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ON ZG-CLEAN RINGS

MARZIEH FARMANI

Abstract. Let R be an associative ring with unity. An element x ∈ R is called ZG-clean if

x = e + r, where e is an idempotent and r is a ZG-regular element in R. A ring R is called

ZG-clean if every element of R is ZG-clean. In this paper, we show that in an abelian ZG-

regular ring R, the Nil(R) is a two-sided ideal of R and R

Nil(R)
is G-regular. Furthermore,

we characterize ZG-clean rings. Also, this paper is involved with investigating F2C2 as a

social group and measuring influence a member of it’s rather than others.

1. Introduction

Recall an element x of R is called regular (unit regular) if there exists y ∈ R (a unit u ∈ R)
such that xyx = x (xux = x). Some properties of regular rings and strongly regular has been
studied in [8, 11].
An element x ∈ R is said to be π-regular if there exist y ∈ R and a positive integer n such
that xn = xnyxn. An element x ∈ R is said to be strongly π-regular if xn = x2ny. The ring
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R is π-regular if every element of R is π-regular and is strongly π-regular if every element of
R strongly π-regular. By a result of Azumaya [3] and Dischinger [10], the element x can be
chosen to commute with y. In particular, this definition is left-right symmetric. π-regular and
strongly π-regular rings, are studied in particular in [3, 4, 5, 6]. A group action (or just action)
of G on X is a binary operation:

µ : X ×G 7−→ X

(If there is no fear of confusion, we write µ(x, g) simply as by xg) such that
(I) (xg)h = xgh for all x ∈ X and g, h ∈ G,
(II) x1 = x for all x ∈ X.
Let I be a two sided ideal of R. Then G can acts naturally on R

I
by the rule µ(r + I, g) =

µ(r, g) + I

An element x ∈ R is said to be G-regular (resp. strongly G-regular) if there exist y ∈ R and
g ∈ G such that xg = xgyxg (xg = x2gy). The ring R is G-regular (resp. strongly G-regular)
if each element of R is G-regular (resp. strongly G-regular). Basic properties of G-regular
(resp. strongly G-regular) rings have been studied in [19]. An element x ∈ R is said to be
ZG-regular (resp. strongly ZG-regular) if there exist y ∈ R and g ∈ G, n ∈ Z such that
xng = xngyxng(resp. x(n+1)g = xngy). The ring R is ZG-regular (resp. strongly ZG-regular) if
each element of R is ZG-regular (resp. strongly ZG-regular). For example Z/4Z and Z/6Z are
ZG-regular rings. In [18], we defined the notion of these rings. An element of a ring is called
clean if it can be written as the sum of a unit and an idempotent. A ring is clean if each of
its element is clean. This notion was introduced by Nicholson in [17] as a sufficient condition
for a ring to have the exchange property. In recent years, there have been many investigations
concerning variants of the clean properties, see [1, 16]. An element of a ring R is called r-clean
if it is the sum of an idempotent and a regular element. A ring R is called r-clean if each of
its element is r-clean. Clearly regular rings and clean rings are r-clean. r-clean rings have
been studied in [2]. Id(R), C(R), Nil(R), U(R), J(R), N(R) denote the set of all idempotent
elements of R, the center of R, the set of all nilpotent elements of R, the set of all unit elements
of R, the radical Jacobson of R and the prime radical of R, respectively. Also, ZG− Reg(R)

denotes the set of ZG-regular elements of R. A ring R is called an abelian ring if Id(R) is a
subset of C(R).
We use Mn(R) to stand in the ring of all n× n matrix over a ring R.
Also we define:

[aij ]
ng =

[
angij

]
, ag1+g2 = ag1ag2

For each g, g1, g2 ∈ G, n ∈ Z.
For each n ∈ Z, we mean ang by (ag)n. also

(xi)
g
i∈I = (xi

g)i∈I
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Furthermore, if S ⊆ R, then we have:

