Algebraic Structures and Their Applications Vol. 8 No. 1 (2021) pp 61-73.

Research Paper

r-SUBMODULES AND $u z$-MODULES

ROSTAM MOHAMADIAN

Abstract

In this article we study and investigate the behavior of r-submodules (a proper submodule N of an R-module M in which $a m \in N$ with $\operatorname{Ann}_{M}(a)=(0)$ implies that $m \in N$ for each $a \in R$ and $m \in M$). We show that every simple submodule, direct summand, divisible submodule, torsion submodule and the socle of a module is an r-submodule and if R is a domain, then the singular submodule is an r-submodule. We also introduce the concepts of $u z$-module (i.e., an R-module M such that either $\operatorname{Ann}_{M}(a) \neq(0)$ or $a M=M$, for every $a \in R$) and strongly $u z$-module (i.e., an R-module M such that $a M \subseteq a^{2} M$, for every $a \in R$) in the category of modules over commutative rings. We show that every Von Neumann regular module is a strongly $u z$-module and every Artinian R-module is a $u z$-module. It is observed that if M is a faithful cyclic R-module, then M is a $u z$-module if and only if every its cyclic submodule is an r-submodule. In addition, in this case, R is a domain if and only if the only r-submodule of M is zero submodule. Finally, we prove that R is a $u z$-ring if and only if every faithful cyclic R-module is a $u z$-module.

DOI: 10.22034/as. 2020.1858
MSC(2010): Primary:13A18; Secondary 13C60.
Keywords: r-ideal, r-submodule, Strongly $u z$-module, $u z$-module.
Received: 03 March 2020, Accepted: 03 August 2020.
*Corresponding author

1. Introduction

Throughout this paper R is a commutative ring with $1 \neq 0$ and M is a unitary R-module. For $S \subseteq R$ and $N \subseteq M$ we define $\operatorname{Ann}_{R}(S)=\{a \in R: a S=(0)\}, \operatorname{Ann}_{M}(S)=\{m \in$ $M: m S=(0)\}$ and $\operatorname{Ann}_{R}(N)=\{a \in R: a N=(0)\}$. For simplicity of notation, in the case $S=\{a\}$ and $N=\{m\}$, we write $\operatorname{Ann}_{R}(a), \operatorname{Ann}_{M}(a)$ and $\operatorname{Ann}_{R}(m)$ instead of $\operatorname{Ann}_{R}(\{a\}), \operatorname{Ann}_{M}(\{a\})$ and $\operatorname{Ann}_{R}(\{m\})$, respectively. An element $a \in R$ is said to be regular if $\operatorname{Ann}_{R}(a)=(0)$, otherwise, it is called a zerodivisor element, and is said to be regular (resp., zerodivisor) element relative to an R-module M if $\operatorname{Ann}_{M}(a)=(0)\left(\right.$ resp., $\left.\operatorname{Ann}_{M}(a) \neq(0)\right)$. By $\mathrm{r}(R), \operatorname{zd}(R)$ and $\mathrm{u}(R)$ we mean the set of all regular elements, zerodivisor elements and unit elements of R, respectively. We call a ring R a $u z$-ring if for every $a \in R$ either $a \in \operatorname{zd}(R)$ or $a \in \mathrm{u}(R)$. Also we denote the set of all regular elements of R relative to M, by $\mathrm{r}_{M}(R)$, that is $\mathrm{r}_{M}(R)=\left\{a \in R: \operatorname{Ann}_{M}(a)=(0)\right\}$. An ideal I of R is called a) a nonregular ideal if $I \subseteq \operatorname{zd}(R) ; \mathrm{b})$ an r-ideal if $a b \in I$, with $\operatorname{Ann}_{R}(a)=(0)$, implies that $b \in I$, for each $a, b \in R$. For $m \in M$ (resp., $a \in R$), $R m$ (resp., $R a$) denotes the cyclic submodule (resp., principal ideal) generated by $m \in M$ (resp., $a \in R$). A homomorphism of an R-module M to itself is called an endomorphism. The set of all endomorphisms of M is a ring, which is denoted by $\operatorname{End}_{R}(M)$. For each R-module M, the Jacobson (resp., socle), by definition, is the intersection (resp., the sum) of all maximal (resp., minimal) submodules of M, which will be denoted by $\mathrm{J}(M)$ (resp., $\operatorname{soc}(M)$). An R-module M is said to be a) a simple module if it is nonzero and it has no nontrivial submodule; b) semisimple if every submodule of M is a direct summand; c) divisible if for each $m \in M$ and $0 \neq a \in R$, there exists $x \in M$ such that $m=a x$; d) faithful if $\operatorname{Ann}_{R}(M)=(0)$; e) Von Neumann regular module if every its cyclic submodule is a direct summand. Also a nonzero submodule N of an R-module M is said to be essential if for every nonzero submodule K of M we have $N \cap K \neq(0)$. For more information about the aforementioned submodules in the category of R-modules, we refer the reader to $\lfloor 1,6,10,11$. We also refer the reader to [12] and [9] for the necessary information about r-ideals and r submodules, respectively. Finally, for more details and undefined terms and notations, see $[2,3,5,7]$.

