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r-SUBMODULES AND uz-MODULES
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Abstract. In this article we study and investigate the behavior of r-submodules (a proper

submodule N of an R-module M in which am ∈ N with AnnM (a) = (0) implies that m ∈ N

for each a ∈ R and m ∈ M). We show that every simple submodule, direct summand,

divisible submodule, torsion submodule and the socle of a module is an r-submodule and if R

is a domain, then the singular submodule is an r-submodule. We also introduce the concepts

of uz-module (i.e., an R-module M such that either AnnM (a) ̸= (0) or aM = M , for every

a ∈ R) and strongly uz-module (i.e., an R-module M such that aM ⊆ a2M , for every a ∈ R)

in the category of modules over commutative rings. We show that every Von Neumann regular

module is a strongly uz-module and every Artinian R-module is a uz-module. It is observed

that if M is a faithful cyclic R-module, then M is a uz-module if and only if every its cyclic

submodule is an r-submodule. In addition, in this case, R is a domain if and only if the only

r-submodule of M is zero submodule. Finally, we prove that R is a uz-ring if and only if

every faithful cyclic R-module is a uz-module.
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1. Introduction

Throughout this paper R is a commutative ring with 1 ̸= 0 and M is a unitary R-module.
For S ⊆ R and N ⊆ M we define AnnR(S) = {a ∈ R : aS = (0)}, AnnM (S) = {m ∈
M : mS = (0)} and AnnR(N) = {a ∈ R : aN = (0)}. For simplicity of notation, in
the case S = {a} and N = {m}, we write AnnR(a), AnnM (a) and AnnR(m) instead of
AnnR({a}), AnnM ({a}) and AnnR({m}), respectively. An element a ∈ R is said to be regular
if AnnR(a) = (0), otherwise, it is called a zerodivisor element, and is said to be regular (resp.,
zerodivisor) element relative to an R-module M if AnnM (a) = (0) (resp., AnnM (a) ̸= (0)).
By r(R), zd(R) and u(R) we mean the set of all regular elements, zerodivisor elements and
unit elements of R, respectively. We call a ring R a uz-ring if for every a ∈ R either a ∈ zd(R)

or a ∈ u(R). Also we denote the set of all regular elements of R relative to M , by rM (R),
that is rM (R) = {a ∈ R : AnnM (a) = (0)}. An ideal I of R is called a) a nonregular ideal if
I ⊆ zd(R); b) an r-ideal if ab ∈ I, with AnnR(a) = (0), implies that b ∈ I, for each a, b ∈ R.
For m ∈ M (resp., a ∈ R), Rm (resp., Ra) denotes the cyclic submodule (resp., principal
ideal) generated by m ∈ M (resp., a ∈ R). A homomorphism of an R-module M to itself is
called an endomorphism. The set of all endomorphisms of M is a ring, which is denoted by
EndR(M). For each R-module M , the Jacobson (resp., socle), by definition, is the intersection
(resp., the sum) of all maximal (resp., minimal) submodules of M , which will be denoted by
J(M) (resp., soc(M)). An R-module M is said to be a) a simple module if it is nonzero and
it has no nontrivial submodule; b) semisimple if every submodule of M is a direct summand;
c) divisible if for each m ∈ M and 0 ̸= a ∈ R, there exists x ∈ M such that m = ax; d)
faithful if AnnR(M) = (0); e) Von Neumann regular module if every its cyclic submodule is
a direct summand. Also a nonzero submodule N of an R-module M is said to be essential if
for every nonzero submodule K of M we have N ∩K ̸= (0). For more information about the
aforementioned submodules in the category of R-modules, we refer the reader to [1, 6, 10, 11].
We also refer the reader to [12] and [9] for the necessary information about r-ideals and r-
submodules, respectively. Finally, for more details and undefined terms and notations, see
[2, 3, 5, 7].

2. r-submodules

Our aim in this section is to study the behavior of r-submodules. The concept of r-ideal
was introduced and study in [12]. Recall from [9] the following definition.

Definition 2.1. Let R be a ring and M be an R-module. A proper submodule N of M is
called an r-submodule if am ∈ N with AnnM (a) = (0) implies that m ∈ N for each a ∈ R and
m ∈ M .
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Let R be any ring and let us consider R as a module over itself. Since that the submodules
of R are ideals in R, one can easily show that I is an r-ideal if and only if I as a submodule
is an r-submodule.