Sg = {xg|x ∈ S}

A ring R is said to be boolean in case every element in R is idempotent. Let R be a ring
and M be a (left) R-module. M is said to be a simple R-module if M 6= 0, and M has no
R-submodules other than 0 and M and also M is said to be a semisimple R-module if every
R-submodule of M is an R-module direct summand of M . A ring R is simple (semisimple) if
it is simple (semisimple) as a (left) module over itself. A ring R is said semiperfect if R/J(R)

is semisimple and idempotents lift modulo J(R). An element x in a ring R is said to be
quasiregular if there is some element y ∈ R such that x + y = xy = yx. It is not difficult to
see that an element x in a ring R is quasiregular if and only if 1−x is a unit of R. A ring R is
said to be orthogonally finite (or sometimes I-finite) there exists no infinite set of orthogonal
idempotents in the ring.

2. Abelian ZG-regular rings

In this section, we show that in an abelian ZG-regular ring R, the Nil(R) is a two-sided
ideal of R and R/Nil(R) is G-regular.

Lemma 2.1. Let x ∈ R be unit regular. Then x = eu, for some e ∈ Id(R) and u ∈ U(R).

Proof. Suppose x is unit regular. Then for some v ∈ U(R) we have xvx = x. Let e = xv ∈
Id(R) and u = v−1. Then x = eu.

Lemma 2.2. Let R be an abelian regular ring. Then R is unit regular.

Proof. See [[5], Theorem 2].

Theorem 2.3. Let R be an abelian ring and x ∈ R. Then x is ZG-regular if and only if there
exists e ∈ Id(R) such that exg is regular and (1− e)xg ∈ Nil(R).

Proof. If x be ZG-regular, then there exist n ∈ Z and g ∈ G such that xng is regular. Hence
by Lemmas 2.2 and 2.1, xng = eu for some e ∈ Id(R) and u ∈ U(R). Then

exg(x(n−1)gu−1)exg = (exngu−1)exg

= (eeuu−1)exg

= (euu−1)exg

= e2xg

= exg
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Hence, exg is regular. Now ((1 − e)xg)n = (1 − e)xng = (1 − e)eu = 0, since (1 − e) ∈ C(R)

and xng = eu.
Conversely, suppose for some e ∈ Id(R), exg is regular and (1 − e)xg ∈ Nil(R). For some
n ∈ Z, ((1− e)xg)n = (1− e)xng = 0. Hence, exng = xng. Since exg is regular, by Lemma 2.1,
exg = cu for some c ∈ Id(R) and u ∈ U(R). Hence xng = exng = (exg)n = (cu)n = cun, since
c ∈ C(R).
Let y = cu−n. Then

xngyxng = xngcu−nxng

= cuncu−nxng

= c2unu−nxng

= cxng

= ccun

= cun = xng

and hence x is ZG-regular.

Lemma 2.4. Let R be an abelian ring. Let x ∈ R such that x is ZG-regular. Then for some
e ∈ Id(R) and u ∈ U(R) we have exg = eu.

Proof. Let R be an abelian ring and x ∈ R such that x is ZG-regular. Then by [[18], Theorem
2.9] and proof of the Theorem 2.3 for some e ∈ Id(R) and v ∈ U(R) and m ∈ Z and g ∈ G, we
have xmg = ev and exg is regular. Hence, by Lemmas 2.1 and 2.2, exg = cw for some c ∈ Id(R)

and w ∈ U(R). In fact, e = c. For e(exg) = e(cw). But e(exg) = exg = cw. Thus ecw = cw

and therefore ec = c. Since e, c ∈ C(R), then ((exg))m = exmg = cwm. Since xmg = ev and
exmg = eev = ev = cwm, hence e = cwmv−1. Thus ec = cwmv−1c = cwmv−1 = e. Since
c ∈ C(R). Hence, ec = e. Since ec = c and ec = e, then e = c. Thus, exg = ew.

Theorem 2.5. Let R be an abelian ZG-regular ring. Then Nil(R) is a two-sided ideal of R.