2. r-submodules

Our aim in this section is to study the behavior of r-submodules. The concept of r-ideal was introduced and study in [12]. Recall from [9] the following definition.

Definition 2.1. Let R be a ring and M be an R-module. A proper submodule N of M is called an r-submodule if $a m \in N$ with $\operatorname{Ann}_{M}(a)=(0)$ implies that $m \in N$ for each $a \in R$ and $m \in M$.

Let R be any ring and let us consider R as a module over itself. Since that the submodules of R are ideals in R, one can easily show that I is an r-ideal if and only if I as a submodule is an r-submodule.

Some preliminary properties of r-submodules are as follows:
Remark 2.2. Let M be an R-module.
(i) The zero submodule of M is an r-submodule.
(ii) The intersection of any family of r-submodules of M is an r-submodule.
(iii)) $\operatorname{Ann}_{M}(I)$ is an r-submodule of M for any ideal I of R.
(iv) If $f \in \operatorname{End}_{R}(M)$, then $\operatorname{ker}(f)=\{m \in M: f(m)=0\}$ is an r-submodule of M.

Let M be an R-module. Recall that if N is a submodule of M and $a \in R$, then $(N: a)=$ $\{m \in M: a m \in N\}$ is a submodule of M which contains N. Also if S is a multiplicatively closed subset of R, then $S^{-1} R$ (resp., $S^{-1} M$) is a ring (resp., an $S^{-1} R$-module), which is called the ring (resp., module) of fractions of R (resp., M) with respect to S. Clearly, $S=\mathrm{r}_{M}(R)$ is a multiplicatively closed subset in R. For more information about the above concepts, see [13]. In the following proposition we give several equivalent definitions for r-submodules. For the proof see Proposition 4 in [9].

Proposition 2.3. Let M be an R-module and N be a submodule of M. Then the following statements are equivalent.
(i) N is an r-submodule.
(ii) $a M \cap N=a N$, for each $a \in \mathrm{r}_{M}(R)$.
(iii) $N=(N: a)$, for each $a \in \mathrm{r}_{M}(R)$.
(iv) $N=\mathcal{N}^{c}$, where \mathcal{N} is a submodule in $S^{-1} M$ and $S=\mathrm{r}_{M}(R)$.

Proposition 2.4. Let $N \subseteq K$ be two submodules of an R-module M. If N is an r-submodule of M and $\frac{K}{N}$ is an r-submodule of R-module $\frac{M}{N}$, then K is an r-submodule of M.

Proof. Let $a \in R, m \in M$ and $a m \in K$ with $\operatorname{Ann}_{M}(a)=(0)$. Clearly, $a(m+N) \in \frac{K}{N}$ and also $\operatorname{Ann}_{\frac{M}{N}}(a)=(0)$. To see this, let $m+N \in \operatorname{Ann}_{\frac{M}{N}}(a)$. Hence $a(m+N)=a m+N=N$ which implies that $a m \in N$. On the other hand, $\operatorname{since}^{A n n_{M}}(a)=(0)$ and N is an r-submodule, we have $m \in N$ whence $m+N=N$. Therefore by our hypothesis, we have $m+N \in \frac{K}{N}$ and so $m \in K$. This shows that K is an r-submodule.

If $f: M \rightarrow N$ is an R-module isomorphism, then it is clear that $\operatorname{Ann}_{M}(a)=(0)$ if and only if $\operatorname{Ann}_{N}(a)=(0)$, for any $a \in R$.

Proposition 2.5. r-submodules are invariant under isomorphisms.

Proof. Let M and N be R-modules and $f: M \rightarrow N$ be an R-module isomorphism. We are to show that whenever K is an r-submodule of M, then $f(K)$ is an r-submodule of N. To see this, suppose that $a \in R, n \in N$ and an $\in f(K)$ with $\operatorname{Ann}_{N}(a)=(0)$. Take $m \in K$ and $m_{1} \in M$ such that $a n=f(m)$ and $n=f\left(m_{1}\right)$. Clearly, an $=a f\left(m_{1}\right)=f\left(a m_{1}\right)=f(m)$, whence $f\left(a m_{1}-m\right)=0$ and so $a m_{1}-m \in \operatorname{ker}(f)=(0)$. Therefore $a m_{1}=m \in K$. Since $\operatorname{Ann}_{M}(a)=(0)$, we infer that $m_{1} \in K$ and hence $n=f\left(m_{1}\right) \in f(K)$.

In the following two theorems we observe that every simple submodule and the socle of a module are r-submodules.

Theorem 2.6. Every simple submodule of a module is an r-submodule.

Proof. Assume that N is a simple submodule of an R - module M. Therefore there exists $0 \neq m \in N$ such that $N=R m$. Now let $a \in R, x \in M$ and $a x \in N$ with $\operatorname{Ann}_{M}(a)=(0)$. If $a x=0$, then $x=0 \in N$. In case $a x \neq 0$, we have $N=\operatorname{Rax}$. Since $a m \neq 0$, we infer that $N=$ Ram. Consequently, $N=$ Rax $=$ Ram and hence $a x \in$ Ram. Therefore there exists $s \in R$ such that $a x=s a m$, whence $x-s m \in \operatorname{Ann}_{M}(a)=(0)$. Thus $x=s m \in R m=N$ which completes the proof.

