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ABSTRACT. In this article we study and investigate the behavior of r-submodules (a proper
submodule N of an R-module M in which am € N with Anny/(a) = (0) implies that m € N
for each a € R and m € M). We show that every simple submodule, direct summand,
divisible submodule, torsion submodule and the socle of a module is an r-submodule and if R
is a domain, then the singular submodule is an r-submodule. We also introduce the concepts
of uz-module (i.e., an R-module M such that either Ann;(a) # (0) or aM = M, for every
a € R) and strongly uz-module (i.e., an R-module M such that aM C a*M, for every a € R)
in the category of modules over commutative rings. We show that every Von Neumann regular
module is a strongly uz-module and every Artinian R-module is a uz-module. It is observed
that if M is a faithful cyclic R-module, then M is a uz-module if and only if every its cyclic
submodule is an r-submodule. In addition, in this case, R is a domain if and only if the only
r-submodule of M is zero submodule. Finally, we prove that R is a uz-ring if and only if

every faithful cyclic R-module is a uz-module.
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1. INTRODUCTION

Throughout this paper R is a commutative ring with 1 # 0 and M is a unitary R-module.
For S C R and N C M we define Anng(S) = {a € R : aS = (0)}, Annp(S) = {m €
M : mS = (0)} and Anng(N) = {a € R : aN = (0)}. For simplicity of notation, in
the case S = {a} and N = {m}, we write Anng(a), Annys(a) and Anng(m) instead of
Anng({a}), Anny({a}) and Anng({m}), respectively. An element a € R is said to be regular
if Anng(a) = (0), otherwise, it is called a zerodivisor element, and is said to be regular (resp.,
zerodivisor) element relative to an R-module M if Annps(a) = (0) (resp., Annps(a) # (0)).
By r(R), zd(R) and u(R) we mean the set of all regular elements, zerodivisor elements and
unit elements of R, respectively. We call a ring R a uz-ring if for every a € R either a € zd(R)
or a € u(R). Also we denote the set of all regular elements of R relative to M, by rj/(R),
that is rps(R) = {a € R : Annps(a) = (0)}. An ideal I of R is called a) a nonregular ideal if
I C zd(R); b) an r-ideal if ab € I, with Anng(a) = (0), implies that b € I, for each a,b € R.
For m € M (resp., a € R), Rm (resp., Ra) denotes the cyclic submodule (resp., principal
ideal) generated by m € M (resp., a € R). A homomorphism of an R-module M to itself is
called an endomorphism. The set of all endomorphisms of M is a ring, which is denoted by
Endgr(M). For each R-module M, the Jacobson (resp., socle), by definition, is the intersection
(resp., the sum) of all maximal (resp., minimal) submodules of M, which will be denoted by
J(M) (resp., soc(M)). An R-module M is said to be a) a simple module if it is nonzero and
it has no nontrivial submodule; b) semisimple if every submodule of M is a direct summand;
c) divisible if for each m € M and 0 # a € R, there exists z € M such that m = ax; d)
faithful if Anng(M) = (0); e) Von Neumann regular module if every its cyclic submodule is
a direct summand. Also a nonzero submodule N of an R-module M is said to be essential if
for every nonzero submodule K of M we have N N K # (0). For more information about the
aforementioned submodules in the category of R-modules, we refer the reader to [[, 6, 10, [L1].
We also refer the reader to [12] and [9] for the necessary information about r-ideals and 7-
submodules, respectively. Finally, for more details and undefined terms and notations, see
2, B, B, .

2. r-submodules

Our aim in this section is to study the behavior of r-submodules. The concept of r-ideal

was introduced and study in [12]. Recall from [9] the following definition.

Definition 2.1. Let R be a ring and M be an R-module. A proper submodule N of M is
called an r-submodule if am € N with Annjs(a) = (0) implies that m € N for each a € R and
m e M.
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Let R be any ring and let us consider R as a module over itself. Since that the submodules
of R are ideals in R, one can easily show that I is an r-ideal if and only if I as a submodule
is an r-submodule.