Proof. Let r, w ∈ R. Since R is ZG-regular. Thus, there exists g ∈ G such that rg, wg ∈ R.
Let wg ∈ Nil(R) and rg ∈ R. Suppose rgwg = (rw)g is not in Nil(R). By Lemma 2.4, there
exist e ∈ Id(R) and u ∈ U(R) such that e(rw)g = rgewg = eu. Observe that e 6= 0. For if
e = 0 then (1−e)(rw)g = (rw)g ∈ Nil(R) by Theorem 2.3 and this contradicts the assumption
that (rw)g /∈ Nil(R). Since ewg ∈ Nil(R), let n be the smallest integer such that (ewg)n = 0.
Then n 6= 2, since e 6= 0. Thus, 0 = rgewg(ewg)n−1 = eu(ewg)n−1 = u(ewg)n−1. Hence
(ew)n−1 = 0 a contradiction. Thus, for any wg ∈ Nil(R) and rg ∈ R, we have rgwg ∈ Nil(R).
A simillar argument will show that for any wg ∈ Nil(R) and rg ∈ R, we have wgrg ∈ Nil(R).
Now, let wg, zg ∈ Nil(R) and suppose wg + zg /∈ Nil(R). Then, once again, there exist
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0 6= c ∈ Id(R) and v ∈ U(R) such that c(w+ z)g = cv. Hence cwg = cv− czg = cv(1− v−1zg).
Since 1 − v−1zg ∈ Nil(R), 1 − v−1zg = u ∈ U(R). Thus cwg = cvu. But cwg ∈ Nil(R) and
cvu /∈ Nil(R). Hence wg + zg ∈ Nil(R). Thus Nil(R) is a two-sided ideal of R.

Before starting the second major result, the following two well-known lemmas are needed.

Lemma 2.6. Let R be a ring with 1 and I be a two sided nil ideal of R. If [c] ∈ Id(R/I),
then there exists e ∈ Id(R) such that [e] = [c] in R/I.

Proof. Since I is a two sided nil ideal of R, then I ⊆ rad(R) [[15], Lemma 4.11] and then the
lemma is clear by [[15], Theorem 21.28].

Lemma 2.7. Let I be a two-sided nil ideal of R, k = R/I and v ∈ R. Then [u] ∈ U(k) if and
only if u ∈ U(R).

Theorem 2.8. Let R be an abelian ring. Then R is ZG-regular if and only if Nil(R) is a
two-sided ideal of R and R/Nil(R) is G-regular.

Proof. Suppose R is ZG-regular. By Theorem 2.5, Nil(R) is a two-sided ideal of R. Let
[x] ∈ R/Nil(R). Then, there exist y ∈ R, and n ∈ Z and g ∈ G, xngyxng = xng. Thus
e = xngy ∈ Id(R) and therefore 1 − e ∈ Id(R). Since 1 − e ∈ C(R) then ((1 − e)xg)n = (1 −
e)xng = (1−xngy)xng = 0. Thus (1− e)xg = (1−xngy)xg ∈ Nil(R). Thus, [xg][x(n−1)g][xg] =

[xngy][xg] = [xg]. Then R/Nil(R) is G-regular.
Suppose Nil(R) is a two-sided ideal of R and K = R/Nil(R) is G-regular. Let x ∈ R such
that [x] is G-regular, then [xg] is regular, Since Id(R) ⊂ C(R), by [[18], Theorem 2.8], [xg] is
unit regular. Thus by Lemma 2.1, we have [xg] = [c][u] for some [c] ∈ Id(K) and [u] ∈ U(K).
By Lemma 2.6, there exists e ∈ Id(R) such that [c] = [e], and by Lemma 2.7, u ∈ U(R).
Thus, xg = eu + w for some w ∈ Nil(R). Now, exg = e(eu + w) = eu + ew = e(u + w).
Since w ∈ J(R), u + w ∈ U(R). Thus, exg is regular. Further, (1 − e)xg = xg − exg =

(eu + w) − (eu + ew) ∈ Nil(R). Hence, (1 − e)xg ∈ Nil(R). Thus by Theorem 2.3, x is
ZG-regular.