The following corollary is now an immediate consequence of Theorem 2.6.
Corollary 2.7. If M is a very semisimple R-module (i.e., its every cyclic submodule is simple), then every cyclic submodule of M is an r-submodule.

Theorem 2.8. Let M be any R-module. Then $\operatorname{soc}(M)$ is an r-submodule.

Proof. Suppose that $\left\{N_{i}: i \in A\right\}$ be the set of all minimal submodules of M. By definition, we have $\operatorname{soc}(M)=\oplus_{i \in A} N_{i}$. Now let $a \in R, m \in M$ and $a m \in \operatorname{soc}(M)$ with $\operatorname{Ann}_{M}(a)=(0)$. Hence $a m=\sum_{k=1}^{n} a_{i_{k}}$, where $a_{i_{k}} \in N_{i_{k}}$, for $i_{1}, \cdots, i_{n} \in A$. Without loss of generality, we can assume that $a a_{i_{k}} \neq 0$, for each i_{k}. Consequently, $R a a_{i_{k}}=N_{i_{k}}$ therefore $a m=\sum_{k=1}^{n} a r_{i_{k}} a_{i_{k}}$, where $r_{i_{k}} \in R$, for $k=1, \cdots, n$. This implies that $m-\sum_{k=1}^{n} r_{i_{k}} a_{i_{k}} \in \operatorname{Ann}_{M}(a)=(0)$, hence $m=\sum_{k=1}^{n} r_{i_{k}} a_{i_{k}}$. Therefore $m \in \operatorname{soc}(M)$ and we are done.

Proposition 2.9. (i) Every divisible submodule of a module is an r-submodule.
(ii) Every direct summand of a module is an r-submodule.

Proof. (i) Assume that N is a divisible submodule of an R-module M. Let $a \in R, m \in M$ and $a m \in N$ with $\operatorname{Ann}_{M}(a)=(0)$. Since N is divisible, there exists $n \in N$ such that $a m=a n$. Hence $m-n \in \operatorname{Ann}_{M}(a)=(0)$ and therefore $m=n \in N$.
(ii) Suppose that N is a direct summand of an R-module M. By Lemma 5.6 in [1], there exists $e \in \operatorname{End}_{R}(M)$ such that $N=\operatorname{ker}(1-e)$ and $e^{2}=e$. This means that N is an r-submodule.

Example 2.10. In view of Proposition 2.9, injective submodules in any R-module, a fortiori $\mathbb{Z}\left(p^{\infty}\right)$ as a \mathbb{Z}-submodule of $\frac{\mathbb{Q}}{\mathbb{Z}}$ are r-submodules.

Using the previous proposition we have the next corollary.

Corollary 2.11. (i) If M is a semisimple R-module, then every submodule of M is an r-submodule.
(ii) If M is a Von Neumann regular R-module, then every finitely generated submodule of M is a direct summand and therefore it is an r-submodule as well, see Lemma 1 in [8].

We recall that if M is an R-module, then $t(M)=\left\{m \in M: \operatorname{Ann}_{R}(m) \neq(0)\right\}$ is called torsion submodule of M. If $t(M)=M$ (resp., $t(M)=(0)$), then M is called torsion (resp., torsion free) module. We also recall that $\mathcal{Z}(M)=\left\{m \in M: \operatorname{Ann}_{R}(m)\right.$ is an essential ideal in $\left.R\right\}$ is a submodule of M, which is called singular submodule. If $\mathcal{Z}(M)=M$, (resp., $\mathcal{Z}(M)=(0))$ then M is called singular (resp., nonsingular) module. In the following results we show that $t(M)$ is always an r-submodule of M and if R is a domain, then $\mathcal{Z}(M)$ is also an r-submodule of M.

Proposition 2.12. Let M be an R-module. Then the following statements hold.
(i) The torsion submodule of M is an r-submodule.
(ii) If R is a domain then the singular submodule of M is an r-submodule.

Proof. (i) Suppose that $a m \in t(M)$ with $\operatorname{Ann}_{M}(a)=(0)$, where $a \in R$ and $m \in M$. By definition of the torsion submodule, we have $\operatorname{Ann}_{R}(a m) \neq(0)$ whence there exists $0 \neq s \in R$ such that $s(a m)=a(s m)=0$. Therefore $s m \in \operatorname{Ann}_{M}(a)=(0)$ and hence $0 \neq s \in \operatorname{Ann}_{R}(m)$, that is, $\operatorname{Ann}_{R}(m) \neq(0)$. This means that $m \in t(M)$.
(ii) Assume that $a m \in \mathcal{Z}(M)$ with $\operatorname{Ann}_{M}(a)=(0)$, where $a \in R$ and $m \in M$. The definition of singular submodule implies that $\operatorname{Ann}_{R}(a m) \cap R x \neq(0)$, for any $0 \neq x \in R$. Hence there exists $0 \neq s \in R$ such that $(s x m) a=0$, and thus $s x m \in \operatorname{Ann}_{M}(a)=(0)$, so $0 \neq s x \in \operatorname{Ann}_{R}(m) \cap R x$, i.e., $m \in \mathcal{Z}(M)$.