Some preliminary properties of r-submodules are as follows:

Remark 2.2. Let M be an R-module.

(i) The zero submodule of M is an r-submodule.
(ii) The intersection of any family of r-submodules of M is an r-submodule.
(iii)) AnnM (I) is an r-submodule of M for any ideal I of R.
(iv) If f ∈ EndR(M), then ker(f) = {m ∈ M : f(m) = 0} is an r-submodule of M .

Let M be an R-module. Recall that if N is a submodule of M and a ∈ R, then (N : a) =

{m ∈ M : am ∈ N} is a submodule of M which contains N . Also if S is a multiplicatively
closed subset of R, then S−1R (resp., S−1M) is a ring (resp., an S−1R-module), which is called
the ring (resp., module) of fractions of R (resp., M) with respect to S. Clearly, S = rM (R)

is a multiplicatively closed subset in R. For more information about the above concepts, see
[13]. In the following proposition we give several equivalent definitions for r-submodules. For
the proof see Proposition 4 in [9].

Proposition 2.3. Let M be an R-module and N be a submodule of M . Then the following
statements are equivalent.

(i) N is an r-submodule.
(ii) aM ∩N = aN , for each a ∈ rM (R).
(iii) N = (N : a), for each a ∈ rM (R).
(iv) N = N c, where N is a submodule in S−1M and S = rM (R).

Proposition 2.4. Let N ⊆ K be two submodules of an R-module M . If N is an r-submodule
of M and K

N is an r-submodule of R-module M
N , then K is an r-submodule of M .

Proof. Let a ∈ R, m ∈ M and am ∈ K with AnnM (a) = (0). Clearly, a(m+N) ∈ K
N and also

AnnM
N
(a) = (0). To see this, let m+N ∈ AnnM

N
(a). Hence a(m+N) = am+N = N which

implies that am ∈ N . On the other hand, since AnnM (a) = (0) and N is an r-submodule, we
have m ∈ N whence m +N = N . Therefore by our hypothesis, we have m +N ∈ K

N and so
m ∈ K. This shows that K is an r-submodule.

If f : M → N is an R-module isomorphism, then it is clear that AnnM (a) = (0) if and only
if AnnN (a) = (0), for any a ∈ R.
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Proposition 2.5. r-submodules are invariant under isomorphisms.

Proof. Let M and N be R-modules and f : M → N be an R-module isomorphism. We are
to show that whenever K is an r-submodule of M , then f(K) is an r-submodule of N . To
see this, suppose that a ∈ R, n ∈ N and an ∈ f(K) with AnnN (a) = (0). Take m ∈ K and
m1 ∈ M such that an = f(m) and n = f(m1). Clearly, an = af(m1) = f(am1) = f(m),
whence f(am1 − m) = 0 and so am1 − m ∈ ker(f) = (0). Therefore am1 = m ∈ K. Since
AnnM (a) = (0), we infer that m1 ∈ K and hence n = f(m1) ∈ f(K).

In the following two theorems we observe that every simple submodule and the socle of a
module are r-submodules.

Theorem 2.6. Every simple submodule of a module is an r-submodule.

Proof. Assume that N is a simple submodule of an R- module M . Therefore there exists
0 ̸= m ∈ N such that N = Rm. Now let a ∈ R, x ∈ M and ax ∈ N with AnnM (a) = (0).
If ax = 0, then x = 0 ∈ N . In case ax ̸= 0, we have N = Rax. Since am ̸= 0, we infer that
N = Ram. Consequently, N = Rax = Ram and hence ax ∈ Ram. Therefore there exists
s ∈ R such that ax = sam, whence x− sm ∈ AnnM (a) = (0). Thus x = sm ∈ Rm = N which
completes the proof.

The following corollary is now an immediate consequence of Theorem 2.6.

Corollary 2.7. If M is a very semisimple R-module (i.e., its every cyclic submodule is simple),
then every cyclic submodule of M is an r-submodule.

Theorem 2.8. Let M be any R-module. Then soc(M) is an r-submodule.

