maximal Minimal

A6 {a,b,d,1},{c,d,1} {d,1} {1}

A7 {a,b,c,d,e,1} {b,d,1},{e,1}

Table 4

• Γ(A) = {X⊥|X ⊆ A};
• γ(A) = {x⊥|x ∈ A};
• λ(A) = {x⊥⊥|x ∈ A}.

Elements of Γ(A), γ(A) and λ(A) are called coannihilators, coannulets and dual coannulets,
respectively. By [13, Proposition 3.13] follows that (Γ(A);∩,∨Γ, {1}, A) is a complete Boolean
lattice in which for any F ⊆ Γ(A) we have ∨ΓF = (∪F)⊥⊥ and by [16, Proposition 2.15] follows
that γ(A) and λ(A) are sublattices of Γ(A). For the basic facts concerning coannihilators and
coannulets of residuated lattices we refer to [13].

Proposition 2.8. [13] Let A be a residuated lattice. The following assertions hold for any
X,Y ⊆ A:

(1) X ⊆ Y ⊥ implies Y ⊆ X⊥;
(2) X ∩X⊥ ⊆ {1};
(3) X ⊆ X⊥⊥;
(4) (F(X))⊥ = X⊥;
(5) x⊥ = A if and only if x = 1;
(6) x⊥ ⊻ y⊥ ⊆ x⊥ ∨Γ y⊥ = (x ∨ y)⊥.

Following [16], a residuated lattice A is called quasicomplemented provided that λ(A) ⊆
γ(A). For a residuated lattice A a subset X of A is called dense if X⊥ = {1}. The set of
all dense elements of A is denoted by de(A). It is easy to check that de(A) is an ideal of
ℓ(A). Also, it is obvious that any non-unit element of a chain residuated lattice is dense. The
following Theorem characterizes quasicomplemented residuated lattices.

Theorem 2.9. [16, Proposition 3.2] Let A be a residuated lattice. The following assertions
are equivalent:

(1) A is quasicomplemented;
(2) for any x ∈ A, there exists y ∈ A such that x� y ∈ de(A) and x ∨ y = 1;
(3) γ(A) is a Boolean lattice.
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Proposition 2.10. Let A be a residuated lattice. A is quasicomplemented provided that
γ(A) ⊆ PF(A).

Proof. It follows by [16, Proposition 3.3].

Corollary 2.11. Any finite residuated lattice is quasicomplemented.

Proof. Following Proposition 2.5(4) in a finite residuated lattice any filter is principal, so it
follows by Proposition 2.10.

The following example produces a residuated lattice which is not quasicomplemented.

Example 2.12. Consider the residuated lattice A6 from Example 2.2 and let X be an infinite
set. Define A6 = {f ∈ AX

6 | Card(Cosup(f)) < ∞}∪0, where Cosup(f) = {x ∈ X | f(x) 6= 1}
and 0 is the zero function. Define ∨, ∧, � and → pointwise and let 1 be the constant function
1. One can see easily that A6 = (A6;∨,∧,�,→, 0, 1) is a residuated lattice. Now, we show
that de(A6) = 0. Let 0 6= f ∈ A6 and x0 ∈ X \ Cosup(f). Define a mapping g : X → A6 as
follows:

g : X −→ A6

x 7−→

 0 if x = x0,

1 else.

It is obvious that g 6= 1 and g ∈ f⊥. This shows that the residuated lattice A6 has no non-zero
dense element. Let f be an arbitrary element of A6 and there exists g ∈ A6 such that f∨g = 1

and f�g is a dense element. This implies that f�g = 0 which is impossible. So by Theorem
2.9 follows that the residuated lattice A6 is not quasicomplemented.