The direct sum of two r-submodules may not be an r-submodule, see Example 5.14 in 12]. For a nontrivial idempotent e in $R, e M$ is clearly an r-submodule of M, for manifestly $e M$ is a summand of M. Now the following proposition shows certain direct sum of r-submodules in a module M, which are not necessarily simple submodules is in fact an r-submodule.

Proposition 2.13. Let M be an R-module and $\left\{e_{i}: i \in A\right\}$ be a set of orthogonal idempotents in R and no finite subset of these idempotents generate R, in the sense that $1 \neq \sum_{i \in B} e_{i}$, where B is a finite subset of A. Then $N=\oplus_{i \in A} e_{i} M$ is an r-submodule.

Proof. Let $a m \in N$, where $a \in R, m \in M$ with $\operatorname{Ann}_{M}(a)=(0)$. We are to show that $m \in N$. Clearly, $a m=\sum_{k=1}^{n} e_{i_{k}} m_{i_{k}}$, where $i_{k} \in A$ and $m_{i_{k}} \in M$, for $k=1, \cdots, n$. Let us put $x=\prod_{k=1}^{n}\left(1-e_{i_{k}}\right)$. It is manifest that $a m x=0$ and hence $m x=0$. It is now evident that $x=1-y$, where $y=\sum_{k=1}^{n} e_{i_{k}}$. Therefore $m(1-y)=0$, so $m=m y$. This implies that $m \in N$.

Definition 2.14. Let R be a ring and M be an R-module. Then
(i) $a \in R$ is said to be m-regular relative to M, if $\operatorname{Ann}_{R}(a)=(0)$ implies that $\operatorname{Ann}_{M}(a)=(0)$; (ii) $a \in R$ is said to be R-regular relative to M, if $\operatorname{Ann}_{M}(a)=(0)$ implies that $\mathrm{Ann}_{R}(a)=(0)$.

For example if we consider $R[x]$ as a module over R, then every $a \in R$ is an m-regular element relative to $R[x]$ if and only if it is an R-regular element relative to $R[x]$. Also one can easily see that, if M is an R-module and $\operatorname{Ann}_{M}(a)=(0)$, for every $a \in R$, then $\operatorname{Ann}_{R}(M)$ is an r-ideal in R. Note that, in this case, there is no any essential r-submodule in M.

Lemma 2.15. Suppose that M is an R-module. Then the following statements hold.
(i) If M is a faithful R-module, then every $a \in R$ is an R-regular element relative to M.
(ii) If M is a finitely generated free R-module, then every $a \in R$ is an m-regular element relative to M.

Proof. (i) Assume that $a \in R$ with $\operatorname{Ann}_{M}(a)=(0)$ and $s \in \operatorname{Ann}_{R}(a)$. Hence $s a=0$ and it is evident that $s a m=0$, for any $m \in M$. Thus $s m \in \operatorname{Ann}_{M}(a)=(0)$ and therefore $s m=0$. This implies that $s \in \operatorname{Ann}_{R}(M)=(0)$, i.e., $\operatorname{Ann}_{R}(a)=(0)$.
(ii) Assume that $X=\left\{x_{1}, \cdots, x_{n}\right\}$ is a base for $M, a \in R$ with $\operatorname{Ann}_{R}(a)=(0)$ and $m \in M$. Now suppose that $m \in \operatorname{Ann}_{M}(a)$, hence $a m=0$. On the other hand, there exist $s_{1}, \cdots, s_{n} \in R$ such that $m=s_{1} x_{1}+\cdots+s_{n} x_{n}$. Therefore $a s_{1} x_{1}+\cdots+a s_{n} x_{n}=0$, and consequently $a s_{i}=0$, for $i=1, \cdots, n$. This conclude that $s_{1}, \cdots, s_{n} \in \operatorname{Ann}_{R}(a)=(0)$, therefore $s_{i}=0$, for $i=1, \cdots, n$ and hence $m=0$. This implies that $\operatorname{Ann}_{M}(a)=(0)$.

We should emphasize that any cyclic submodule need not be an r-submodule. For example, the principle ideal $I=\mathbb{Z} 4$ in \mathbb{Z} is not an r-ideal and so it is not an r-submodule of \mathbb{Z} as a \mathbb{Z}-module. Whenever M is a finitely generated free R-module and I is an r-ideal in R, we have the following fact.

Proposition 2.16. Let M be a finitely generated free R-module with a base X and I be an ideal in R. Then I is an r-ideal in R if and only if $I X$ is an r-submodule of M.