Proof. Suppose that {Ni : i ∈ A} be the set of all minimal submodules of M . By definition,
we have soc(M) = ⊕i∈ANi. Now let a ∈ R, m ∈ M and am ∈ soc(M) with AnnM (a) = (0).
Hence am =

∑n
k=1 aik , where aik ∈ Nik , for i1, · · · , in ∈ A. Without loss of generality, we can

assume that aaik ̸= 0, for each ik. Consequently, Raaik = Nik therefore am =
∑n

k=1 arikaik ,
where rik ∈ R, for k = 1, · · · , n . This implies that m−

∑n
k=1 rikaik ∈ AnnM (a) = (0), hence

m =
∑n

k=1 rikaik . Therefore m ∈ soc(M) and we are done.

Proposition 2.9. (i) Every divisible submodule of a module is an r-submodule.
(ii) Every direct summand of a module is an r-submodule.
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Proof. (i) Assume that N is a divisible submodule of an R-module M . Let a ∈ R, m ∈ M and
am ∈ N with AnnM (a) = (0). Since N is divisible, there exists n ∈ N such that am = an.
Hence m− n ∈ AnnM (a) = (0) and therefore m = n ∈ N .
(ii) Suppose that N is a direct summand of an R-module M . By Lemma 5.6 in [1], there exists
e ∈ EndR(M) such that N = ker(1− e) and e2 = e. This means that N is an r-submodule.

Example 2.10. In view of Proposition 2.9, injective submodules in any R-module, a fortiori
Z(p∞) as a Z-submodule of Q

Z are r-submodules.

Using the previous proposition we have the next corollary.

Corollary 2.11. (i) If M is a semisimple R-module, then every submodule of M is an
r-submodule.
(ii) If M is a Von Neumann regular R-module, then every finitely generated submodule of M
is a direct summand and therefore it is an r-submodule as well, see Lemma 1 in [8].

We recall that if M is an R-module, then t(M) = {m ∈ M : AnnR(m) ̸= (0)} is called
torsion submodule of M . If t(M) = M (resp., t(M) = (0)), then M is called torsion (resp., tor-
sion free) module. We also recall that Z(M) = {m ∈ M : AnnR(m) is an essential ideal in R}
is a submodule of M , which is called singular submodule. If Z(M) = M , (resp., Z(M) = (0))
then M is called singular (resp., nonsingular) module. In the following results we show that
t(M) is always an r-submodule of M and if R is a domain, then Z(M) is also an r-submodule
of M .

Proposition 2.12. Let M be an R-module. Then the following statements hold.

(i) The torsion submodule of M is an r-submodule.
(ii) If R is a domain then the singular submodule of M is an r-submodule.

Proof. (i) Suppose that am ∈ t(M) with AnnM (a) = (0), where a ∈ R and m ∈ M . By
definition of the torsion submodule, we have AnnR(am) ̸= (0) whence there exists 0 ̸= s ∈ R

such that s(am) = a(sm) = 0. Therefore sm ∈ AnnM (a) = (0) and hence 0 ̸= s ∈ AnnR(m),
that is, AnnR(m) ̸= (0). This means that m ∈ t(M).
(ii) Assume that am ∈ Z(M) with AnnM (a) = (0), where a ∈ R and m ∈ M . The definition of
singular submodule implies that AnnR(am)∩Rx ̸= (0), for any 0 ̸= x ∈ R. Hence there exists
0 ̸= s ∈ R such that (sxm)a = 0, and thus sxm ∈ AnnM (a) = (0), so 0 ̸= sx ∈ AnnR(m)∩Rx,
i.e., m ∈ Z(M).
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The direct sum of two r-submodules may not be an r-submodule, see Example 5.14 in [12].
For a nontrivial idempotent e in R, eM is clearly an r-submodule of M , for manifestly eM is
a summand of M . Now the following proposition shows certain direct sum of r-submodules in
a module M , which are not necessarily simple submodules is in fact an r-submodule.

Proposition 2.13. Let M be an R-module and {ei : i ∈ A} be a set of orthogonal idempotents
in R and no finite subset of these idempotents generate R, in the sense that 1 ̸=

∑
i∈B ei,

where B is a finite subset of A. Then N = ⊕i∈AeiM is an r-submodule.

Proof. Let am ∈ N , where a ∈ R, m ∈ M with AnnM (a) = (0). We are to show that
m ∈ N . Clearly, am =

∑n
k=1 eikmik , where ik ∈ A and mik ∈ M , for k = 1, · · · , n. Let us

put x =
∏n

k=1(1 − eik). It is manifest that amx = 0 and hence mx = 0. It is now evident
that x = 1 − y, where y =

∑n
k=1 eik . Therefore m(1 − y) = 0, so m = my. This implies that

m ∈ N .