Some preliminary properties of r-submodules are as follows:

Remark 2.2. Let M be an R-module.

(7) The zero submodule of M is an r-submodule.

(74) The intersection of any family of r-submodules of M is an r-submodule.
(731)) Annps(I) is an r-submodule of M for any ideal I of R.

(

iv) If f € Endg(M), then ker(f) ={m € M : f(m) =0} is an r-submodule of M.

Let M be an R-module. Recall that if N is a submodule of M and a € R, then (N :a) =
{m € M : am € N} is a submodule of M which contains N. Also if S is a multiplicatively
closed subset of R, then S™'R (resp., S~ M) is a ring (resp., an S~ R-module), which is called
the ring (resp., module) of fractions of R (resp., M) with respect to S. Clearly, S = ry/(R)
is a multiplicatively closed subset in R. For more information about the above concepts, see
[13]. In the following proposition we give several equivalent definitions for r-submodules. For

the proof see Proposition 4 in [9)].

Proposition 2.3. Let M be an R-module and N be a submodule of M. Then the following

statements are equivalent.

(i) N is an r-submodule.
(19) aM NN = aN, for each a € rpr(R).

(ii1) N = (N :a), for each a € rps(R).

(iv) N = N¢, where N is a submodule in S™*M and S = 1)/ (R).

Proposition 2.4. Let N C K be two submodules of an R-module M. If N is an r-submodule

of M and % is an r-submodule of R-module %, then K is an r-submodule of M.

Proof. Let a € R, m € M and am € K with Anny(a) = (0). Clearly, a(m + N) € £ and also
Ann%(a) = (0). To see this, let m+ N € Ann%(a). Hence a(m + N) = am + N = N which
implies that am € N. On the other hand, since Anny;(a) = (0) and N is an r-submodule, we
have m € N whence m + N = N. Therefore by our hypothesis, we have m + N € % and so
m € K. This shows that K is an r-submodule.

If f: M — N is an R-module isomorphism, then it is clear that Anns(a) = (0) if and only
if Anny(a) = (0), for any a € R.
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Proposition 2.5. r-submodules are invariant under isomorphisms.

Proof. Let M and N be R-modules and f : M — N be an R-module isomorphism. We are
to show that whenever K is an r-submodule of M, then f(K) is an r-submodule of N. To
see this, suppose that a € R, n € N and an € f(K) with Anny(a) = (0). Take m € K and
mi € M such that an = f(m) and n = f(my). Clearly, an = af(m1) = f(ami) = f(m),
whence f(am; —m) = 0 and so am; — m € ker(f) = (0). Therefore am; = m € K. Since

Annjs(a) = (0), we infer that m; € K and hence n = f(m;) € f(K). g

In the following two theorems we observe that every simple submodule and the socle of a

module are r-submodules.
Theorem 2.6. Every simple submodule of a module is an r-submodule.

Proof. Assume that N is a simple submodule of an R- module M. Therefore there exists
0 # m € N such that N = Rm. Now let a« € R, z € M and ax € N with Annys(a) = (0).
If ax =0, then x = 0 € N. In case ax # 0, we have N = Raz. Since am # 0, we infer that
N = Ram. Consequently, N = Rax = Ram and hence axz € Ram. Therefore there exists
s € R such that ax = sam, whence x — sm € Annys(a) = (0). Thus z = sm € Rm = N which

completes the proof.

The following corollary is now an immediate consequence of Theorem @

Corollary 2.7. If M is a very semisimple R-module (i.e., its every cyclic submodule is simple),

then every cyclic submodule of M is an r-submodule.
Theorem 2.8. Let M be any R-module. Then soc(M) is an r-submodule.