Proof. Suppose that $X=\left\{x_{1}, \cdots, x_{n}\right\}$ and $a m \in I X$ with $\operatorname{Ann}_{M}(a)=(0)$, where $a \in R$ and $m \in M$. Take $s_{1}, \cdots, s_{n} \in R$ and $t_{1}, \cdots, t_{n} \in I$ such that $m=s_{1} x_{1}+\cdots+s_{n} x_{n}$ and $a m=t_{1} x_{1}+\cdots+t_{n} x_{n}$. Hence $a s_{1} x_{1}+\cdots+a s_{n} x_{n}=t_{1} x_{1}+\cdots+t_{n} x_{n}$. Therefore $a s_{i}=t_{i} \in I$, for $i=1, \cdots, n$. Now by part (i) of the above lemma we have $\operatorname{Ann}_{R}(a)=(0)$ and so by our hypothesis, we conclude that $s_{i} \in I$, for $i=1, \cdots, n$. This means that $m \in I X$. Conversely, suppose that $a x \in I$, with $\operatorname{Ann}_{R}(a)=(0)$, where $a, x \in R$ and $0 \neq m \in M$. Clearly, axm $\in I X$. Now using part (ii) of the above lemma, we have $\operatorname{Ann}_{M}(a)=(0)$, whence by our hypothesis, we have $x m \in I X$. This yields that $x \in I$.

We remind the reader that a submodule N of a module M is called prime (resp., primary) if for each $a \in R$ and $m \in M, a m \in N$ implies that $m \in N$ or $a M \subseteq N$ (resp., $a^{n} M \subseteq N$ for some $n \in \mathbb{N}$). Also N is called semiprime, if $a^{2} m \in N$ implies that $a m \in N$. Clearly, every submodule is prime if and only if it is both primary and semiprime. Furthermore, if N is a prime r-submodule of M, then $a m \in N$ implies that $m \in N$, for every $m \in M$ and $a \in \mathrm{r}_{M}(R)$. For otherwise, we have $a M \subseteq N$ and so by part (ii) of Proposition 2.3 we conclude that $a M=a N$. This immediately implies that $M=N$ which is not true.

Now similarly to the notion of nonregular ideal, we may define a nonregular submodule.
Definition 2.17. A proper submodule N of an R-module M is called nonregular, if $a M \subseteq N$ implies that $\operatorname{Ann}_{M}(a) \neq(0)$, for each $a \in R$.

If we consider R as an R-module, then our definition agrees with the concept of nonregular ideal.

Remark 2.18. (i) Every r-submodule of a module is nonregular.
(ii) Every prime nonregular submodule of a module is an r-submodule.

The converse of part (i) of the above remark is not true, in general. For example, consider \mathbb{Q} as a \mathbb{Z}-module. Then the submodule $N=\mathbb{Z} \frac{1}{2}$ is a nonregular submodule but it is not an r-submodule. To see this, it is clear that $2 \cdot \frac{3}{4}=\frac{1}{2} .3 \in N$ and $\operatorname{Ann}_{\mathbb{Q}}(2)=(0)$ but $\frac{3}{4} \notin N$

We conclude this section with the following proposition.

Proposition 2.19. Every maximal r-submodule is a prime submodule.
Proof. Assume that N is a maximal r-submodule of an R-module M. We are to show that N is prime. To see this, let $a \in R, m \in M$ and $a m \in N$. Since N is an r-submodule, $(N: a)$ is an r-submodule and it is evident that $N \subseteq(N: a)$. Now maximality of N implies that $(N: a)=N$ and hence we have $m \in N$, i.e., N is prime.

3. $u z$-modules

This section is devoted to the introduction of the $u z$-modules and strongly $u z$-modules. We begin with the following definitions.

Definition 3.1. An R-module M is called a
(i) uz-module, if for every $a \in R$ either $\operatorname{Ann}_{M}(a) \neq(0)$ or $a M=M$;
(ii) strongly $u z$-module if for every $a \in R$ we have $a M \subseteq a^{2} M$ (in fact, $a M=a^{2} M$).

For instance, the modules $\frac{\mathbb{Q}}{\mathbb{Z}}, \mathbb{Q}$ and $\mathbb{Z}\left(p^{\infty}\right)$ over \mathbb{Z} are strongly $u z$-modules but \mathbb{Z} as \mathbb{Z} module is not a strongly $u z$-module. Every strongly $u z$-module is a $u z$-module, but the converse is not true, in general. For example, \mathbb{Z}_{4} as a \mathbb{Z}_{4}-module is a $u z$-module, but is not a strongly $u z$-module. The ring of $C(X)$, i.e., the ring of all real-valued continuous functions on a completely regular Hausdorff space X is a strongly $u z$-module as a $C(X)$-module. Recall that it is possible that $\operatorname{Ann}_{M}(a)=(0)$ or $a M=M$ for every $0 \neq a \in R$. For example, if we consider \mathbb{Q} as a \mathbb{Z}-module then both $\operatorname{Ann}_{\mathbb{Q}}(a)=(0)$ and $a \mathbb{Q}=\mathbb{Q}$ for every $0 \neq a \in \mathbb{Z}$

It is clear that a) every simple module is a strongly $u z$-module; b) a ring R is a $u z$-ring (resp., Von Neumann regular ring) if and only if as a module over itself is a $u z$-module (resp., strongly $u z$-module); c) if M is a strongly $u z$-module, then every primary submodule of M is prime and $\operatorname{Ann}_{R}(M)$ is a semiprime ideal.