Theorem 2.9. A ring R is abelian ZG-regular if and only if Id(R) ⊂ C(R), Nil(R) is a
two-sided ideal of R, and for every x ∈ R there exist e ∈ Id(R), u ∈ U(R), g ∈ G and
w ∈ Nil(R) such that xg = eu+ w.

Proof. It is obvious by Theorem 2.8 and Lemma 2.1.
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Theorem 2.10. Suppose Id(R) is a subset of C(R). Then R is ZG-regular if and only if for
some two-sided nil ideal I of R, K = R/I is ZG-regular.

Proof. Suppose R is ZG-regular. By Theorem 2.5, I = Nil(R) is a two-sided ideal of R, and
by Theorem 2.8, K = R/I is G-regular and hence ZG-regular.
For the converse, assume that R/I is ZG-regular for some two-sided nil ideal I of R. Then
Nil(R/I) = Nil(R)/I is a two-sided ideal of R/I by Theorem 2.8. So Nil(R) is a two-
sided ideal of R. Since R/I is ZG-regular, so is R/Nil(R). Therefore, by Theorem 2.8, R is
ZG-regular.

A consequence of the above theorem is following corollary.

Corollary 2.11. Suppose R is an abelian ring. Then R is ZG-regular if and only if R/N(R)

is ZG-regular where N(R) is the prime radical of R.

3. ZG-clean rings

Definition 3.1. An element x ∈ R is called ZG-clean if x = e+ r, where e is an idempotent
and r is a ZG-regular element in R. A ring R is called ZG-clean if every element of R is
ZG-clean.

For example Zp
∼= Z/pZ and F2C2 that F2 = {0, 1} and C2 = {1, x}, are ZG-clean rings.

Proposition 3.2. Every homomorphic image of a ZG-clean ring is ZG-clean.

Proof. Since multiplication is preserved by every ring homomorphism, the homomorphic image
of ZG-regular (resp. idempotent) is ZG-regular (resp. idempotent) of its ring. Since addition
is also preserved by every ring homomorphism, the result follows.

Remark 3.3. Inverse of above theorem may not be correct. For example Z4
∼= Z/4Z (Zp

∼=
Z/pZ) is ZG-clean, but Z is not ZG-clean.

Proposition 3.4. A finite direct product
∏

i∈I Ri (I is a finite set) of ZG-clean rings {Ri}i∈I
is ZG-clean.

Proof. Since multiplication in a direct product of rings is defined componentwize, an element
in a direct product of rings is a ZG-regular (resp. idempotent) of that ring if and only the
entry in each of its components is a ZG-regular (resp. idempotent) of its ring. Since addition
in a direct product of rings is also defined componentwise, the result follows from a simple
computation.
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Proposition 3.5. Let R be an orthogonally finite ring and J ≤ K be two sided ideals in a
ring R. If J and K/J are both ZG-clean, then K is ZG-clean.

Proof. Suppose that J and K/J are both ZG-clean. Given x ∈ K, it follows from the ZG-
cleaness of K/J that x − e − r ∈ J for some e ∈ Id(K), r ∈ ZG − Reg(K), consequently,
x − e − r = f + s, f ∈ Id(J), s ∈ ZG − Reg(J), then x = (e + f) + (r + s). Since R is
orthogonally finite, then (e+ f) ∈ Id(K) and also (r + s) ∈ ZG−Reg(K).

Proposition 3.6. Let R be a ring, if e is a central idempotent element of R and eRe and
(1− e)R(1− e) are both ZG-clean, then so is R.