Proof. Suppose that {N; : i € A} be the set of all minimal submodules of M. By definition,
we have soc(M) = @;caN;. Now let a € R, m € M and am € soc(M) with Annys(a) = (0).
Hence am = Y, _, a;,, where a;, € N;,, for i1,--- ,4, € A. Without loss of generality, we can
assume that aa;, # 0, for each iy. Consequently, Raa;, = Nj, therefore am =, ar;, a;,,
where r;, € R, for k=1,--- ,n . This implies that m — > }'_, r;, a;, € Annps(a) = (0), hence

m =Y p_,7ia;,. Therefore m € soc(M) and we are done.

Proposition 2.9. (i) Every divisible submodule of a module is an r-submodule.

(i) Every direct summand of a module is an r-submodule.
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Proof. (i) Assume that N is a divisible submodule of an R-module M. Let a € R, m € M and
am € N with Annys(a) = (0). Since N is divisible, there exists n € N such that am = an.
Hence m —n € Annys(a) = (0) and therefore m =n € N.

(7i) Suppose that N is a direct summand of an R-module M. By Lemma 5.6 in [[], there exists
e € Endg(M) such that N = ker(1 — e) and e? = e. This means that N is an r-submodule. f

Example 2.10. In view of Proposition 2.9, injective submodules in any R-module, a fortiori

Z(p™) as a Z-submodule of % are r-submodules.
Using the previous proposition we have the next corollary.

Corollary 2.11. (i) If M is a semisimple R-module, then every submodule of M is an
r-submodule.
(ii) If M is a Von Neumann reqular R-module, then every finitely generated submodule of M

is a direct summand and therefore it is an r-submodule as well, see Lemma 1 in [§].

We recall that if M is an R-module, then t(M) = {m € M : Anng(m) # (0)} is called
torsion submodule of M. If t(M) = M (resp., t(M) = (0)), then M is called torsion (resp., tor-
sion free) module. We also recall that Z(M) = {m € M : Anng(m) is an essential ideal in R}
is a submodule of M, which is called singular submodule. If Z(M) = M, (resp., Z(M) = (0))
then M is called singular (resp., nonsingular) module. In the following results we show that
t(M) is always an r-submodule of M and if R is a domain, then Z(M) is also an r-submodule
of M.

Proposition 2.12. Let M be an R-module. Then the following statements hold.

(i) The torsion submodule of M is an r-submodule.

(i) If R is a domain then the singular submodule of M is an r-submodule.

Proof. (i) Suppose that am € t(M) with Anny/(a) = (0), where a € R and m € M. By
definition of the torsion submodule, we have Anng(am) # (0) whence there exists 0 # s € R
such that s(am) = a(sm) = 0. Therefore sm € Anny;(a) = (0) and hence 0 # s € Anng(m),
that is, Anng(m) # (0). This means that m € t(M).

(73) Assume that am € Z(M) with Annys(a) = (0), where a € R and m € M. The definition of
singular submodule implies that Anng(am)N Rx # (0), for any 0 # x € R. Hence there exists
0 # s € R such that (sxm)a = 0, and thus szm € Annjys(a) = (0), so 0 # sz € Anng(m)N Rz,
ie, me Z(M). g
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The direct sum of two r-submodules may not be an r-submodule, see Example 5.14 in [12].
For a nontrivial idempotent e in R, eM is clearly an r-submodule of M, for manifestly eM is
a summand of M. Now the following proposition shows certain direct sum of r-submodules in

a module M, which are not necessarily simple submodules is in fact an r-submodule.

Proposition 2.13. Let M be an R-module and {e; : i € A} be a set of orthogonal idempotents
in R and no finite subset of these idempotents generate R, in the sense that 1 # Y . pe;,

where B is a finite subset of A. Then N = @®;cae; M is an r-submodule.

Proof. Let am € N, where a € R, m € M with Anny/(a) = (0). We are to show that
m € N. Clearly, am = Y ,_, e;,m;,, where iy, € A and m;, € M, for k = 1,--- ,n. Let us
put z = [[;_;(1 —e;,). It is manifest that amaz = 0 and hence mz = 0. It is now evident
that z = 1 — y, where y = Y ,_; €;,. Therefore m(1 —y) = 0, so m = my. This implies that
m € N. 0

Definition 2.14. Let R be a ring and M be an R-module. Then

(1) a € R is said to be m-regular relative to M, if Anng(a) = (0) implies that Annys(a) = (0);
(i7) a € R is said to be R-regular relative to M, if Annys(a) = (0) implies that

Anng(a) = (0).