Remark 3.2. Let M be an R-module. Then the following statements hold.
(i) If $a \in R$, then $\operatorname{Ann}_{M}(a)=(0)$ if and only if $\operatorname{Ann}_{M}\left(a^{n}\right)=(0)$, for any $n \in \mathbb{N}$.
(ii) The zero submodule of M is prime if and only if $\operatorname{Ann}_{M}(a)=(0)$, for any $0 \neq a \in R$.

Remark 3.3. Let M be a faithful R-module. Then the following statements hold.
(i) If M is a strongly $u z$-module, then R is a reduced ring. In particular, every Von

Neumann regular ring is reduced.
(ii) If M is an Artinian module and the zero submodule of M is prime, then $a M=M$, for any $0 \neq a \in R$. In this case, clearly M is a strongly $u z$-module. As a consequence we have the well known fact that every Artinian domain is a field.

The next result states that every Von Neumann regular (resp., Artinian) module is a strongly $u z$-module (resp., $u z$-module).

Theorem 3.4. (i) Every Von Neumann regular R-module is a strongly uz-module.
(ii) Every Artinian R-module is a uz-module.

Proof. (i) Assume that M is a Von Neumann regular R-module and $a \in R$. We must show that $a M \subseteq a^{2} M$. Let $m \in M$, it is sufficient to show that $a m \in a^{2} M$. Put $N=$ Ram. Clearly, N is a submodule of M and hence it is a direct summand. Thus there exists a submodule K of M such that $M=N \oplus K$. Hence there exist $r \in R$ and $x \in K$ such that $m=r a m+x$. Consequently, $a x=(1-r a) a m \in N \cap K=(0)$. Therefore $a m=r a^{2} m \in a^{2} M$.
(ii) If $\operatorname{Ann}_{M}(a) \neq(0)$, for any $a \in R$, then we are done. Hence suppose that there exists $a_{0} \in R$ such that $\operatorname{Ann}_{M}\left(a_{0}\right)=(0)$. Since $a_{0} M \supseteq a_{0}^{2} M \supseteq a_{0}^{3} M \supseteq \cdots$, it follows that there exists $n_{0} \in \mathbb{N}$ such that $a_{0}^{n} M=a_{0}^{n+1} M$, for any $n \geqslant n_{0}$. Now take an arbitrary $m \in M$. Hence there exists $x \in M$ such that $a_{0}^{n_{0}} m=a_{0}^{n_{0}+1} x$. Therefore $a_{0}^{n_{0}}\left(m-a_{0} x\right)=0$ and so $m-a_{0} x \in \operatorname{Ann}_{M}\left(a_{0}^{n_{0}}\right)=(0)$. Thus $m=a_{0} x \in a_{0} M$, i.e., $M=a_{0} M$, which completes the proof. \square

Part (i) of the previous theorem conclude that every semisimple module is a strongly $u z$ module. Also the converse of parts (i) and $(i i)$ is not true, in general. For example $\mathbb{Z}\left(p^{\infty}\right)$ as \mathbb{Z}-module is a strongly $u z$-module but is not a Von Neumann regular \mathbb{Z}-module and \mathbb{Q} as \mathbb{Z}-module is a strongly $u z$-module but is not a Artinian \mathbb{Z}-module

Recall that an R-module M is called multiplication module if for each submodule N of M, $N=I M$ for some ideal I of R. In view of Proposition 2.16, it is easy to show that if M is a cyclic free multiplication R-module, then R is a $u z$-ring if and only if every submodule of M is an r-submodule.

Proposition 3.5. Let M be a strongly uz-module. Then the following statements hold.
(i) Every primary submodule of M is prime.
(ii) Every semiprime submodule of M is an r-submodule.
(iii) If N is a semiprime submodule of M and $a m \in N$, where $a \in R$ and $m \in M$, then either $m \in N$ or $\operatorname{Ann}_{M}(a) \neq(0)$.

Proof. (i) It is evident.
(ii) Let $a m \in N$, where $a \in R, m \in M$ with $\operatorname{Ann}_{M}(a)=(0)$. Since $a M=a^{2} M$, there exists $x \in M$ such that $a m=a^{2} x \in N$. Consequently, $m-a x \in \operatorname{Ann}_{M}(a)=(0)$, implies $m=a x$. On the other hand, since N is semiprime, we have $a x \in N$ and consequently, $m \in N$.
(iii) It is evident.

An infinite R-module M is called Jónsson module if every proper submodule of M has smaller cardinality than M. Clearly, every simple module is a Jónsson module. It is well known that if M is a Jónsson module, then either $a M=M$ or $a M=(0)$, for each $a \in R$, and moreover $\operatorname{Ann}_{R}(M)$ is a prime ideal of R, see Proposition 2.5 in [4]. One can easily show that every Jónsson module is a strongly $u z$-module. For more details about Jónsson modules, see [4].