Proof. For any idempotent e in a ring, we have the Peirce decomposition:

R = eRe⊕ eRf ⊕ fRe⊕ fRf

Where f = 1 − e is the complementary idempotent to e. Since e, f are central idempotents,
then we have the Peirce decomposition:

R = eRe⊕ fRf ∼=

 eRe 0

0 fRf


So each A ∈ R is the from

a 0

0 b

, where a, b belong to eRe, fRf respectively. a, b are ZG-

clean by hypothesis thus a = r1 + e1, b = r2 + e2, where r1, r2 are ZG-regular and e1, e2 are
idempotent. So

A =

a 0

0 b

 =

r1 + e1 0

0 r2 + e2

 =

r1 0

0 r2

+

e1 0

0 e2


Since r1, r2 are ZG-regular, so there exist y1, y2 ∈ R, g1, g2 ∈ G and n1, n2 ∈ Z, such that,
rn1g1
1 y1r

n1g1
1 = rn1g1

1 , rn2g2
2 y2r

n2g2
2 = rn2g2

2 , therefore we have:r1 0

0 r2

n1g1+n2g2 r−n2g2
1 y1 0

0 r−n1g1
2 y2

r1 0

0 r2

n1g1+n2g2

=rn1g1
1 y1 0

0 rn2g2
2 y2

r1 0

0 r2

n1g1+n2g2

=rn1g1
1 y1r

n1g1
1 rn2g2

1 0

0 rn2g2
2 y2r

n2g2
2 rn1g1

2

n1g1+n2g2

=rn1g1
1 rn2g2

1 0

0 rn2g2
2 rn1g1

2

 =
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1 0

0 rn1g1+n2g2
2

 =r1 0

0 r2

n1g1+n2g2

So

r1 0

0 r2

 is ZG-regular.

Proposition 3.7. Let R be a ZG-clean ring and e be a central idempotent in R. Then eRe is
also ZG-clean.

Proof. Since e is a central, it follows that eRe is homomorphic image of R. Hence, the result
follows from Proposition 3.2.

Corollary 3.8. Let e1, e2, ..., en be orthogonal central idempotents with e1 + e2 + ...+ en = 1.
Then eiRei is ZG-clean for each i, if and only if so is R.

Proof. One direction of corollary follows Propositoin 3.6 by induction the other direction fol-
lows from Proposition 3.7.

Theorem 3.9. A full matrix ring Mn(R) is ZG-clean if the underlying ring R is ZG-clean.

Proof. Since R is a ZG-clean ring by Collorary 3.8, eiRei is ZG-clean for each i and since the
set of matrix units {Eii}ni=1 is a complete set of orthogonal idempotents for Mn(R) with each
corner ring EiiMn(R)Eii isomorphic to R, the result follows.

Proposition 3.10. Let A,B be two rings, ACB a bimodule and R =

A 0

C B

. Then R is

ZG-clean if and only if both A and B are ZG-clean.

Proof. If R is ZG-clean, thena 0

c b

 =

ra 0

rc rb

+

ea 0

ec eb


Where

(

ea 0

ec eb

)2 =
ea 0

ec eb


and
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rc rb

 ∈ Z(G)− reg(R)

Then there existsy1 0

y2 y3

 ∈ R

Wherera 0

rc rb

ng y1 0

y2 y3

ra 0

rc rb

ng

=

ra 0

rc rb

ng

Then rnga y1r
ng
a 0

rngc y1r
ng
a + rngb y2r

ng
a + rngb y3r

ng
c rngb y3r

ng
b

 =

ra 0

rc rb

ng

So ra, rb ∈ ZG− reg(R) and ea, eb ∈ Id(R) and we have a = ra + ea, b = rb + eb.

In particular, induction shows that for each n ≥ 1, a ring R is ZG-clean if and only if the
ring of all n× n lower triangular matrixs over R is ZG-clean.

Lemma 3.11. Let R be a commutative ring and f(x) =
∑n

i=0 aix
i ∈ R[x] be ZG-regular.

Then a0 is ZG-regular and for each i, angi is nilpotent for some n ∈ Z and g ∈ G.