For example if we consider R[x] as a module over R, then every a € R is an m-regular
element relative to R[z] if and only if it is an R-regular element relative to R[z]. Also one can
easily see that, if M is an R-module and Anny,(a) = (0), for every a € R, then Anng(M) is

an r-ideal in R. Note that, in this case, there is no any essential r-submodule in M.

Lemma 2.15. Suppose that M is an R-module. Then the following statements hold.
(i) If M is a faithful R-module, then every a € R is an R-reqular element relative to M.

(ii) If M is a finitely generated free R-module, then every a € R is an m-reqular element

relative to M.

Proof. (i) Assume that a € R with Annys(a) = (0) and s € Anng(a). Hence sa = 0 and it
is evident that sam = 0, for any m € M. Thus sm € Annys(a) = (0) and therefore sm = 0.
This implies that s € Anng(M) = (0), i.e., Anng(a) = (0).

(17) Assume that X = {z1,---,z,} is a base for M, a € R with Anng(a) = (0) and m € M.
Now suppose that m € Annjs(a), hence am = 0. On the other hand, there exist s1, -+ , s, € R
such that m = s1x1+- -+ spxy,. Therefore asix1+- -+ as,x, = 0, and consequently as; = 0,
for i = 1,--- ,n. This conclude that si,---,s, € Anng(a) = (0), therefore s; = 0, for

i=1,---,n and hence m = 0. This implies that Anny(a) = (0). g
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We should emphasize that any cyclic submodule need not be an r-submodule. For example,
the principle ideal I = Z4 in Z is not an r-ideal and so it is not an r-submodule of Z as a
Z-module. Whenever M is a finitely generated free R-module and [ is an r-ideal in R, we

have the following fact.

Proposition 2.16. Let M be a finitely generated free R-module with a base X and I be an
ideal in R. Then I is an r-ideal in R if and only if IX is an r-submodule of M.

Proof. Suppose that X = {z1,--- ,x,} and am € IX with Annys(a) = (0), where a € R
and m € M. Take s1,---,s, € R and t1,--- ,t, € I such that m = s1z1 + -+ + spx, and
am =tiz1+---+t,x,. Hence asiz1+---+aspxr, =t1x1+ - +tnx,. Therefore as; =t; € 1,
fori =1,--- ,n. Now by part (i) of the above lemma we have Anng(a) = (0) and so by our
hypothesis, we conclude that s; € I, for ¢ = 1,--- ,n. This means that m € IX. Conversely,
suppose that ax € I, with Anng(a) = (0), where a,x € Rand 0 # m € M. Clearly, azm € IX.
Now using part (i7) of the above lemma, we have Annjys(a) = (0), whence by our hypothesis,

we have xm € IX. This yields that x € I.

We remind the reader that a submodule N of a module M is called prime (resp., primary)
if for each a € R and m € M, am € N implies that m € N or aM C N (resp., a"M C N
for some n € N). Also N is called semiprime, if a®>m € N implies that am € N. Clearly,
every submodule is prime if and only if it is both primary and semiprime. Furthermore, if
N is a prime r-submodule of M, then am € N implies that m € N, for every m € M and
a € rpr(R). For otherwise, we have aM C N and so by part (iz) of Proposition @ we conclude
that aM = aN. This immediately implies that M = N which is not true.

Now similarly to the notion of nonregular ideal, we may define a nonregular submodule.

Definition 2.17. A proper submodule N of an R-module M is called nonregular, if aM C N
implies that Annys(a) # (0), for each a € R.

If we consider R as an R-module, then our definition agrees with the concept of nonregular

ideal.