Definition 2.14. Let R be a ring and M be an R-module. Then

(i) a ∈ R is said to be m-regular relative to M , if AnnR(a) = (0) implies that AnnM (a) = (0);
(ii) a ∈ R is said to be R-regular relative to M , if AnnM (a) = (0) implies that
AnnR(a) = (0).

For example if we consider R[x] as a module over R, then every a ∈ R is an m-regular
element relative to R[x] if and only if it is an R-regular element relative to R[x]. Also one can
easily see that, if M is an R-module and AnnM (a) = (0), for every a ∈ R, then AnnR(M) is
an r-ideal in R. Note that, in this case, there is no any essential r-submodule in M .

Lemma 2.15. Suppose that M is an R-module. Then the following statements hold.

(i) If M is a faithful R-module, then every a ∈ R is an R-regular element relative to M .
(ii) If M is a finitely generated free R-module, then every a ∈ R is an m-regular element
relative to M .

Proof. (i) Assume that a ∈ R with AnnM (a) = (0) and s ∈ AnnR(a). Hence sa = 0 and it
is evident that sam = 0, for any m ∈ M . Thus sm ∈ AnnM (a) = (0) and therefore sm = 0.
This implies that s ∈ AnnR(M) = (0), i.e., AnnR(a) = (0).
(ii) Assume that X = {x1, · · · , xn} is a base for M , a ∈ R with AnnR(a) = (0) and m ∈ M .
Now suppose that m ∈ AnnM (a), hence am = 0. On the other hand, there exist s1, · · · , sn ∈ R

such that m = s1x1+ · · ·+snxn. Therefore as1x1+ · · ·+asnxn = 0, and consequently asi = 0,
for i = 1, · · · , n. This conclude that s1, · · · , sn ∈ AnnR(a) = (0), therefore si = 0, for
i = 1, · · · , n and hence m = 0. This implies that AnnM (a) = (0).
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We should emphasize that any cyclic submodule need not be an r-submodule. For example,
the principle ideal I = Z4 in Z is not an r-ideal and so it is not an r-submodule of Z as a
Z-module. Whenever M is a finitely generated free R-module and I is an r-ideal in R, we
have the following fact.

Proposition 2.16. Let M be a finitely generated free R-module with a base X and I be an
ideal in R. Then I is an r-ideal in R if and only if IX is an r-submodule of M .

Proof. Suppose that X = {x1, · · · , xn} and am ∈ IX with AnnM (a) = (0), where a ∈ R

and m ∈ M . Take s1, · · · , sn ∈ R and t1, · · · , tn ∈ I such that m = s1x1 + · · · + snxn and
am = t1x1+ · · ·+ tnxn. Hence as1x1+ · · ·+asnxn = t1x1+ · · ·+ tnxn. Therefore asi = ti ∈ I,
for i = 1, · · · , n. Now by part (i) of the above lemma we have AnnR(a) = (0) and so by our
hypothesis, we conclude that si ∈ I, for i = 1, · · · , n. This means that m ∈ IX. Conversely,
suppose that ax ∈ I, with AnnR(a) = (0), where a, x ∈ R and 0 ̸= m ∈ M . Clearly, axm ∈ IX.
Now using part (ii) of the above lemma, we have AnnM (a) = (0), whence by our hypothesis,
we have xm ∈ IX. This yields that x ∈ I.

We remind the reader that a submodule N of a module M is called prime (resp., primary)
if for each a ∈ R and m ∈ M , am ∈ N implies that m ∈ N or aM ⊆ N (resp., anM ⊆ N

for some n ∈ N). Also N is called semiprime, if a2m ∈ N implies that am ∈ N . Clearly,
every submodule is prime if and only if it is both primary and semiprime. Furthermore, if
N is a prime r-submodule of M , then am ∈ N implies that m ∈ N , for every m ∈ M and
a ∈ rM (R). For otherwise, we have aM ⊆ N and so by part (ii) of Proposition 2.3 we conclude
that aM = aN . This immediately implies that M = N which is not true.

Now similarly to the notion of nonregular ideal, we may define a nonregular submodule.

Definition 2.17. A proper submodule N of an R-module M is called nonregular, if aM ⊆ N

implies that AnnM (a) ̸= (0), for each a ∈ R.

If we consider R as an R-module, then our definition agrees with the concept of nonregular
ideal.