A filter F of a residuated lattice A is called an α-filter if for any x ∈ F we have x⊥⊥ ⊆ F .
The set of α-filters of A is denoted by α(A). For any subset X of A, the α-filter generated by
X is denoted by α(X). By [16, Proposition 5.3] follows that (α(A);∩,∨α, {1}, A) is a frame
in which ∨αF = α(

∪
F), for any F ⊆ α(A) . For the basic facts concerning α-filters and

quasicomplemented residuated lattices we refer to [16].

Proposition 2.13. Let A be residuated lattice. The following assertions hold:

(1) Min(A) ⊆ α(A);
(2) any prime filter contains a prime α-filter.

Proof.
(1): It follows by [16, Corollary 5.11].



82 Alg. Struc. Appl. Vol. 8 No. 1 (2021) 75-87.

(2): It is an immediate consequence of Proposition 2.7 and (1).

The next proposition characterizes quasicomplemented residuated lattice in terms of α-
filters. In the sequel, for a residuated lattice A, we set Specα(A) = Spec(A) ∩ α(A).

Proposition 2.14. [16, Corollary 5.17] Let A be a residuated lattice. A is quasicomplemented
if and only if Specα(A) = Min(A).

Let A be a residuated lattice. A is called normal provided that any prime filter of A contains
a unique minimal prime filter. For a survey of normal residuated lattices we refer to [19].

Proposition 2.15. [19, Proposition 4.14] Let A be a residuated lattice. The following asser-
tions are equivalent:

(1) A is normal;
(2) γ(A) is a sublattice of F(A).

Example 2.16. Consider the residuated lattice A6 from Example 2.2 and the residuated
lattice A7 from Example 2.3. By Example 2.6 follows that A6 is normal and A7 is not normal
since that the prime filter {a, b, c, d, e, 1} of A7 contains the two minimal prime filters {b, d, 1}
and {e, 1}.

3. Generalized Stone residuated lattice

The following proposition is an important property of principal filters of a residuated lattice,
inspired by the one obtained for bounded distributive lattices by [10, Lemma 105].

Lemma 3.1. Let F , G and H be filters of a residuated lattice A. If G ∩ H = F(F, x) and
G ⊻H = F(F, y), then there exist u,w ∈ A such that G = F(F, u) and H = F(F,w).

Proof. y ∈ G ⊻ H implies that g � h ≤ y, for some g ∈ G and h ∈ H. So F(F, y) ⊆
F(F, g) ⊻ F(F, h) ⊆ G ⊻ H = F(F, y) and this shows that F(F, y) = F(F, g) ⊻ F(F, h). So,
for any z ∈ G, we have z ∈ F(F, g) ⊻ (F(F, h) ∩ F(F, z)) ⊆ F(F, g � x) and this state that
G ⊆ F(F, g � x). The inverse inclusion is evident and so G = F(F, g � x). By symmetry, we
can obtain the other case.

The following example shows that the condition of the above lemma can be accrued.

Example 3.2. Consider the residuated lattice A6 from Example 2.2. By considering Example
2.4 we set F = {d, 1}, G = {a, b, d, 1} and H = {c, d, 1}. It is obvious that G ∩H = F(F, e)

and G ⊻H = F(F, 0). Also, we have G = F(F, a) and H = F(F, c).
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Corollary 3.3. Let G and H be two filters of a residuated lattice A. The following assertions
hold:

(1) If G ∩H and G ⊻H are principal, then G and H are also principal;
(2) if G∩H = {1} and G⊻H = A, then there exist g ∈ G and h ∈ H such that G = F(g),

H = F(h) and g � h = 0.

Proof. It is a direct consequence of Lemma 3.1.

Let (A;∨,∧, 0, 1) be a bounded lattice. Recall [10, §I.6.1] that an element x ∈ A is called
complemented if there is an element y ∈ A such that x ∨ y = 1 and x ∧ y = 0; y is called
a complement of x. Complements in a bounded lattice are generally not unique unless the
lattice is distributive.

Definition 3.4. Let A be a residuated lattice. The set of complemented elements of F(A)

shall be denoted by β(F(A)) and its elements are called the direct summands of A.