Remark 2.18. (i) Every r-submodule of a module is nonregular.

(74) Every prime nonregular submodule of a module is an r-submodule.

The converse of part (i) of the above remark is not true, in general. For example, consider
Q as a Z-module. Then the submodule N = Z% is a nonregular submodule but it is not an
r-submodule. To see this, it is clear that 2.2 = 2.3 € N and Anng(2) = (0) but 3 ¢ N

We conclude this section with the following proposition.
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Proposition 2.19. Every mazximal r-submodule is a prime submodule.

Proof. Assume that N is a maximal r-submodule of an R-module M. We are to show that NV
is prime. To see this, let a € R, m € M and am € N. Since N is an r-submodule, (N : a)
is an r-submodule and it is evident that N C (N : a). Now maximality of N implies that
(N :a) = N and hence we have m € N, i.e., N is prime.

3. uz-modules

This section is devoted to the introduction of the uz-modules and strongly uz-modules. We

begin with the following definitions.

Definition 3.1. An R-module M is called a

(1) uz-module, if for every a € R either Annys(a) # (0) or aM = M,
(ii) strongly uz-module if for every a € R we have aM C a>M (in fact, aM = a®>M).

For instance, the modules % Q and Z(p>) over Z are strongly uz-modules but Z as Z-
module is not a strongly wz-module. Every strongly uz-module is a uz-module, but the
converse is not true, in general. For example, Z4 as a Z4-module is a uz-module, but is not
a strongly uz-module. The ring of C'(X), i.e., the ring of all real-valued continuous functions
on a completely regular Hausdorff space X is a strongly uz-module as a C'(X)-module. Recall
that it is possible that Annys(a) = (0) or aM = M for every 0 # a € R. For example, if we
consider Q as a Z-module then both Anng(a) = (0) and aQ = Q for every 0 # a € Z

It is clear that a) every simple module is a strongly uz-module; b) a ring R is a uz-ring
(resp., Von Neumann regular ring) if and only if as a module over itself is a uz-module (resp.,
strongly uz-module); ¢) if M is a strongly uz-module, then every primary submodule of M is

prime and Anng (M) is a semiprime ideal.

Remark 3.2. Let M be an R-module. Then the following statements hold.

(1) If @ € R, then Annys(a) = (0) if and only if Annjys(a™) = (0), for any n € N.
(i) The zero submodule of M is prime if and only if Anny/(a) = (0), for any 0 # a € R.

Remark 3.3. Let M be a faithful R-module. Then the following statements hold.

(i) If M is a strongly uz-module, then R is a reduced ring. In particular, every Von
Neumann regular ring is reduced.

(73) If M is an Artinian module and the zero submodule of M is prime, then aM = M, for
any 0 # a € R. In this case, clearly M is a strongly uz-module. As a consequence we have

the well known fact that every Artinian domain is a field.
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The next result states that every Von Neumann regular (resp., Artinian) module is a strongly

uz-module (resp., uz-module).

Theorem 3.4. (i) Every Von Neumann reqular R-module is a strongly uwz-module.

(i) Every Artinian R-module is a uz-module.

Proof. (i) Assume that M is a Von Neumann regular R-module and a € R. We must show
that aM C a®>M. Let m € M, it is sufficient to show that am € a?M. Put N = Ram. Clearly,
N is a submodule of M and hence it is a direct summand. Thus there exists a submodule K
of M such that M = N & K. Hence there exist r € R and z € K such that m = ram + z.
Consequently, az = (1 — ra)am € N N K = (0). Therefore am = ra?m € a>M.

(73) If Annps(a) # (0), for any a € R, then we are done. Hence suppose that there exists
ap € R such that Anny;(ag) = (0). Since apM 2 a3M 2 a3M D ---, it follows that there
exists ng € N such that agM = agHM, for any n > ng. Now take an arbitrary m € M.
Hence there exists € M such that af®m = al°"'z. Therefore al®(m — apz) = 0 and so
m — apr € Annys(ay®) = (0). Thus m = apz € agM, i.e., M = apM, which completes the

proof.