In the following result, we observe that for any faithful cyclic R-module M, every submodule of M is an r-submodule if and only if M is a $u z$-module.

Proposition 3.6. Let M be a faithful cyclic R-module. Then the following conditions are equivalent.
(i) M is a uz-module.
(ii) Every submodule of M is an r-submodule.
(iii) Every cyclic submodule of M is an r-submodule.

Proof. ($i \Rightarrow i i$) Suppose that $0 \neq m \in M$ and $M=R m$. Let N be a submodule of $M, a \in R$, $x \in M$ and $a x \in N$ with $\operatorname{Ann}_{M}(a)=(0)$. By our hypothesis, we have $a M=M$, that is, $R a m=R m$. Hence there exists $s \in R$ such that $m=a s m$. Therefore $(1-a s) \in \operatorname{Ann}_{R}(m)=$ (0), so $1=a s$. Thus we conclude that $x=s(a x) \in N$, i.e., N is an r-submodule. $(i i \Rightarrow i)$ If $a M=M$, for any $a \in R$, then we are done. Otherwise, let there exists $a_{0} \in R$ such that $a_{0} M \neq M$. We are to show that $\operatorname{Ann}_{M}\left(a_{0}\right) \neq(0)$. Since $a_{0} M \neq M$, there exists $m_{0} \in M$ such that $m_{0} \notin a_{0} M$. By taking that $N=a_{0} M$, we have $a_{0} m_{0} \in N$ and $m_{0} \notin N$. Now if $\operatorname{Ann}_{M}\left(a_{0}\right)=(0)$, then N is not an r-submodule, which is a contradiction.
($i i \Rightarrow i i i$) It is evident.
($i i i \Rightarrow$ i $)$ Let N be a submodule of $M, a \in R, x \in M$ and $a x \in N$ with $\operatorname{Ann}_{M}(a)=(0)$. Now by our hypothesis, the submodule $K=R a x$ is an r-submodule and it is obvious that $K \subseteq N$. Clearly, $x \in K$ and so $x \in N$, that is, N is an r-submodule.

The condition of " M being a cyclic R-module" for implication ($i \Rightarrow i i$) is essential, i.e., $(i \Rightarrow i i)$ is not true, in general. For example, \mathbb{Q} as \mathbb{Z}-module is a $u z$-module, but the submodule $N=\mathbb{Z} \frac{1}{2}$ of \mathbb{Q} is not an r-submodule. It is worth to point out that the implication $(i i \Rightarrow i)$ is valid for every R-module. Furthermore, if in the above proposition we consider R as an R-module, then Proposition 3.4 in [12] is an immediate consequence of Proposition 3.6.

Remark 3.7. (i) A ring R is a domain if it has a $u z$-module whose every nonzero submodule is faithful. To see this, let M be an R-module which is a $u z$-module with the property mentioned above. Hence, in view of Definition 3.1, we must have $a M=M$, for all
$a \in R$ (note, by our assumption we can not have $\operatorname{Ann}_{M}(a) \neq(0)$). This immediately implies that R is a domain.
(ii) A ring R is a field if and only if it has a $u z$-cyclic module whose every nonzero submodule is faithful. To see this, if M is cyclic which is a $u z$-module with the property mentioned above, it is evident that it is isomorphic to R itself, i.e., R becomes a domain which is at the same time a $u z$-module over itself (note, the property of being a $u z$-module or a strongly $u z$-module is preserved under isomorphism). Consequently, $a R=R$ for all $a \in R$ which is the same thing as R being a field, and we are done. The converse is evident, for it is sufficient to consider R as an R-module.

It is well known that a ring R is a domain if and only if the only r-ideal of R is zero ideal, see Proposition 2.8 in [12]. By replacing the r-ideals with the r-submodules, we get the next interesting fact.

Proposition 3.8. Let M be a faithful cyclic R-module. Then the following statements are equivalent.
(i) R is a domain.
(ii) The only r-submodule of M is zero submodule.
(iii) $\operatorname{Ann}_{M}(a b)=\operatorname{Ann}_{M}(a) \cup \operatorname{Ann}_{M}(b)$, for every $a, b \in R$.

Proof. ($i \Rightarrow$ ii) Assume that $0 \neq m \in M$ and $M=R m$. Let $(0) \neq N$ be an r-submodule of M and $0 \neq n \in N$. Hence there exists $0 \neq a \in R$ such that $n=a m$. We claim that $\operatorname{Ann}_{M}(a)=(0)$. To see this, let $0 \neq x \in M$ such that $a x=0$. Thus there exists $0 \neq b \in R$ such that $x=b m$. Therefore we have $a b m=0$, so $a b \in \operatorname{Ann}_{R}(m)=(0)$. This implies that $a b=0$, which is not true, for R is a domain. Now since N is an r-submodule, we infer that $m \in N$, that is, $M=N$, which is a contradiction.
($i i \Rightarrow i i i$) Since $\operatorname{Ann}_{M}(a)$ is an r-submodule, for every $a \in R$, the proof is evident.
$(i i i \Rightarrow i)$ Suppose that $a, b \in R$ and $a b=0$. Hence $M=\operatorname{Ann}_{M}(0)=\operatorname{Ann}_{M}(a b)=\operatorname{Ann}_{M}(a) \cup$ $\operatorname{Ann}_{M}(b)$. Therefore $M=\operatorname{Ann}_{M}(a)$ or $M=\operatorname{Ann}_{M}(b)$. That is $a M=(0)$ or $b M=(0)$. Thus $a \in \operatorname{Ann}(M)=(0)$ or $b \in \operatorname{Ann}(M)=(0)$. This means that $a=0$ or $b=0$.