Let A be a residuated lattice. Since F(A) is a frame, so by [10, Lemma 97] follows that
β(F(A)) is a bounded sublattice of F(A) and thus a Boolean lattice.

Corollary 3.5. Let A be a residuated lattice. Then β(F(A)) ⊆ PF(A).

Proof. It is evident by Corollary 3.3(2).

Definition 3.6. A residuated lattice A is called generalized Stone if for any x ∈ A we have
x⊥ ⊻ x⊥⊥ = A.

Proposition 3.7. Let A be a residuated lattice. A is generalized Stone if and only if γ(A) ⊆
β(F(A)).

Proof. Let A be generalized Stone and x ∈ A. By Proposition 2.8(2) follows that x⊥ ∩ x⊥⊥ =

{1} and by hypothesis we have x⊥ ⊻ x⊥⊥ = A. It shows that x⊥ is a direct summand of A.
Conversely, consider x ∈ A. By hypothesis there exists a filter F such that x⊥ ∩ F = {1}
and x⊥ ⊻ F = A. Since x⊥⊥ is a pseudocomplement of x⊥ so we obtain that F ⊆ x⊥⊥ and it
follows that A = x⊥ ⊻ F ⊆ x⊥ ⊻ x⊥⊥. So x⊥ ⊻ x⊥⊥ = A and it shows that A is generalized
Stone.

Proposition 3.8. Let A be a residuated lattice. If A is generalized Stone, then A is quasi-
complemented.

Proof. It is an immediate consequence of Corollary 3.5 and Proposition 3.7.
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Proposition 3.9. Let A be a residuated lattice. If A is generalized Stone, then A is normal.

Proof. Let x, y ∈ A and a ∈ (x∨ y)⊥. So a∨ y ∈ x⊥ and it implies that F(a∨ y)∩ x⊥⊥ = {1}.
It means that (F(a) ∩ F(y)) ∩ x⊥⊥ = {1} and it states that F(a) ∩ x⊥⊥ ⊆ y⊥. Now, we have
the following sequence of formulas:

x⊥ ⊻ y⊥ ⊇ (F(a) ∩ x⊥) ⊻ (F(a) ∩ x⊥⊥)

= F(a) ∩ (x⊥ ⊻ x⊥⊥)

= F(a) ∩A = F(a) 3 a.

The inverse inclusion follows by Proposition 2.8(6). Thus the result holds by Proposition 2.15.

The following corollary gives the interrelation between the subclasses of quasicomplemented,
normal and generalized stone residuated lattices (See Fig. 3).

Corollary 3.10. Let A be a residuated lattice. The following assertions are equivalent:

(1) A is generalized Stone;
(2) A is quasicomplemented and normal.

Proof.
(1)⇒(2): It follows by Proposition 3.8 and 3.9
(2)⇒(1): Consider x ∈ A. So there exists y ∈ A such that x⊥⊥ = y⊥ and it implies that
x⊥ ⊻ x⊥⊥ = x⊥ ⊻ y⊥ = x⊥ ∨Γ y⊥ = x⊥ ∨Γ x⊥⊥ = A.

Residuated lattices

Quasicomplemented residuated lattices

generalized Stone residuated lattices

Normal residuated lattices

Figure 3

Corollary 3.11. A finite residuated lattice is generalized Stone if and only if it is normal.

Proof. It follows by Corollary 2.11 and 3.10.
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Example 3.12. Consider the residuated lattice A6 from Example 2.2 and the residuated lattice
A7 from Example 2.3. By Corollary 3.11 and Example 2.16 follows that A6 is generalized Stone
and A7 is not generalized Stone.

Following [2, p. 473], the unit real interval I = [0, 1] by setting x� y = max{0, x+ y − 1},
and x → y = 1 − x + y for all x, y ∈ I and the natural ordering of real numbers becomes an
MV-algebra and so a residuated lattice.