Part (i) of the previous theorem conclude that every semisimple module is a strongly wuz-
module. Also the converse of parts (i) and (ii) is not true, in general. For example Z(p*)
as Z-module is a strongly uz-module but is not a Von Neumann regular Z-module and Q as
Z-module is a strongly uz-module but is not a Artinian Z-module

Recall that an R-module M is called multiplication module if for each submodule N of M,
N = IM for some ideal I of R. In view of Proposition , it is easy to show that if M is a
cyclic free multiplication R-module, then R is a wz-ring if and only if every submodule of M

is an r-submodule.

Proposition 3.5. Let M be a strongly uz-module. Then the following statements hold.

(i) Every primary submodule of M is prime.

(13) Every semiprime submodule of M is an r-submodule.

(#i1) If N is a semiprime submodule of M and am € N, where a € R and m € M, then either
m € N or Annys(a) # (0).

Proof. (i) It is evident.

(ii) Let am € N, where a € R, m € M with Anny;(a) = (0). Since aM = a?>M, there exists
x € M such that am = a?z € N. Consequently, m — ax € Annys(a) = (0), implies m = az.
On the other hand, since N is semiprime, we have ax € N and consequently, m € N.

(7i1) Tt is evident.
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An infinite R-module M is called Jénsson module if every proper submodule of M has
smaller cardinality than M. Clearly, every simple module is a Jénsson module. It is well
known that if M is a Jénsson module, then either aM = M or aM = (0), for each a € R, and
moreover Anng (M) is a prime ideal of R, see Proposition 2.5 in [4]. One can easily show that
every Joénsson module is a strongly uz-module. For more details about Jonsson modules, see
[M].

In the following result, we observe that for any faithful cyclic R-module M, every submodule

of M is an r-submodule if and only if M is a uz-module.

Proposition 3.6. Let M be a faithful cyclic R-module. Then the following conditions are

equivalent.

(i) M is a uz-module.
(i) Every submodule of M is an r-submodule.

(7i1) Every cyclic submodule of M is an r-submodule.

Proof. (i = 1ii) Suppose that 0 # m € M and M = Rm. Let N be a submodule of M, a € R,
x € M and ax € N with Anny/(a) = (0). By our hypothesis, we have aM = M, that is,
Ram = Rm. Hence there exists s € R such that m = asm. Therefore (1 — as) € Anng(m) =
(0), so 1 = as. Thus we conclude that z = s(azx) € N, i.e., N is an r-submodule.

(it = i) If aM = M, for any a € R, then we are done. Otherwise, let there exists ag € R such
that apM # M. We are to show that Annjs(ag) # (0). Since agM # M, there exists my € M
such that mo ¢ agM. By taking that N = agM, we have agpmg € N and mo ¢ N. Now if
Annjs(ap) = (0), then N is not an r-submodule, which is a contradiction.

(79 = 1i4i) It is evident.

(73t = ii) Let N be a submodule of M, a € R, z € M and ax € N with Annys(a) = (0). Now
by our hypothesis, the submodule K = Rax is an r-submodule and it is obvious that K C .
Clearly, x € K and so z € N, that is, N is an r-submodule.

The condition of “M being a cyclic R-module” for implication (i = i) is essential, i.e.,
(i = i7) is not true, in general. For example, Q as Z-module is a uz-module, but the submodule
N = Z% of Q is not an r-submodule. It is worth to point out that the implication (it = 1)
is valid for every R-module. Furthermore, if in the above proposition we consider R as an

R-module, then Proposition 3.4 in [12] is an immediate consequence of Proposition @

Remark 3.7. (i) A ring R is a domain if it has a uz-module whose every nonzero
submodule is faithful. To see this, let M be an R-module which is a uz-module with the

property mentioned above. Hence, in view of Definition 3.1, we must have aM = M, for all
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a € R (note, by our assumption we can not have Annjys(a) # (0)). This immediately implies
that R is a domain.