Propositions 2.12 and 3.8 state that every faithful cyclic module over a domain is both nonsingular and torsion free.

In the following theorem we observe two equivalent conditions for $u z$-rings. For the other equivalent conditions in terms of r-ideals, see Proposition 3.4 in 12].

Theorem 3.9. Let R be a ring. Then the following statements are equivalent.
(i) R is a uz-ring.
(ii) Every faithful R-module is a uz-module.
(iii) Every faithful cyclic R-module is a uz-module.

Proof. ($i \Rightarrow i i$) Let M be a faithful R-module. In view of Proposition 3.6, it is enough to show that every submodule of M is an r-submodule. Suppose that N is a submodule of M and $a m \in N$ with $\operatorname{Ann}_{M}(a)=(0)$, where $a \in R$ and $m \in M$. In case $a \in \mathrm{u}(R)$, we have $m=a^{-1} a m \in N$. If $\operatorname{Ann}_{R}(a) \neq(0)$, then there exists $0 \neq b \in R$ such that $a b=0$. Now assume that $x \in M$ is an arbitrary element. Clearly, $a b x=0$, whence $b x \in \operatorname{Ann}_{M}(a)=(0)$. Hence $b x=0$, i.e., $0 \neq b \in \operatorname{Ann}_{R}(M)=(0)$, which is a contradiction.
($i i \Rightarrow$ iii) It is evident.
(iii $\Rightarrow i$) Let $M=R m$ be a faithful cyclic R-module and $a \in R$. If $\operatorname{Ann}_{M}(a) \neq(0)$, then there exists $0 \neq n \in M$ such that $a n=0$. On the other hand, there exists $0 \neq b \in R$ such that $n=b m$, hence $a b m=0$, whence $a b \in \operatorname{Ann}_{R}(m)=(0)$, that is $a b=0$. This means that $a \in \operatorname{zd}(R)$. If $a M=M$, then there exists $m_{1} \in M$ such that $m=a m_{1}$. Also there is $t \in R$ such that $m_{1}=m t$. Therefore $m=a m t$, implies $(1-a t) m=0$, hence $1-a t \in \operatorname{Ann}_{R}(m)=(0)$, that is, $a t=1$. This implies that $a \in \mathrm{u}(R)$.

We conclude the paper by the following corollary which introduces some r-submodules of a uz-module.

Corollary 3.10. Let R-module M be a uz-module. Then the following statements hold.
(i) Every prime submodule of M is nonregular, and hence it is an r-submodule.
(ii) $\mathrm{J}(M)$ is an r-submodule of M.

4. Acknowledgments

The author would like to thank the referee for reading the article carefully and giving useful comments. Also the author acknowledges the financial support (GN:SCU.MM98.648) from the Research Council of Shahid Chamran University of Ahvaz.

References

[1] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, Graduate Texts in Mathematics, Vol. 13, 2nd Ed., Springer-Verlag, Berlin/Heidelberg, New York, 1992.
[2] M. F. Atiyah, I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesely, Reading Mass, 1969.
[3] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker Inc, New York, 1972.
[4] R. Gilmer, W. Heinzer, On Jónsson modules over a commutative ring, Acta Sci. Math., 46 (1983) 3-15.
[5] J. A. Huckabo, Commutative Ring with Zero Divisors, Marcel Dekker Inc, 1988.
[6] T. W. Hungerford, Algebra, Graduate Texts in Mathematics, Vol. 73, Springer-Verlag, Berlin/Heidelberg, New York, 1989.
[7] I. Kaplansky, Commutative Rings, Allyn and Bacon, Boston, 1970.
[8] O. A. S. Karamzadeh, Module whose countably generated submodules are epimorphic images, Colloq. Math., 46 (1982) 143-146.
[9] S. Koc, U. Tekir, r-Submodules and special r-Submodules, Turk. J. Math., 42 (2018) 1863-1876.
[10] T. Y. Lam, Lecture on Modules and Rings, Springer, 1999.
[11] J. Lambek, Lecture on Rings and Modules, Waltham-Toronto-London: Blaisdell, 1966.
[12] R. Mohamadian, r-ideals in commutative rings, Turk. J. Math., 39 (2015) 733-749.
[13] R. Y. Sharp, Steps in Commutative Algebra, Cambridge university press, 1990.

Rostam Mohamadian

Department of Mathematics, Faculty of Mathematical Sciences and Computer Shahid Chamran University of Ahvaz

Ahvaz, Iran.
mohamadian_r@scu.ac.ir