Remark 3.13. Let X be a topological space, and I endowed with the natural topology.
Following [3, p.648] and [7, p. 23], the family C(X) = {f ∈ IX | f is continuous} by the
MV-operations induced pointwise on I has a structure of MV-algebra and so a residuated
lattice. A zero-set and a cozero-set of X is Z(f) = f←(0) and Coz(f) = X \ U(f) for
some f ∈ C(X), respectively. Clearly, zero-sets are closed in X and cozero-sets are open.
A topological space X is called an F -space provided that disjoint cozero-sets are completely
separable (i.e., they are separated by disjoint zero-sets) (see [9, 14N]). X is said to be basically
disconnected if the closure of every cozero-set is an open set (see [9, 1H]). By [3, Theorem 4.3],
a topological space X is an F -space if and only if C(X) is a normal MV-algebra (Hypernormal
MV-algebra in terminology of [3]). Also, by [7, Theorem 4.5], a topological space X is a
basically disconnected space if and only if C(X) is a generalized Stone MV-algebra (Stonian
MV-algebra in terminology of [7]). Let R+ be the space of nonnegative reals with the topology
induced by the usual topology of R, and let β(R+) be the Stone-Čech compactification of
R+. The topological space β(R+) \ R+ is an F -space which is not basically disconnected(see
[9, 14.28]). So C(β(R+) \ R+) is a normal MV-algebra which is not generalized Stone. So
C(β(R+) \ R+) is a normal residuated lattice which is not a quasicomplemented residuated
lattice.

Theorem 3.14. Let A be a residuated lattice. A is generalized Stone if and only if any prime
filter of A contains a unique prime α-filter.

Proof. Let A be generalized Stone and P be a prime filter of A. Following Corollary 3.10, A
is quasicomplemented and normal. By Proposition 2.13(2) follows that P contains a prime
α-filter. Let Q be a prime α-filter containing in P . By Proposition 2.14 follows that Q is
minimal prime and so it is unique by normality of A. Conversely, let any prime filter of A

contains a unique prime α-filter. By Proposition 2.13(1) follows that any prime filter contains
a unique minimal prime filter and so A is normal. If P is a prime α-filter of A, then P

contains a minimal prime filter m due to Proposition 2.7. This implies that m = P and so A

is quasicomplemented. It shows that A is generalized Stone by Corollary 3.10.
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According to [21, Definition 7.6], a residuated lattice is called directly indecomposable if and
only if it is not isomorphic to a direct product of two non-degenerate residuated lattices.

Proposition 3.15. Let A, A1 and A2 be residuated lattices. A ∼= A1 × A2 if and only if
A1

∼= A/F1 and A2
∼= A/F2, for some F1, F2 ∈ β(F(A)).

Proof. In a similar manner with [21, Theorem 7.5], we can show that A ∼= A1 ×A2 if and only
if there exist two filters F1 and F2 of A such that A/F1

∼= A1, A/F2
∼= A2, F1 ∩ F2 = {1} and

F1 ⊻ F2 = A.

Corollary 3.16. Let A be a residuated lattice. A is directly indecomposable if and only if
β(F(A)) = {{1}, A}.

Proof. It is an immediate consequence of Proposition 3.15.

Corollary 3.17. Let A be a residuated lattice. If A is directly indecomposable and generalized
Stone, then de(A) = A \ {1}.

Proof. Let A be directly indecomposable and generalized Stone. Consider 1 6= x ∈ A. By
Proposition 3.7 follows that x⊥ ∈ β(F(A)) and by Corollary 3.16 follows that β(F(A)) =

{{1}, A}. Following by Proposition 2.8(5) we get that x ∈ de(A).

Corollary 3.18. Let A be a finite residuated lattice. If A is directly indecomposable and
normal, then de(A) = A \ {1}.

Proof. It is an immediate consequence of Corollary 3.11 and 3.17.
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