(73) A ring R is a field if and only if it has a uz-cyclic module whose every nonzero
submodule is faithful. To see this, if M is cyclic which is a uz-module with the property
mentioned above, it is evident that it is isomorphic to R itself, i.e., R becomes a domain
which is at the same time a uz-module over itself (note, the property of being a uz-module
or a strongly uz-module is preserved under isomorphism). Consequently, aR = R for all

a € R which is the same thing as R being a field, and we are done. The converse is evident,

for it is sufficient to consider R as an R-module.

It is well known that a ring R is a domain if and only if the only r-ideal of R is zero ideal,
see Proposition 2.8 in [12]. By replacing the r-ideals with the r-submodules, we get the next

interesting fact.

Proposition 3.8. Let M be a faithful cyclic R-module. Then the following statements are

equivalent.

(1) R is a domain.
(ii) The only r-submodule of M is zero submodule.

(731) Annps(ab) = Annps(a) U Annps(b), for every a,b € R.

Proof. (i = ii) Assume that 0 # m € M and M = Rm. Let (0) # N be an r-submodule
of M and 0 # n € N. Hence there exists 0 # a € R such that n = am. We claim that
Annjys(a) = (0). To see this, let 0 # = € M such that az = 0. Thus there exists 0 # b € R
such that = bm. Therefore we have abm = 0, so ab € Anng(m) = (0). This implies that
ab = 0, which is not true, for R is a domain. Now since N is an r-submodule, we infer that
m € N, that is, M = N, which is a contradiction.

(79 = i7i) Since Annys(a) is an r-submodule, for every a € R, the proof is evident.

(79t = i) Suppose that a,b € R and ab = 0. Hence M = Ann;(0) = Annys(ab) = Annps(a) U
Annjs(b). Therefore M = Annps(a) or M = Annys(b). That is aM = (0) or bM = (0). Thus
a € Ann(M) = (0) or b € Ann(M) = (0). This means that a =0 or b=0.

Propositions and @ state that every faithful cyclic module over a domain is both
nonsingular and torsion free.
In the following theorem we observe two equivalent conditions for uz-rings. For the other

equivalent conditions in terms of r-ideals, see Proposition 3.4 in [12].

Theorem 3.9. Let R be a ring. Then the following statements are equivalent.
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(1) R is a uz-ring.
(i) BEvery faithful R-module is a uz-module.

(1it) BEwvery faithful cyclic R-module is a uz-module.

Proof. (i = ii) Let M be a faithful R-module. In view of Proposition @, it is enough to
show that every submodule of M is an r-submodule. Suppose that N is a submodule of M
and am € N with Annys(a) = (0), where @ € R and m € M. In case a € u(R), we have
m = a"lam € N. If Anng(a) # (0), then there exists 0 # b € R such that ab = 0. Now
assume that € M is an arbitrary element. Clearly, abz = 0, whence bz € Annys(a) = (0).
Hence bx = 0, i.e., 0 # b € Anng(M) = (0), which is a contradiction.

(79 = 1i4i) It is evident.

(79t = i) Let M = Rm be a faithful cyclic R-module and a € R. If Annys(a) # (0), then
there exists 0 # n € M such that an = 0. On the other hand, there exists 0 # b € R such
that n = bm, hence abm = 0, whence ab € Anng(m) = (0), that is ab = 0. This means that
a € zd(R). If aM = M, then there exists m; € M such that m = am;. Also there ist € R
such that m; = mt. Therefore m = amt, implies (1—at)m = 0, hence 1 —at € Anng(m) = (0),

that is, at = 1. This implies that a € u(R). ¢

We conclude the paper by the following corollary which introduces some r-submodules of a

uz-module.

Corollary 3.10. Let R-module M be a uz-module. Then the following statements hold.

(i) Every prime submodule of M is nonregular, and hence it is an r-submodule.

(i) J(M) is an r-submodule of M.
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