Proof. Since f(x) is ZG-regular, thus there exists h(x) =
∑m

i=0 aix
i ∈ R[x] such that

fnghfng = fng. So ang0 b0a
ng
0 = ang0 . Therefore a0 is ZG-regular. Now we show that for each i,

angi is nilpotent for some n ∈ Z and g ∈ G. It is enough to show that for each prime ideal P of R;
every ai ∈ P . Since P is prime, thus R/P [x] is an integral domain. Define λ : R[x] −→ R/P [x]

by λ(
∑m

i=0 aix
i) =

∑m
i=0(ai+P )xi. λ is an epimorphism. Then λ(fng)λ(h)λ(fng) = λ(fng), so

(λ(f))ng)λ(h)(λ(f))ng) = (λ(f))ng, therefore deg((λ(f))ng)λ(h)(λ(f))ng)) = deg((λ(f))ng)).
Thus deg((λ(f))ng) + λ(h) + deg((λ(f))ng) = deg((λ(f))ng). Then deg((λ(f))ng) + λ(h) = 0.
So deg((λ(f))ng) = 0, thus λ(fng). Therefore ang1 + P = ang2 + P = ... = angm + P .

Theorem 3.12. If R is a commutative ring. Then R[x] is not ZG-clean.

Proof. Suppose that x = r+e, where r ∈ ZG−Reg(R) and e ∈ Id(R). Since Id(R) = Id(R[x]),
then x − e = r is ZG-regular. Hence, by Lemma 3.11, 1 = 1ng should be nilpotent for some
n ∈ Z and g ∈ G, which is a contradiction.

Theorem 3.13. Let R be a ring. Then ring R[[x]] is ZG-clean if and only if so is R.
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Proof. If R[[x]] is ZG-clean, then R ∼= R[[x]]/(xi) is ZG-clean. Conversly, suppose that R is
ZG-clean. R[[x]] ∼= {(ai) : ai ∈ R, ∀i ≥ 0} =

∏
i≥0Ri. Therefore by Theorem 3.4, R[[x]] is a

ZG-clean ring.

Lemma 3.14. The ZG-regular elements of any ring are ZG-clean.

Proof. Since 0 is idempotent, any ZG-regular r can be written as the sum of a ZG-regular and
an idempotent by written r = r + 0.

Proposition 3.15. Every ZG-regular ring is ZG-clean.

Proof. This follows immediately from Lemma 3.14.

Remark 3.16. ZG-clean rings may not be ZG-regular.

Example 3.17. Z4 is not ZG-regular, because 2 is not ZG-regular in Z4, but it is easy to
check that Z4 is ZG-clean.

Corollary 3.18. Every strongly π-reguler ring is ZG-clean.

Proof. It follows from Azumaya [[3] ,Theorem 3] that a ring R is strongly π-regular if and only
if for every element r ∈ R there is some z ∈ R such that rn = rnzrn with rz = zr for some
positive integer n. It is clear that if G is a trivial group (group with only one element), then
R is a ZG-regular ring. Then by Proposition 3.15, R is ZG-clean.

Example 3.19. The converse of the Corollary 3.18 is false. Let F be a field, and F (X) the
field of fractions of the polynomial ring F [X]. Extend {Xn|n ∈ Z} to a basis β of F (X) over F .
Let T be the free prouduct of F (X) with the (unital) free algebra on two elements F 〈A,B〉. Let
V = {BwA|w ∈ β − {Xn|n < 0}} ⊆ T , and P be the ideal of T generated by A2, B2, AwA,
AwB, BwB, for all w ∈ β − {1}, V , and

∪∞
k=1{(BX−1A)nk , (BX−2A)nk , ..., (BX−kA)nk},

where nk > 2k + 1. Set R = T/P and S = M2(R). By [[9], Example 3.4], S is ZG-clean. But
this ring is not strongly π-reguler.

Lemma 3.20. The unit elements of any ring are ZG-clean.

Proof. Since any unit element is regular and any regular element is ZG-regular so from Lemma
3.14 is trivial.

Lemma 3.21. Every quasiregular element is ZG-clean.
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Proof. Any quasiregular element x can be written as the sum of a unit and an idempotent by
writing x = (x − 1) + 1 since an element x is quasiregular if and only if x − 1 a unit. also
from proof of lemma 3.20, any unit element is ZG-regular, therefore the quasiregular element
is ZG-clean.

Lemma 3.22. The idempotent elements of any ring are ZG-clean.