Remark 2.18. (i) Every r-submodule of a module is nonregular.
(ii) Every prime nonregular submodule of a module is an r-submodule.

The converse of part (i) of the above remark is not true, in general. For example, consider
Q as a Z-module. Then the submodule N = Z1

2 is a nonregular submodule but it is not an
r-submodule. To see this, it is clear that 2.34 = 1

2 .3 ∈ N and AnnQ(2) = (0) but 3
4 /∈ N

We conclude this section with the following proposition.
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Proposition 2.19. Every maximal r-submodule is a prime submodule.

Proof. Assume that N is a maximal r-submodule of an R-module M . We are to show that N

is prime. To see this, let a ∈ R, m ∈ M and am ∈ N . Since N is an r-submodule, (N : a)

is an r-submodule and it is evident that N ⊆ (N : a). Now maximality of N implies that
(N : a) = N and hence we have m ∈ N , i.e., N is prime.

3. uz-modules

This section is devoted to the introduction of the uz-modules and strongly uz-modules. We
begin with the following definitions.

Definition 3.1. An R-module M is called a

(i) uz-module, if for every a ∈ R either AnnM (a) ̸= (0) or aM = M ;
(ii) strongly uz-module if for every a ∈ R we have aM ⊆ a2M (in fact, aM = a2M).

For instance, the modules Q
Z , Q and Z(p∞) over Z are strongly uz-modules but Z as Z-

module is not a strongly uz-module. Every strongly uz-module is a uz-module, but the
converse is not true, in general. For example, Z4 as a Z4-module is a uz-module, but is not
a strongly uz-module. The ring of C(X), i.e., the ring of all real-valued continuous functions
on a completely regular Hausdorff space X is a strongly uz-module as a C(X)-module. Recall
that it is possible that AnnM (a) = (0) or aM = M for every 0 ̸= a ∈ R. For example, if we
consider Q as a Z-module then both AnnQ(a) = (0) and aQ = Q for every 0 ̸= a ∈ Z

It is clear that a) every simple module is a strongly uz-module; b) a ring R is a uz-ring
(resp., Von Neumann regular ring) if and only if as a module over itself is a uz-module (resp.,
strongly uz-module); c) if M is a strongly uz-module, then every primary submodule of M is
prime and AnnR(M) is a semiprime ideal.

Remark 3.2. Let M be an R-module. Then the following statements hold.

(i) If a ∈ R, then AnnM (a) = (0) if and only if AnnM (an) = (0), for any n ∈ N.
(ii) The zero submodule of M is prime if and only if AnnM (a) = (0), for any 0 ̸= a ∈ R.

Remark 3.3. Let M be a faithful R-module. Then the following statements hold.

(i) If M is a strongly uz-module, then R is a reduced ring. In particular, every Von
Neumann regular ring is reduced.
(ii) If M is an Artinian module and the zero submodule of M is prime, then aM = M , for
any 0 ̸= a ∈ R. In this case, clearly M is a strongly uz-module. As a consequence we have
the well known fact that every Artinian domain is a field.
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The next result states that every Von Neumann regular (resp., Artinian) module is a strongly
uz-module (resp., uz-module).

Theorem 3.4. (i) Every Von Neumann regular R-module is a strongly uz-module.
(ii) Every Artinian R-module is a uz-module.

Proof. (i) Assume that M is a Von Neumann regular R-module and a ∈ R. We must show
that aM ⊆ a2M . Let m ∈ M , it is sufficient to show that am ∈ a2M . Put N = Ram. Clearly,
N is a submodule of M and hence it is a direct summand. Thus there exists a submodule K

of M such that M = N ⊕ K. Hence there exist r ∈ R and x ∈ K such that m = ram + x.
Consequently, ax = (1− ra)am ∈ N ∩K = (0). Therefore am = ra2m ∈ a2M .
(ii) If AnnM (a) ̸= (0), for any a ∈ R, then we are done. Hence suppose that there exists
a0 ∈ R such that AnnM (a0) = (0). Since a0M ⊇ a20M ⊇ a30M ⊇ · · · , it follows that there
exists n0 ∈ N such that an0M = an+1

0 M , for any n ⩾ n0. Now take an arbitrary m ∈ M .
Hence there exists x ∈ M such that an0

0 m = an0+1
0 x. Therefore an0

0 (m − a0x) = 0 and so
m − a0x ∈ AnnM (an0

0 ) = (0). Thus m = a0x ∈ a0M , i.e., M = a0M , which completes the
proof.