Proof. Let e ∈ Id(R), then 1 − e ∈ Id(R). We can write e = (2e − 1) + (1 − e) and since
(2e − 1)(2e − 1) = 1, then (2e − 1) ∈ U(R) and also (2e − 1) is ZG-regular. Therefore e is
ZG-clean.

Proposition 3.23. Every division ring, local ring, boolean ring is ZG-clean.

Proof. This result follows immediately from lemmas 3.20 and 3.21 and 3.22 since all division
rings, local rings and boolean rings consist entirely of units, quasiregulars and idempotent
elements.

Theorem 3.24. Let R be a ring. Then x ∈ R is ZG-clean if and only if 1− x is ZG-clean.

Proof. If is ZG-clean. Then we have x = r+ e, where r is ZG-regular and e is an idempotent.
Thus 1− x = −r + (1− e). In ZG-regular rings there exist n ∈ Z and y ∈ R and g ∈ G such
that rng = rngyrng. Hence when n is odd we have

(−r)ng = (−r)ng(−y)(−r)ng

And when n is even,

(−r)ng = (−r)ngy(−r)ng

Then −r is ZG-regular. Since 1 − e is idempotent, we have 1 − x is ZG-clean. Conversely,
since x = 1 − (1 − x) and (1 − x) is ZG-clean by the first part of the proof, we deduce x is
ZG-clean.

Corollary 3.25. Let R be a ring and x ∈ J(R). Then x is ZG-clean.

Proof. Let x ∈ J(R). Then 1−x ∈ U(R). Hence, by Lemme 3.20, 1−x is ZG-clean. Therefore,
by Theorem 3.24, x is ZG-clean.

Proposition 3.26. Every semisimple ring is ZG-clean.
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Proof. Since every semisimple ring is isomorphic to a finite direct product of full matrix rings
over division rings, this is the Wedderburn-Artin Theorem, Since every division ring is ZG-
clean by Proposition 3.23, every full matrix ring with entries from a division ring is ZG-clean
by Theorem 3.9. Since every direct product of ZG-clean rings are ZG-clean by Theorem 3.4,
the result now follows. Therefore, every semisimple ring is ZG-clean.

Theorem 3.27. Every clean ring is ZG-clean.

Proof. Since the ring is clean, then every element in its can be written as the sum of a unit
and an idempotent of the ring. And since every unit element is a ZG-regular element, then
every element in its can be written as the sum of a ZG-regular and an idempotent of the ring,
so the ring is ZG-clean.

Corollary 3.28. ZG-clean rings may not be clean.

Example 3.29. Let F be a field with char(F ) 6= 2, A = F [[x]] and K be the field of fractions
of A. All the ideals of A are generated by power of x, denote by (xn). Define:

R = {r ∈ End(AF ) : there exist q ∈ K and a positive integer n, with r(a) = qa for all
a ∈ (xn)}

By [[12], Example 1], R is a regular ring and then ZG-regular. So by Proposition 3.15, R is a
ZG-clean ring. But by [2], R is not clean.

Corollary 3.30. Every semiperfect ring is ZG-clean.

Proof. By [7] any semiperfect ring is clean and by Theorem 3.27, every clean ring is ZG-clean.

Example 3.31. The ring Z(2) of all rational numbers with odd denominators (when written
in lowest terms) is semiperfect, and that the infinite direct product Z(2) × Z(2) × ... is clean
(see [14]), and then is ZG-clean, but not semiperfect.

We have follow diagram:

semiperfect ring −→ clean ring −→ r-clean ring −→ ZG-clean ring

Theorem 3.32. If R 6= 0 is a reduced directly finite ZG-clean ring and 0 and 1 are the only
idempotent in R. Then R is clean.
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Proof. Since R is ZG-clean, each x ∈ R has the form x = r + e, where r is ZG-clean and e is
an idempotent. If r = 0, then x = e = (2e− 1) + (1− e) and since 2e− 1 is a unit and 1− e

is an idempotent, we have x is clean. But if r 6= 0, then there exist a positive integer n and
y ∈ R and 1 ∈ G such that rn = rnyrn. Thus rny is an idempotent, and so by hypothesis
rny = 0 or rny = 1. If rny = 0, then rn = rnyrn = 0, and therefore r = 0, since R is reduced,
which is a contradiction, hence rny = 1 and since R is directly finite so r is invertible. Thus
x is clean. Hence R is a clean ring.