Part (i) of the previous theorem conclude that every semisimple module is a strongly uz-
module. Also the converse of parts (i) and (ii) is not true, in general. For example Z(p∞)

as Z-module is a strongly uz-module but is not a Von Neumann regular Z-module and Q as
Z-module is a strongly uz-module but is not a Artinian Z-module

Recall that an R-module M is called multiplication module if for each submodule N of M ,
N = IM for some ideal I of R. In view of Proposition 2.16, it is easy to show that if M is a
cyclic free multiplication R-module, then R is a uz-ring if and only if every submodule of M
is an r-submodule.

Proposition 3.5. Let M be a strongly uz-module. Then the following statements hold.

(i) Every primary submodule of M is prime.
(ii) Every semiprime submodule of M is an r-submodule.
(iii) If N is a semiprime submodule of M and am ∈ N , where a ∈ R and m ∈ M , then either
m ∈ N or AnnM (a) ̸= (0).

Proof. (i) It is evident.
(ii) Let am ∈ N , where a ∈ R, m ∈ M with AnnM (a) = (0). Since aM = a2M , there exists
x ∈ M such that am = a2x ∈ N . Consequently, m − ax ∈ AnnM (a) = (0), implies m = ax.
On the other hand, since N is semiprime, we have ax ∈ N and consequently, m ∈ N .
(iii) It is evident.
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An infinite R-module M is called Jónsson module if every proper submodule of M has
smaller cardinality than M . Clearly, every simple module is a Jónsson module. It is well
known that if M is a Jónsson module, then either aM = M or aM = (0), for each a ∈ R, and
moreover AnnR(M) is a prime ideal of R, see Proposition 2.5 in [4]. One can easily show that
every Jónsson module is a strongly uz-module. For more details about Jónsson modules, see
[4].

In the following result, we observe that for any faithful cyclic R-module M , every submodule
of M is an r-submodule if and only if M is a uz-module.

Proposition 3.6. Let M be a faithful cyclic R-module. Then the following conditions are
equivalent.

(i) M is a uz-module.
(ii) Every submodule of M is an r-submodule.
(iii) Every cyclic submodule of M is an r-submodule.

Proof. (i ⇒ ii) Suppose that 0 ̸= m ∈ M and M = Rm. Let N be a submodule of M , a ∈ R,
x ∈ M and ax ∈ N with AnnM (a) = (0). By our hypothesis, we have aM = M , that is,
Ram = Rm. Hence there exists s ∈ R such that m = asm. Therefore (1− as) ∈ AnnR(m) =

(0), so 1 = as. Thus we conclude that x = s(ax) ∈ N , i.e., N is an r-submodule.
(ii ⇒ i) If aM = M , for any a ∈ R, then we are done. Otherwise, let there exists a0 ∈ R such
that a0M ̸= M . We are to show that AnnM (a0) ̸= (0). Since a0M ̸= M , there exists m0 ∈ M

such that m0 /∈ a0M . By taking that N = a0M , we have a0m0 ∈ N and m0 /∈ N . Now if
AnnM (a0) = (0), then N is not an r-submodule, which is a contradiction.
(ii ⇒ iii) It is evident.
(iii ⇒ ii) Let N be a submodule of M , a ∈ R, x ∈ M and ax ∈ N with AnnM (a) = (0). Now
by our hypothesis, the submodule K = Rax is an r-submodule and it is obvious that K ⊆ N .
Clearly, x ∈ K and so x ∈ N , that is, N is an r-submodule.

The condition of “M being a cyclic R-module” for implication (i ⇒ ii) is essential, i.e.,
(i ⇒ ii) is not true, in general. For example, Q as Z-module is a uz-module, but the submodule
N = Z1

2 of Q is not an r-submodule. It is worth to point out that the implication (ii ⇒ i)

is valid for every R-module. Furthermore, if in the above proposition we consider R as an
R-module, then Proposition 3.4 in [12] is an immediate consequence of Proposition 3.6.

Remark 3.7. (i) A ring R is a domain if it has a uz-module whose every nonzero
submodule is faithful. To see this, let M be an R-module which is a uz-module with the
property mentioned above. Hence, in view of Definition 3.1, we must have aM = M , for all
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a ∈ R (note, by our assumption we can not have AnnM (a) ̸= (0)). This immediately implies
that R is a domain.
(ii) A ring R is a field if and only if it has a uz-cyclic module whose every nonzero
submodule is faithful. To see this, if M is cyclic which is a uz-module with the property
mentioned above, it is evident that it is isomorphic to R itself, i.e., R becomes a domain
which is at the same time a uz-module over itself (note, the property of being a uz-module
or a strongly uz-module is preserved under isomorphism). Consequently, aR = R for all
a ∈ R which is the same thing as R being a field, and we are done. The converse is evident,
for it is sufficient to consider R as an R-module.

It is well known that a ring R is a domain if and only if the only r-ideal of R is zero ideal,
see Proposition 2.8 in [12]. By replacing the r-ideals with the r-submodules, we get the next
interesting fact.

Proposition 3.8. Let M be a faithful cyclic R-module. Then the following statements are
equivalent.

(i) R is a domain.
(ii) The only r-submodule of M is zero submodule.
(iii) AnnM (ab) = AnnM (a) ∪AnnM (b), for every a, b ∈ R.

Proof. (i ⇒ ii) Assume that 0 ̸= m ∈ M and M = Rm. Let (0) ̸= N be an r-submodule
of M and 0 ̸= n ∈ N . Hence there exists 0 ̸= a ∈ R such that n = am. We claim that
AnnM (a) = (0). To see this, let 0 ̸= x ∈ M such that ax = 0. Thus there exists 0 ̸= b ∈ R

such that x = bm. Therefore we have abm = 0, so ab ∈ AnnR(m) = (0). This implies that
ab = 0, which is not true, for R is a domain. Now since N is an r-submodule, we infer that
m ∈ N , that is, M = N , which is a contradiction.
(ii ⇒ iii) Since AnnM (a) is an r-submodule, for every a ∈ R, the proof is evident.
(iii ⇒ i) Suppose that a, b ∈ R and ab = 0. Hence M = AnnM (0) = AnnM (ab) = AnnM (a) ∪
AnnM (b). Therefore M = AnnM (a) or M = AnnM (b). That is aM = (0) or bM = (0). Thus
a ∈ Ann(M) = (0) or b ∈ Ann(M) = (0). This means that a = 0 or b = 0.

Propositions 2.12 and 3.8 state that every faithful cyclic module over a domain is both
nonsingular and torsion free.

In the following theorem we observe two equivalent conditions for uz-rings. For the other
equivalent conditions in terms of r-ideals, see Proposition 3.4 in [12].

Theorem 3.9. Let R be a ring. Then the following statements are equivalent.
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(i) R is a uz-ring.
(ii) Every faithful R-module is a uz-module.
(iii) Every faithful cyclic R-module is a uz-module.

Proof. (i ⇒ ii) Let M be a faithful R-module. In view of Proposition 3.6, it is enough to
show that every submodule of M is an r-submodule. Suppose that N is a submodule of M
and am ∈ N with AnnM (a) = (0), where a ∈ R and m ∈ M . In case a ∈ u(R), we have
m = a−1am ∈ N . If AnnR(a) ̸= (0), then there exists 0 ̸= b ∈ R such that ab = 0. Now
assume that x ∈ M is an arbitrary element. Clearly, abx = 0, whence bx ∈ AnnM (a) = (0).
Hence bx = 0, i.e., 0 ̸= b ∈ AnnR(M) = (0), which is a contradiction.
(ii ⇒ iii) It is evident.
(iii ⇒ i) Let M = Rm be a faithful cyclic R-module and a ∈ R. If AnnM (a) ̸= (0), then
there exists 0 ̸= n ∈ M such that an = 0. On the other hand, there exists 0 ̸= b ∈ R such
that n = bm, hence abm = 0, whence ab ∈ AnnR(m) = (0), that is ab = 0. This means that
a ∈ zd(R). If aM = M , then there exists m1 ∈ M such that m = am1. Also there is t ∈ R

such that m1 = mt. Therefore m = amt, implies (1−at)m = 0, hence 1−at ∈ AnnR(m) = (0),
that is, at = 1. This implies that a ∈ u(R).

We conclude the paper by the following corollary which introduces some r-submodules of a
uz-module.

Corollary 3.10. Let R-module M be a uz-module. Then the following statements hold.

(i) Every prime submodule of M is nonregular, and hence it is an r-submodule.
(ii) J(M) is an r-submodule of M .
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