Corollary 3.33. Let R be a reduced directly finite ring and 0 and 1 are the only idempotent
in R. Then the following statements are equivalent:
(I) R is semiperfect.
(II) R is clean.
(III) R is ZG-clean.

Proof. This result follows immediately from [7] and Theorem 3.32.

4. Application of ZG-clean and strongly ZG-clean elements in social groups

These days graph models are finding many applications in different fields of science and
technology such as computer science, topology, operation research, biological and social sci-
ences.
In a social group, it is observed that some people can influence others and it can happen only
when there is a strong relationship between them. Now Let F2C2 to be a social group with
a, b, c, d such that a = 0, b = 1, c = x, d = 1+ x. Let R = F2 = Z2 and G = C2 (Z2 is the ring
of order 2, which is a field). Writing down the elements:
F2 = {0, 1} and C2 = {1, x}
F2C2 = {

∑
g∈G agg | ag ∈ F2}

= {0F2 .1C2 + 0F2 .x, 1F2 .1C2 + 0F2 .x, 0F2 .1C2 + 1F2 .x, 1F2 .1C2 + 1F2 .x}
= {0F2C2 , 1F2C2 , 1F2 .x, 1F2 .1C2 + 1F2 .x}
= {0, 1, x, 1 + x}
Not that . is F2 module multiplication. Now let us construct the Cayley tables for F2C2.
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+ 0 1 x 1+x

0 0 1 x 1+x

1 1 0 1+x x

x x 1+x 0 1

1+x 1+x x 1 0

. 0 1 x 1+x

0 0 0 0 0

1 0 1 x 1+x

x 0 x 1 1+x

1+x 0 1+x 1+x 1+x
Table 1. Cayley tables

Id(F2C2) = {0, 1}, since by Table 1, we have:
02 = 0 and 12 = 1

An element a ∈ R is said to be ZG-regular if there exist a positive integer n and b ∈ R and
g ∈ G such that ang = angbang. Then by Table 2, we have:

a b

0 0,1,x,1+x

1 1

x 1,x

1+x 0,1,x,1+x
Table 2. Element ZG-regular (g=1)

ZG−Reg(F2C2) = {0, 1, x, 1 + x}
Where g = 1. By Definition 3.1, and the relation of idempotent and ZG-regular elements of
F2C2 (see Table 3), so:

ZG-clean

elements

Idempotent

elements
+

ZG-

regular

elements

0 1 1

0 0

1 0 1

1 0

x 0 x

1 1 + x

1 + x 1 x

0 1 + x

Table 3. Relation of idempotent and ZG-regular elements (g=1)
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ZG-Clean elements of F2C2 will be follows:
F2C2 = {0, 1, x, 1 + x}
Then F2C2 is ZG-clean. Let us consider a directed graph of this social group.
The graph of this social group will be as follow:
G = (V,E)

V = {a, b, c, d}, E = {aa, bb, ab, ba, ac, bd, bc, ad}
The Table 4 show degree of vertices in this graph:

Vertices Input deg
Output

deg
Deg

a 2 4 6

b 2 4 6

c 2 0 2

d 2 0 2

Table 4. Degree of vertices

Graph shape shows members a, b in this social group are more influence than others, because
by Table 4, degree of vertices a and b are 6, and if members a and b was removed from graph
of social group, then none of the members of this social group did not have the property ZG-
clean.

a b

c d

5. Conclusions

In this paper, abelian ZG-regular and abelian strongly ZG-regular rings have been inves-
tigated. Results have contained a description of these rings. Also in this research, some
properties of ZG-clean and ZG-clean rings have been introduced. Measurement theory has
been considered as a useful mean to study the kinds of things that can be measured. Fur-
thermore, measure of influence of a member rather than the others in a group ring as a social
group has been proposed.
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